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Ultradilute quantum liquid drops
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Using quantum Monte Carlo methods we have studied dilute Bose-Bose mixtures with attractive interspecies
interaction in the limit of zero temperature. The calculations are exact within some statistical noise and thus go
beyond previous perturbative estimations. By tuning the intensity of the attraction, we observe the evolution of
an N -particle system from a gas to a self-bound liquid drop. This observation agrees with recent experimental
findings and allows for the study of an ultradilute liquid.
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The high tunability of interactions in ultracold Bose and
Fermi gases is allowing for exploration of regimes and phases
difficult to find in other condensed-matter systems [1]. By
adjusting properly the applied magnetic field, Bose and Fermi
gases are driven to Feshbach resonances with an increase in
interaction practically at will and with the possibility of turning
the system from repulsive to attractive and vice versa. This is
obviously not possible in conventional condensed matter where
interactions are generally not tunable at this level. A significant
example of this versatility has been the clean experimental
realization of the unitary limit for fermions [2,3] and the precise
characterization of the BCS-BEC crossover [4,5], which up to
that moment, was only a theoretical scenario.

Recently, it has been possible to explore the formation of
liquid/solid patterns in dilute gases by modifying the strength
of the short-range interatomic interactions. Probably, the most
dramatic example of this progress has been the observation
of the Rosensweig instability in a confined system of 164Dy
atoms with a significant magnetic dipolar moment [6–8]. By
tuning the short-range interaction, these works have observed
the spontaneous formation of an array of self-bound droplets
reminiscent of the characteristics of a classical ferrofluid.
The observation of solidlike arrangements in dilute gases
has also been possible working with highly excited Rydberg
atoms [9]. By direct imaging, Schauss et al. [9] have obtained
ordered excitation patterns with a geometry close to the well-
known arrangements observed in few-body confined Coulomb
particles.

In the line of obtaining other dense systems starting from
extremely dilute Bose and Fermi gases, the suggestion by
Petrov relying on Bose-Bose mixtures [10] is very stimulating.
According to this proposal, it is possible to stabilize a mixture
with attractive interspecies interaction in such a way that
the resulting system is self-bound, i.e., a liquid. Whereas a
mean-field treatment of the mixture predicts a collapsed state,
the first beyond mean-field correction, the Lee-Huang-Yang
(LHY) term, is able to stabilize the system by properly selecting
the interspecies s-wave scattering length. Further work has

shown that reducing the dimensionality of the setup to two
or quasitwo dimensions may help to stabilize the liquid phase
[11]. The LHY correction has also been used to account for
the formation of dipolar drops [12] and then confirmed by full
first-principles quantum Monte Carlo simulations [13,14].

The exciting idea of producing self-bound liquid drops
by using interspecies attractive interaction acting as glue of
the entire Bose-Bose mixture has been put forward by two
experimental teams [15,16]. Results obtained with a mixture
of 39K atoms in different internal states have shown the
formation of these drops whose size remains constant for tens
of milliseconds when the confining trap is removed. Therefore,
the theoretical prediction seems confirmed, and thus a new
window for exploring matter in unprecedented situations is
open. On one side, it proves the way of forming liquid drops
with high density in the world of cold gases and, on the
other, makes possible the study of a liquid state of matter
with an extremely low density, lower than any other existing
liquid.

In the present Rapid Communication, we study the forma-
tion of liquid drops in a Bose-Bose mixture using the diffusion
Monte Carlo (DMC) method, which solves stochastically the
N -body Schrödinger equation in an exact way within some
statistical uncertainties. The DMC method was extensively
used in the past for determining the structure and energy
properties of liquid drops of 4He [17,18], 3He [19,20], H2 [21],
and spin-polarized tritium [22]. By differing with perturbative
estimates, DMC allows for an exact study of the quantum
properties of the system relying only on its Hamiltonian. Our
results confirm the LHY prediction on the stability of self-
bound mixtures and determine quantitatively the conditions
under which liquid drops are stable and how they evolve when
the attractive interaction is increased. Within the regime here
explored, we do not observe a full collapse of the drop but a
gradual and simultaneous increase in density and reduction of
size.

The Bose-Bose mixture under study is composed of
N1 bosons of mass m1 and N2 bosons of mass m2 with
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with V (α,β)(r) as the interatomic interaction between species
α and β. We focus on a mixture of intraspecies repulsive
interaction, i.e., positive s-wave scattering lengths a11 > 0 and
a22 > 0, and interspecies attractive potential a12 < 0. To set up
this regime, we use a hard-sphere potential of radius aαα for
V (α,α)(r) and an attractive square well of depth −V0 and range
R for V (α,β)(r). In the latter case, we fix R and change V0 to
reproduce the desired negative scattering length; note that we
work with negative aαβ values, and thus the attractive potential
does not support a pair bound state.

The DMC method uses a guiding wave function as impor-
tance sampling to reduce the variance to a manageable level.
We adopt a Jastrow wave function in the form

�(R) =
N1∏

1=i<j

f (1,1)(rij )
N2∏

1=i<j

f (2,2)(rij )
N1,N2∏

i,j=1

f (1,2)(rij ), (2)

with R = {r1, . . . ,rN }, N = N1 + N2. In the case of equal
particles the Jastrow factor is taken as the scattering solution
f (α,α)(r) = 1 − aαα/r for r � aαα and zero otherwise. If the
pair is composed of different particles, then we take f (1,2)(r) =
exp(−r/r0) with r0 as a variational parameter.

In order to reduce the number of variables of the problem,
keeping the essentials, we consider m1 = m2, N1 = N2, and
a11 = a22. In this way, our Rapid Communication explores the
stability and formation of liquid drops as a function of a12

and the number of particles N (N1 = N2 = N/2). The s-wave
scattering length a12 of an attractive well is analytically known
a12 = R[1 − tan(KR)/(KR)] with K2 = m1V0/h̄

2. We take
a12 < 0, which corresponds to KR < π/2. In practice, we
fix the range of well R and vary depth V0. As is obvious
from the equation for a12, its value depends on the product
RV

1/2
0 and then decreasing R means to increase V0. If for

a fixed a12 value we want to approach the limit R → 0
(V0 → ∞), our calculations become extremely demanding in
terms of accuracy and number of particles required to observe
saturation. After some preliminary studies, we determined
that R = 4a11 is a good compromise between accuracy and
reliability and thus the major part of our results is obtained with
that. In the following, unless stated otherwise, all energies and
lengths are given in h̄2/(2m1a

2
11) and a11 units, respectively.

The trial wave function �(R) (2) depends on a single
parameter r0. This parameter is previously optimized using
the variational Monte Carlo method. Its value increases with
the total number of particles N ; for instance, when R = 4 and
V0 = 0.166, r0 increases monotonously from 106 up to 622
when N grows from 100 to 2000. Our DMC algorithm is
accurate up to second order in the imaginary-time step [23]
and uses forward walking to remove any bias of the trial
wave function in the estimation of diagonal operators which do
not commute with the Hamiltonian [24]. Any systematic bias

FIG. 1. Energy per particle of the Bose-Bose mixture as a function
of the scattering length a12/a11. The different symbols and lines
correspond to DMC calculations with different numbers of particles.

derived from the use of a finite time step and a finite number
of walkers in the diffusion process is kept smaller than the
statistical noise.

In Fig. 1, we report results for the energy per particle of the
Bose-Bose mixture for a different number of particles and as a
function of the scattering length a12. For each N , we observe
a similar behavior when we tune a12. There is a critical value
which separates systems with positive and negative energies.
When the energy is positive the N system is in a gas phase
and, by increasing |a12|, it condenses into a self-bound system,
that is, a liquid drop. Around the critical value the energy
decreases linearly. Our results show a clear dependence of the
critical scattering length for binding on the number of particles:
Smaller drops require more attraction (larger V0) than larger
ones.

The dependence of the critical scattering length for self-
binding acrit

12 on the number of particles is shown in Fig. 2.
Plotted as a function of 1/N we observe a decrease in acrit

12 ,
reaching in the thermodynamic limit (N → ∞) a value slightly
larger than one. In fact, LHY theory has been applied to the
formation of Bose-Bose drops around this value of |a12| ∼ a11

corresponding to drops with a very large number of particles
[10]. In the same figure, we show results derived using a
different range of R = 10 of the attractive well. As we can see,
the dependence of acrit

12 with N is slightly different, but it seems
that both curves tend to approach for the largest accessible
N = 2000 value.

The calculation of the density profiles ρ(r) allows for a
better knowledge of the shape and size of the formed drops.

FIG. 2. Critical values acrit
12 for liquid-drop formation as a function

of 1/N . The circles and triangles stand for different sizes of the
potential well. The lines correspond to fits to the DMC results.
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FIG. 3. Density profiles of the Bose-Bose liquid drops for a
different number of particles. The top and bottom panels correspond
to V0 = 0.150, a12 = −3.09 and V0 = 0.166, a12 = −3.81, respec-
tively. From small to large drops, N = 200, 400, 1000, and 2000. The
dashed lines correspond to the equilibrium density of the bulk phase.

In Fig. 3, we report DMC results on the density profiles of the
obtained drops. Notice that there is no difference between the
partial density profiles due to our election of interactions and
masses ρ(1)(r) = ρ(2)(r) = ρ(r)/2. The two cases shown in
Fig. 3 correspond to scattering lengths a12 = −3.09 (top) and
a12 = −3.81 (bottom). When the number of particles increases
one observes that both the central density and the radius of the
drop grow. This is expected to happen until the central density
reaches the equilibrium density of the bulk phase. In fact, the
full shape of the profile evolves with N from a slow decay of
the density to zero to a steeper one, trying to optimize volume
and surface contributions to the total energy. Once the drop
saturates, only the radius increases with the addition of more
particles. The density profiles, shown here for two illustrative
examples, correspond to very dilute liquids because we need
∼2000 particles to reach saturation. In the figures, we have also
shown the equilibrium densities that we have obtained for the
same potentials in preliminary calculations of the bulk phase.
By increasing |a12|, i.e., by making the system more attractive,
we observe that the central density increases and the size of the
drop squeezes. A direct comparison of our results with LHY
theory [10] is not possible because our drops do not fulfill their
validity condition |a12| ∼ a11.

Apart from the central density one can also extract from the
density profiles the surface width, usually measured as length

W over which the density decreases from 90 to 10% of the inner
density. It is expected that W increases with N for unsaturated
drops and then it stabilizes when saturation is reached. Our
results show also this trend: For a12 = −3.09, W = 15 for the
smallest drop and stabilizes then to W � 20; for a12 = −3.81,
these values are W = 11 and 18.

DMC allows for the study of the drops around the gas-
liquid transition but can also show how the evolution towards
a collapsed state happens. By increasing the depth of the
attractive well V0 we can see the change in the shape and
size of a given drop. In Fig. 4, we report this evolution as a
contour plot of the density profiles for a particular liquid drop
with N = 200 particles. The range of a12 values starts close
to acrit

12 for this N value and ends quite deep into the Feshbach
resonance at a scattering length of a12 � 40acrit

12 . Following this
ramp, we observe an increase in an order of magnitude in the
inner density and a shrinking of the size with a reduction of
the radius in a factor of 3. Therefore, the drop becomes denser,
but it is still a fully stable object which is not at all collapsed.
It is worth noting that, following this ramp, the interparticle
distance approaches the range of the attractive interaction R

making our results sensitive to the model potential (in the
densest case of Fig. 4, 〈r12〉 � 2R).

The microscopic characterization of the Bose-Bose liquid
drops is not complete without the knowledge of the energy.
As we commented before, it is the result of the energy which
determines if an N -particle system is in a gas or liquid state.
Once in the liquid phase, it is important to calculate the
dependence of the energy on the number of particles. In Fig. 5,
we report the DMC energies as a function of N and for three
different a12 values. From intensive calculations carried out in
the past on liquid 4He drops [17,18], we know that the energy
of the drops is well accounted for by a liquid-drop model.
According to this, the energy per particle is

E(N )/N = Ev + Esx + Ecx
2, (3)

with x ≡ N−1/3. The coefficients in Eq. (3) Ev, Es , and Ec are
termed volume, surface, and curvature energies, respectively.
The term Ev corresponds to the energy of an infinitely large
drop or, in other words, to the energy per particle of the bulk.
The second term Es is important because, from it, we can
estimate the surface tension of the liquid t as t = Es/(4πr2

0 ).
The parameter r0 is the unit radius of the liquid and can
be estimated from the relation 4πr3

0 ρ0/3 = 1 with ρ0 as the
equilibrium density of the liquid.

In Fig. 5, we plot as lines the results of the liquid-drop model
obtained as least-squares fit to the DMC energies. In the three
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FIG. 4. Contour plots of the density profiles of a liquid drop with N = 200 as a function of a12.
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FIG. 5. Energy per particle of the Bose-Bose drops as a function
of N−1/3 and for different interparticle scattering lengths a12. The
open symbols are the DMC results, and the lines are fits according
to the liquid-drop model (3). The error bars are smaller than the size
of the symbols. The points on the zero x axis correspond to bulk
calculations.

cases studied we obtain a high-fidelity fit. In the figure, we plot
on the zero x axis the energies of the bulk liquid in the same
conditions as the drops. These results are not included in the
fit (3), but they are completely coincident with the energies Ev

obtained solely from the drop energies. This is in fact a stringent
test of accuracy on the calculations of the liquid drops. In the
figure we see the effect of the potential on the energy of the
drops for the three selected cases. The self-binding of a given
N drop becomes stronger as depth V0, and thus |a12|, increase.
We have verified that the absolute value of the energy grows
linearly with V0 close to the critical value for self-binding but,
for larger potential depths, it increases faster. From the fits us-
ing the liquid-drop model, we estimate that the surface tension
for the three cases shown in Fig. 5 are 0.18×10−2, 0.37×10−2,
and 2.41×10−2 [in units h̄2/(2m1a

4
11)] when a12 = −3.09,

−3.81, and −7.85, respectively.
We think that a comparison between the Bose-Bose drops

here studied and the well-known properties of stable superfluid

4He drops can help to better visualize their extraordinary
properties. We can consider a typical value for a11 used in the
experiments with ultracold mixtures of 39K, say a11 = 50 a0,
with a0 as the Bohr radius. Then, the saturation densities of the
drops shown in Fig. 3 are ∼1.0×10−6 and 1.4×10−6 Å−3. Near
the critical scattering length for a given size, the drops are even
more dilute, e.g., for N = 2000 and a12 = −1.75, the central
density is about 3×10−8 Å−3. The saturation density of liquid
4He is 2.2×10−2 Å−3, implying that the Bose-Bose drops can
be as dilute as ∼104 times the 4He ones (a similar ratio happens
when compared with water with a density of 3.3×10−2 Å−3)
[25]. For the same number of atoms, the Bose-Bose drop is
much larger than the 4He one: 9.8×10−2 μm for V0 = 0.150
and 3×10−3 μm for 4He with N = 2000 [26]. The surface of
the dilute drop for this N is ∼50% of the total size, much larger
than the 20% value in 4He.

Summarizing, we have carried out a DMC calculation of
Bose-Bose mixtures with attractive interspecies interaction.
Relying only on the Hamiltonian, we describe the system
without further approximations. Our results clearly show the
transition from a gas with positive energy to a self-bound
system (liquid) and determine accurately the critical scattering
lengths for the transition as a function of the number of parti-
cles. The experimental realization of Bose-Bose liquid drops
[15,16] opens the possibility of accessing denser systems than
the usual trapped ultracold gases where quantum correlations
can be much more relevant. The point of view from the liquid
state is however different: The liquid that emerges from these
mixtures is ultradilute, much less dense than any other stable
liquid in Nature. Therefore, the liquid phase realm extends to
unexpected regimes never achieved before.
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ported, in part, by the Croatian Science Foundation under
Project No. IP-2014-09-2452 and MINECO (Spain) Grant No.
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HYBRID cluster at the University of Split, Faculty of Science
and Croatian National Grid Infrastructure (CRO NGI) were
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These would correspond to very large N drops, which are hardly
accessible with direct DMC simulations. These densities are
even below the ones observed experimentally in Ref. [15].

[26] M. Barranco, R. Guardiola, S. Hernández, R. Mayol, and M. Pi,
J. Low Temp. Phys. 142, 1 (2006).

140502-5

https://doi.org/10.1103/PhysRevLett.50.1676
https://doi.org/10.1103/PhysRevLett.50.1676
https://doi.org/10.1103/PhysRevLett.50.1676
https://doi.org/10.1103/PhysRevLett.50.1676
https://doi.org/10.1103/PhysRevB.45.852
https://doi.org/10.1103/PhysRevB.45.852
https://doi.org/10.1103/PhysRevB.45.852
https://doi.org/10.1103/PhysRevB.45.852
https://doi.org/10.1103/PhysRevA.71.035201
https://doi.org/10.1103/PhysRevA.71.035201
https://doi.org/10.1103/PhysRevA.71.035201
https://doi.org/10.1103/PhysRevA.71.035201
https://doi.org/10.1103/PhysRevB.73.092515
https://doi.org/10.1103/PhysRevB.73.092515
https://doi.org/10.1103/PhysRevB.73.092515
https://doi.org/10.1103/PhysRevB.73.092515
https://doi.org/10.1103/PhysRevLett.67.1871
https://doi.org/10.1103/PhysRevLett.67.1871
https://doi.org/10.1103/PhysRevLett.67.1871
https://doi.org/10.1103/PhysRevLett.67.1871
https://doi.org/10.1063/1.3275520
https://doi.org/10.1063/1.3275520
https://doi.org/10.1063/1.3275520
https://doi.org/10.1063/1.3275520
https://doi.org/10.1103/PhysRevB.49.8920
https://doi.org/10.1103/PhysRevB.49.8920
https://doi.org/10.1103/PhysRevB.49.8920
https://doi.org/10.1103/PhysRevB.49.8920
https://doi.org/10.1103/PhysRevB.52.3654
https://doi.org/10.1103/PhysRevB.52.3654
https://doi.org/10.1103/PhysRevB.52.3654
https://doi.org/10.1103/PhysRevB.52.3654
https://doi.org/10.1007/s10909-005-9267-0
https://doi.org/10.1007/s10909-005-9267-0
https://doi.org/10.1007/s10909-005-9267-0
https://doi.org/10.1007/s10909-005-9267-0



