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Breakdown of the Migdal-Eliashberg theory: A determinant quantum Monte Carlo study
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The superconducting (SC) and charge-density-wave (CDW) susceptibilities of the two-dimensional Holstein
model are computed using determinant quantum Monte Carlo, and compared with results computed using the
Migdal-Eliashberg (ME) approach. We access temperatures as low as 25 times less than the Fermi energy, EF ,
which are still above the SC transition. We find that the SC susceptibility at low T agrees quantitatively with the
ME theory up to a dimensionless electron-phonon coupling λ0 ≈ 0.4 but deviates dramatically for larger λ0. We
find that for large λ0 and small phonon frequency ω0 � EF CDW ordering is favored and the preferred CDW
ordering vector is uncorrelated with any obvious feature of the Fermi surface.
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Introduction. The electron-phonon (e-p) problem is of broad
importance in solid-state physics, and especially so in the the-
ory of superconductivity (SC). In this context, a key question
is what are the conditions that lead to the highest possible
SC transition temperature, Tc. Given that this occurs when
the dimensionless e-p coupling λ0 is not small, one would a
priori expect this question might be analytically unanswerable.
However, Migdal-Eliashberg (ME) theory purports to be valid
even if λ0 is not small, provided λ0ω0/EF is small, where ω0

is an average phonon frequency and EF is the Fermi energy
[1,2]. On the other hand, from a strong-coupling (large λ0)
perspective, it is clear ME theory breaks down for large λ0 no
matter how small ω0/EF , due to the formation of bipolarons
[3–5]. Thus, one faces the practical question: at what value of
the e-p coupling does ME theory break down, and how?

Model. To be explicit, we consider the two-dimensional
Holstein Hamiltonian [6]

H = He + Hp + Hep, (1)

where

He = −
∑
ij,σ

tij (c†iσ cjσ + H.c.) − μ
∑
i,σ

niσ ,

Hp =
∑

i

(
P 2

i

2M
+ 1

2
KX2

i

)
,

Hep = α
∑
i,σ

ni,σXi, (2)

c
†
iσ creates an electron on site i with spin polarization σ =↑

, ↓, niσ = c
†
iσ ciσ is the local electronic density, Pi and Xi are

the position and momentum operators of Einstein phonons with
mass M , and μ is the chemical potential. The bare phonon
frequency is thus ω0 = √

K/M , and α is the e-p coupling
constant. (We take units in which M = h̄ = kB = 1.)

There are two important dimensionless parameters in the
model: the adiabatic parameter ω0/EF and the dimensionless
e-p coupling

λ0 = α2ρ(EF )/K, (3)

where ρ(EF ) is the density of states at the Fermi energy. To
make contact with other approaches we also present data as a
function of a “renormalized” coupling, denoted by λ, which
we define in analogy with the phenomenological coupling
extracted from tunneling spectra and often used in studies
of “strongly coupled” superconductors [7]. In the limit of
weak coupling, λ = λ0 + O(λ2

0), but for λ0 ∼ 1, we will see
that phonon softening leads to λ > λ0. The prescription for
computing λ will be explained below in Eq. (9).

We investigate this model numerically via determinant
quantum Monte Carlo (DQMC) simulations and analytically
via ME theory. Details of the DQMC algorithm, including
explanation of both the local and global phonon field updates
used, can be found in [8]. Unless stated otherwise, we work
with a square lattice with both nearest-neighbor and next-
nearest-neighbor hopping t ′/t = −0.3 and a fixed density n =
0.8. We keep a nonzero t ′ to avoid nesting near half-filling and
also because previous studies have found that nonzero t ′ leads
to an enhanced pairing response [9]. We have studied systems
of linear size L = 8–12 with periodic boundary conditions and
temperatures T = β−1 = t/4 to t/16. All data in the main text
is shown for our largest system size L = 12, which is large
enough that most observables are essentially L independent,
i.e., are characteristic of the thermodynamic limit. The DQMC
results are shown as solid symbols in the various figures and
where error bars are not visible, the statistical error is less
than the symbol size. The figures also show comparisons of
the DQMC results with ME theory, which is shown as either
continuous curves or open symbols. ME calculations have
also been carried out on system size L = 12. All data in the
main text has the adiabatic ratio ω0/EF = 0.1, which puts
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FIG. 1. χsc and χcdw as a function of λ0 (lower scale) and λ

(upper scale) for ω0/EF = 0.1 at base temperature, βt = 16, density
n = 0.8, and L = 12. Data points are DQMC values; solid lines are
computed in ME approximation. We see a breakdown in the ME
theory for λ0 � 0.4 (λ � 1.7).

us comfortably within the putative regime of validity of ME
theory. In the Supplemental Material [10] we present data
for other values of ω0/EF . We note that this model is free
of the notorious minus-sign problem and hence we are able
to access relatively large system sizes and low temperatures.
However, for the parameters used here, we are still unable
to access temperatures T � t/16 due to prohibitively long
phonon autocorrelation times [11].

Results. While we typically cannot access sufficiently low
temperatures to observe transitions to either a SC or a charge-
density wave (CDW) phase, we do access low enough T that
a significant growth of the corresponding susceptibilities can
be measured, showing the ordering tendencies of the system.
The s-wave pair susceptibility is defined as

χsc =
∫ β

0
dτ 〈
(τ )
†(0)〉, (4)

where


† = 1

L

∑
i

c
†
i↑c

†
i↓ (5)

and the CDW susceptibility is

χcdw(q) =
∫ β

0
dτ 〈ρq(τ )ρ†

q(0)〉, (6)

where

ρ†
q = 1

L

∑
i,σ

eiq·Ri c
†
iσ ciσ . (7)

We will use the symbol χcdw to represent the value of χcdw(q)
evaluated at q ≡ Qmax at which it is maximal.

In Fig. 1 we plot χsc and χcdw as a function of λ0 (lower
axis) and λ (upper axis) at the lowest studied temperature
βt = 16. The results from the ME theory, discussed in more
detail in the next section, agree quantitatively with the data for
λ0 � 0.4 (λ � 1.7), after which the SC susceptibility takes
a sharp downturn while the ME theory shows no similar
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FIG. 2. χsc as a function of T for fixed values of λ0 = 0.4 and
0.5 (λ ≈ 1.7 and 4.6), ω0/EF = 0.1, n = 0.8, and L = 12. For λ0 =
0.4, the ME theory accurately captures the behavior of χsc over the
entire temperature range while for λ0 = 0.5 the theory is qualitatively
incorrect.

features. We thus conclude that, for the parameters considered,
ME theory breaks down dramatically for λ0 � 0.4. This is
consistent with dynamical mean-field theory (DMFT) results
reported by Bauer et al. [4], where it was found that the ME
predictions differ from those of DMFT for λ0 � 0.3–0.4. Also
evident from Fig. 1 is that the downturn in χsc is accompanied
by a rapid rise of CDW correlations, which in turn leads to
phonon softening and a corresponding increase in λ/λ0. We
find that χcdw is peaked at wave vector Qmax = (π,π ) which,
we emphasize, is a wave vector not associated with any obvious
features of the Fermi surface (see inset of Fig. 3 for the Fermi
surface and Fig. S1 of the Supplemental Material for details
about χcdw). The abrupt nature of the breakdown of ME theory
can also be seen in Fig. 2, where we plot χsc as a function
of T for λ0 = 0.4,0.5 (λ ≈ 1.7,4.6). For λ0 = 0.4, ME theory
shows good agreement with the data over the entire temperature
range βt = 4–16. However, for λ0 = 0.5, while the ME theory
does predict a decrease in the pairing response relative to
λ0 = 0.4, it clearly misses even the qualitative behavior of χsc.

We have also computed the electron and phonon imaginary
time ordered Green’s functions. In Fig. 3 we plot the imaginary
part of the electronic self-energy Im� for λ0 = 0.2, 0.4, and
0.5 (λ ≈ 0.3,1.7,4.6), as a function of Matsubara frequency
ωn = (2n + 1)πT and for two momenta near the Fermi sur-
face. For λ0 = 0.2 the self-energy is nearly momentum inde-
pendent and the Matsubara frequency dependence of Im� is
captured accurately by ME theory. Forλ0 = 0.4 the self-energy
develops weak momentum dependence and the dependence on
both k and ωn is again captured well by ME theory. For λ0 =
0.5 the self-energy remains weakly momentum dependent in
both the ME and DQMC results but ME theory drastically
underestimates the magnitude of the self-energy.

In Fig. 4 we plot the renormalized phonon frequency
(q,0) = [ω2

0 + �(q,0)]1/2, where �(q,νn) is defined implic-
itly in terms of the phonon Green’s function according to

D(q,νn) ≡ 2ω0

(iνn)2 − ω2
0 − �(q,νn)

(8)
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FIG. 3. Imaginary part of the electronic self-energy, Im�(k ≈
kF ,ωn), where ωn = (2n + 1)πT and k ≈ kF is a momentum near
the Fermi surface, evaluated at θ = 0 and θ ≈ 34◦. The inset shows
the k-space mesh for an L = 12 grid and the two points at which Im�

is evaluated. These points correspond to the points closest to the zone
diagonal and zone boundary, respectively, of the Fermi surface. The
ME theory captures both the Matsubara frequency and momentum
dependence of Im� for λ0 � 0.4 but again shows a breakdown for
λ0 = 0.5. Other parameters are ω0/EF = 0.1, βt = 16, n = 0.8, and
L = 12.

and νn = 2πnT . For λ0 = 0.2 and 0.4 we see that the ME
theory captures the renormalization of the phonon propagator
with remarkable accuracy. (For λ0 = 0.4, there is a noticeable
error in the ME result in a narrow range of q around (π,π ); this
reflects an emerging problem in treating the CDW tendencies,
as is discussed further in the Supplemental Material.) However,
for λ0 = 0.5, ME theory drastically underestimates (by a factor
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FIG. 4. Ratio of renormalized to bare phonon frequency. The
renormalized phonon frequency is defined in Eq. (8). For λ0 � 0.4
we see ME theory accurately predicts the momentum dependence of
(q,0). However, for λ0 = 0.5, ME theory dramatically underesti-
mates the softeninng of the phonon propagator at q = (π,π ). Other
parameters are ω0/EF = 0.1, n = 0.8, βt = 16, and L = 12.

Σ(k, ωn) =

Π(q, νn) =

FIG. 5. Migdal equations for electronic and phonon self-energies
in the normal state. Double lines indicate fully renormalized Green’s
functions and the solid dot is the bare vertex α.

of ∼3) the phonon softening at q = (π,π ) and also gives a
weaker softening near q = 0.

Migdal-Eliashberg theory. The ME theory for the normal
state of an interacting e-p system can be summarized by the
diagrams in Fig. 5, which constitute a set of closed self-
consistent equations for the electron and phonon self-energies.
The approach is justified by the observation that the leading
correction to the e-p vertex is proportional to ω0/EF , and hence
can be ignored for ω0/EF � 1 [1,2]. As pointed out in [12],
it is important to include self-consistently the equation for the
phonon self-energy (rather than just using the bare phonon
propagator in the electron self-energy equation) to account for
effects due to phonon softening near a CDW transition. Details
of the numerical procedure used to solve these equations and
how the self-energies are used to compute various observables
can be found in, e.g., [12,13].

An important quantity entering the ME theory is the cou-
pling constant λ [7], defined as

λ = 2
∫ ∞

0
dω

α2F (ω)

ω
, (9)

where α2F (ω) = ρ(EF )α2〈B(k − k′,ω)〉FS. Here B(q,ω) is
the phonon spectral function and the brackets denote the Fermi
surface (FS) average

〈B(k − k′,ω)〉FS = 1

ρ(EF )2

∫
d2k

(2π )2

d2k′

(2π )2

× B(k − k′,ω)δ(εk − EF )δ(εk′ − EF ).

(10)

To extract this quantity from DQMC data we use the rela-
tionship between the imaginary time ordered phonon Green’s
function and the spectral function,

D(q,νn) =
∫ ∞

0
dω B(q,ω)

2ω

(iνn)2 − ω2
, (11)

from which it follows that

λ = −λ0ω0

2
〈D(k − k′,0)〉FS. (12)

Conclusions. Comparing the DQMC results on the Holstein
model with ME theory, we find remarkably good quantitative
agreement for e-p coupling less than a crossover value, λ0 �
λ� = 0.4. However, as λ0 exceeds λ�, increasingly dramatic
quantitative and qualitative differences develop. This is despite
the fact that λ(̄/EF ) (the nominal control parameter for ME
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theory) is still small, and that the ME theory shows no sign that
a crossover has occurred. (Note that while λ increases over λ0,
the average phonon frequency ̄ decreases so that at λ0 =
0.5, λ̄/EF ≈ 0.3.) This crossover appears in some ways
analogous to a first-order transition; it involves a change in the
character of the low-energy theory to one which will eventually
(at larger λ0) be governed by the strong-coupling physics of
bipolarons, commensurate CDWs, and phase separation [3–5].

Our results are also interesting in the context of the quest
for higher Tc superconductors. For λ0 � λ�, the measured χsc

agrees well with ME theory in the accessible range of temper-
atures, and hence it is reasonable to use the ME expression as
a way to extrapolate the DQMC results to lower T . By this line
of reasoning, we can use the value of Tc computed within ME
as a reliable estimate of the true Tc for λ0 in this range. Since
the ME Tc is an increasing function of λ0 we conclude the
same is true of the actual Tc, so long as λ0 � λ�. On the other
hand, for λ0 = 0.5 (where ME theory no longer agrees with the
DQMC results), χsc from DQMC is a decreasing function of
decreasing temperature (see Fig. 2), from which we conclude
Tc has been substantially suppressed and likely vanishes. This
implies Tc is optimized around λ0 ≈ λ�, where from ME theory
we estimate that the maximal Tc is T (max)

c ≈ 8 × 10−2ω0.
The property of an optimal Tc should be contrasted with

conventional ME theory, which predicts a monotonically
increasing Tc as a function of λ0 [14,15]. Of course, it is
likely that the precise value of λ� is nonuniversal, and there
may be ways to engineer the model to increase it further;
say, by suppressing the CDW and/or polaronic tendencies. For
instance, Pickett [16] has discussed the possibility of using
multiple quasi-2D Fermi surfaces to enhance Tc and Werman
and Berg [17] have recently shown that in a particular large N

limit, in which the number of phonon modes is large compared
to the number of fermionic modes, one can access the large
λ limit without polaronic effects. However, as seen in H3S
[18,19], it is probably a more promising route to increase Tc by
increasing ω0 (the prefactor in Tc) keeping λ0 ≈ λ�, rather than
increasing λ [20–22]. (On the other hand, increasing ω0 makes
the effects of bare Coulomb repulsion—which are completely
absent in our treatment—more important.)

Finally, our results should be put in the context of previous
studies of the Holstein model. The competition between SC
and CDW has been studied via DQMC, albeit with a different
focus and in a different parameter regime (see [9,12,13,23],
and references therein). The Holstein model has also been
studied extensively via DMFT (see [4,24–29] for discussions
of the crossover between weak and strong coupling as well
as assessments of the validity of ME theory for the Hol-
stein model). The conclusions of these studies are broadly
similar to those reached here, in that discrepancies between
ME theory and DMFT appear for relatively small values
of λ0, where there is an onset of phonon softening and a
significant increase in the renormalized coupling λ. However,
because the DMFT is done in infinite dimensions, we are
unable to make quantitative comparisons with these studies.
Using the dynamical cluster approximation, the inclusion
of lowest-order vertex corrections has been studied [30]. In
that study it was found that inclusion of vertex corrections
tends to return the system to the ME regime by averting
phonon softening. As we have seen, however, the ME the-
ory already underestimates the phonon softening, suggesting
that the inclusion of vertex corrections will not save the
theory.

Acknowledgments. We would like to thank Akash Maharaj,
Raghu Mahajan, and Abolhassan Vaezi for collaboration dur-
ing early stages of this work. We acknowledge insightful dis-
cussions with Sri Raghu, Samuel Lederer, and Yoni Schattner.
I.E., B.N., E.W.H. B.M., and T.P.D. were supported by the
US Department of Energy, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering, under Con-
tract No. DE-AC02-76SF00515. S.A.K. was supported by NSF
DMR-1608055. D.J.S. was supported by the Scientific Discov-
ery through Advanced Computing (SciDAC) program funded
by US Department of Energy, Office of Science, Advanced
Scientific Computing Research and Basic Energy Sciences,
Division of Materials Sciences and Engineering. This research
was supported in part by the National Science Foundation
under Grant No. NSF PHY11-25915. Computational work was
performed on the SIMES and Sherlock clusters at Stanford
University.

[1] A. Migdal, Sov. Phys. JETP 7, 996 (1958).
[2] G. Eliashberg, Sov. Phys. JETP 11, 696 (1960).
[3] A. S. Alexandrov, Europhys. Lett. 56, 92 (2001).
[4] J. Bauer, J. E. Han, and O. Gunnarsson, Phys. Rev. B 84, 184531

(2011).
[5] E. W. Carlson, V. J. Emery, S. A. Kivelson, and D.

Orgad, Concepts in High Temperature Superconductivity,
in Superconductivity: Conventional and Unconventional
Superconductors, edited by K. H. Bennemann and
J. B. Ketterson (Springer, Berlin, Heidelberg, 2008),
pp. 1225–1348.

[6] T. Holstein, Ann. Phys. (NY) 8, 325 (1959).
[7] P. B. Allen and B. Mitrović, in Solid State Physics, edited by

H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York,
1983), Vol. 37, pp. 1–92.

[8] S. Johnston, E. A. Nowadnick, Y. F. Kung, B. Moritz, R. T.
Scalettar, and T. P. Devereaux, Phys. Rev. B 87, 235133 (2013).

[9] M. Vekić, R. M. Noack, and S. R. White, Phys. Rev. B 46, 271
(1992).

[10] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.97.140501 for details of the CDW and other
values of the adiabatic ratio.

[11] M. Hohenadler and T. C. Lang, Computational Many-Particle
Physics (Springer, New York, 2008). pp. 357–366.

[12] F. Marsiglio, Phys. Rev. B 42, 2416 (1990).
[13] R. T. Scalettar, N. E. Bickers, and D. J. Scalapino, Phys. Rev. B

40, 197 (1989).
[14] P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).
[15] V. Z. Kresin, Phys. Lett. A 122, 434 (1987).
[16] W. E. Pickett, J. Supercond. Novel Magn. 19, 291 (2006).

140501-4

https://doi.org/10.1209/epl/i2001-00492-x
https://doi.org/10.1209/epl/i2001-00492-x
https://doi.org/10.1209/epl/i2001-00492-x
https://doi.org/10.1209/epl/i2001-00492-x
https://doi.org/10.1103/PhysRevB.84.184531
https://doi.org/10.1103/PhysRevB.84.184531
https://doi.org/10.1103/PhysRevB.84.184531
https://doi.org/10.1103/PhysRevB.84.184531
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1103/PhysRevB.87.235133
https://doi.org/10.1103/PhysRevB.87.235133
https://doi.org/10.1103/PhysRevB.87.235133
https://doi.org/10.1103/PhysRevB.87.235133
https://doi.org/10.1103/PhysRevB.46.271
https://doi.org/10.1103/PhysRevB.46.271
https://doi.org/10.1103/PhysRevB.46.271
https://doi.org/10.1103/PhysRevB.46.271
http://link.aps.org/supplemental/10.1103/PhysRevB.97.140501
https://doi.org/10.1103/PhysRevB.42.2416
https://doi.org/10.1103/PhysRevB.42.2416
https://doi.org/10.1103/PhysRevB.42.2416
https://doi.org/10.1103/PhysRevB.42.2416
https://doi.org/10.1103/PhysRevB.40.197
https://doi.org/10.1103/PhysRevB.40.197
https://doi.org/10.1103/PhysRevB.40.197
https://doi.org/10.1103/PhysRevB.40.197
https://doi.org/10.1103/PhysRevB.12.905
https://doi.org/10.1103/PhysRevB.12.905
https://doi.org/10.1103/PhysRevB.12.905
https://doi.org/10.1103/PhysRevB.12.905
https://doi.org/10.1016/0375-9601(87)90744-4
https://doi.org/10.1016/0375-9601(87)90744-4
https://doi.org/10.1016/0375-9601(87)90744-4
https://doi.org/10.1016/0375-9601(87)90744-4
https://doi.org/10.1007/s10948-006-0164-9
https://doi.org/10.1007/s10948-006-0164-9
https://doi.org/10.1007/s10948-006-0164-9
https://doi.org/10.1007/s10948-006-0164-9


BREAKDOWN OF THE MIGDAL-ELIASHBERG THEORY: A … PHYSICAL REVIEW B 97, 140501(R) (2018)

[17] Y. Werman and E. Berg, Phys. Rev. B 93, 075109 (2016).
[18] N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).
[19] A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and

S. I. Shylin, Nature (London) 525, 73 (2015).
[20] C. Lin, B. Wang, and K. H. Teo, Phys. Rev. B 93, 224501 (2016).
[21] C. Grimaldi, L. Pietronero, and S. Strässler, Phys. Rev. Lett. 75,

1158 (1995).
[22] J. E. Han, O. Gunnarsson, and V. H. Crespi, Phys. Rev. Lett. 90,

167006 (2003).
[23] R. M. Noack, D. J. Scalapino, and R. T. Scalettar, Phys. Rev.

Lett. 66, 778 (1991).

[24] J. K. Freericks, M. Jarrell, and D. J. Scalapino, Phys. Rev. B 48,
6302 (1993).

[25] J. K. Freericks, Phys. Rev. B 48, 3881 (1993).
[26] D. Meyer, A. C. Hewson, and R. Bulla, Phys. Rev. Lett. 89,

196401 (2002).
[27] J. P. Hague and N. d’Ambrumenil, J. Low Temp. Phys. 151, 1149

(2008).
[28] P. Benedetti and R. Zeyher, Phys. Rev. B 58, 14320 (1998).
[29] M. Capone and S. Ciuchi, Phys. Rev. Lett. 91, 186405

(2003).
[30] J. P. Hague, J. Phys.: Condens. Matter 15, 2535 (2003).

140501-5

https://doi.org/10.1103/PhysRevB.93.075109
https://doi.org/10.1103/PhysRevB.93.075109
https://doi.org/10.1103/PhysRevB.93.075109
https://doi.org/10.1103/PhysRevB.93.075109
https://doi.org/10.1103/PhysRevLett.21.1748
https://doi.org/10.1103/PhysRevLett.21.1748
https://doi.org/10.1103/PhysRevLett.21.1748
https://doi.org/10.1103/PhysRevLett.21.1748
https://doi.org/10.1038/nature14964
https://doi.org/10.1038/nature14964
https://doi.org/10.1038/nature14964
https://doi.org/10.1038/nature14964
https://doi.org/10.1103/PhysRevB.93.224501
https://doi.org/10.1103/PhysRevB.93.224501
https://doi.org/10.1103/PhysRevB.93.224501
https://doi.org/10.1103/PhysRevB.93.224501
https://doi.org/10.1103/PhysRevLett.75.1158
https://doi.org/10.1103/PhysRevLett.75.1158
https://doi.org/10.1103/PhysRevLett.75.1158
https://doi.org/10.1103/PhysRevLett.75.1158
https://doi.org/10.1103/PhysRevLett.90.167006
https://doi.org/10.1103/PhysRevLett.90.167006
https://doi.org/10.1103/PhysRevLett.90.167006
https://doi.org/10.1103/PhysRevLett.90.167006
https://doi.org/10.1103/PhysRevLett.66.778
https://doi.org/10.1103/PhysRevLett.66.778
https://doi.org/10.1103/PhysRevLett.66.778
https://doi.org/10.1103/PhysRevLett.66.778
https://doi.org/10.1103/PhysRevB.48.6302
https://doi.org/10.1103/PhysRevB.48.6302
https://doi.org/10.1103/PhysRevB.48.6302
https://doi.org/10.1103/PhysRevB.48.6302
https://doi.org/10.1103/PhysRevB.48.3881
https://doi.org/10.1103/PhysRevB.48.3881
https://doi.org/10.1103/PhysRevB.48.3881
https://doi.org/10.1103/PhysRevB.48.3881
https://doi.org/10.1103/PhysRevLett.89.196401
https://doi.org/10.1103/PhysRevLett.89.196401
https://doi.org/10.1103/PhysRevLett.89.196401
https://doi.org/10.1103/PhysRevLett.89.196401
https://doi.org/10.1007/s10909-008-9800-z
https://doi.org/10.1007/s10909-008-9800-z
https://doi.org/10.1007/s10909-008-9800-z
https://doi.org/10.1007/s10909-008-9800-z
https://doi.org/10.1103/PhysRevB.58.14320
https://doi.org/10.1103/PhysRevB.58.14320
https://doi.org/10.1103/PhysRevB.58.14320
https://doi.org/10.1103/PhysRevB.58.14320
https://doi.org/10.1103/PhysRevLett.91.186405
https://doi.org/10.1103/PhysRevLett.91.186405
https://doi.org/10.1103/PhysRevLett.91.186405
https://doi.org/10.1103/PhysRevLett.91.186405
https://doi.org/10.1088/0953-8984/15/17/309
https://doi.org/10.1088/0953-8984/15/17/309
https://doi.org/10.1088/0953-8984/15/17/309
https://doi.org/10.1088/0953-8984/15/17/309



