
PHYSICAL REVIEW B 97, 134523 (2018)

Conductance signatures of odd-frequency superconductivity in quantum spin Hall systems
using a quantum point contact

C. Fleckenstein,* N. Traverso Ziani, and B. Trauzettel
Institute of Theoretical Physics and Astrophysics, University of Würzburg, 97074 Würzburg, Germany

(Received 28 February 2018; published 30 April 2018)

Topological superconductors give rise to unconventional superconductivity, which is mainly characterized by
the symmetry of the superconducting pairing amplitude. However, since the symmetry of the superconducting
pairing amplitude is not directly observable, its experimental identification is rather difficult. In our work, we
propose a system, composed of a quantum point contact and proximity-induced s-wave superconductivity at the
helical edge of a two-dimensional topological insulator, for which we demonstrate the presence of odd-frequency
pairing and its intimate connection to unambiguous transport signatures. Notably, our proposal requires no time-
reversal symmetry breaking terms. We discover the domination of crossed Andreev reflection over electron
cotunneling in a wide range of parameter space, which is a quite unusual transport regime.
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I. INTRODUCTION

Two-dimensional topological insulators (TIs), due to strong
spin-orbit coupling, provide surface states with perfect spin-
momentum locking [1–3]. Over the last decade of research,
convincing evidence has been reported, proving the exis-
tence of those topological states in HgCdTe/HgTe [4,5] and
InAs/GaSb quantum wells [6–10]. As long as electron-electron
interactions are weak [11–14], the presence of time-reversal
(TR) symmetry inevitably leads to a suppression of backscat-
tering processes and thus provides dissipationless transport.
This feature is usually attributed to superconductivity (SC). In-
terestingly, it is possible to combine both effects by proximity-
induced s-wave superconductivity into the helical edge of
a quantum spin Hall insulator (QSHI) [8,10,15–17]. There,
the combination of conventional superconducting order and
spin-momentum locking gives rise to unconventional super-
conductivity.

The associated order parameter is the superconducting
pairing amplitudeF , which is directly related to the anomalous
part of the retarded Green’s function. According to the classi-
fication pioneered by Berezinskii [18], the pairing amplitude
F has to be totally antisymmetric under the exchange of
all quantum numbers of the two constitutent fermionic field
operators. Having spin, orbit, and frequency as characteristics,
this yields a set of four symmetry classes [19,20]. While
conventional BCS superconductors are even in frequency, it
has been shown that a special kind of unconventional supercon-
ductivity, that is odd in frequency, arises quite ubiquitously in
spatially nonuniform systems in which spin rotation invariance
is broken [20–24], such as SC-TI heterojunctions [25], or
heterojunctions including additional ferromagnetic ordering
[26–29]. However, since the symmetry of the pairing amplitude
is not a quantum-mechanical observable, it is challenging to
unambiguously probe odd-frequency pairing.
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The first experimental signature attributed to odd-frequency
SC has been identified as a long-range proximity effect in
ferromagnetic Josephson junctions [30–32]. Subsequently,
a paramagnetic Meißner effect has been proposed if odd-
frequency SC is present [33–35]. Recently, it has furthermore
been demonstrated that odd-frequency SC can be directly
assigned to particular transport properties, using a QSHI in
proximity to both s-wave SC and ferromagnetic ordering
[28,36]. At the helical edge, the ferromagnetic ordering allows
for odd-frequency equal-spin pairing, intimately related to
crossed Andreev reflection (CAR), where an incident electron
is transmitted through the scattering region as a hole and
scattered into a second, spatially separated lead [37–41]. Spin-
momentum locking then implies the equivalence of this trans-
port channel with the creation of an equal-spin triplet Cooper
pair in the heterostructure [42,43]. Using resonances between
hybridizing Majorana bound states, it has been proposed that
CAR can overcome electron cotunneling (EC) across the junc-
tion, and thus yields a smoking-gun evidence of odd-frequency
SC. However, despite interesting applications [44–48], it is
experimentally challenging to induce ferromagnetic ordering
in two-dimensional (2D) TIs and more feasible setups are
needed, in which TR symmetry is preserved.

In this paper, we present a simple system, composed of
proximity-induced s-wave pairing and a quantum point contact
(QPC) at the helical edge of a 2D TI (see Fig. 1). This setup
has recently been investigated with an emphasis on Kramers
pairs of Majorana fermions, present when a superconducing
phase shift of π is applied between separate superconductors,
covering the two edges [49]. For our purposes, this setup has the
crucial advantage that no ferromagnets are involved, but it still
contains the desired feature: odd-frequency equal-spin pairing
with direct connection to the differential conductance of the
system. More specifically, we demonstrate that such a QPC
can generate equal-spin triplet pairing if axial spin symmetry is
broken. Locally, equal-spin correlations are suppressed. How-
ever, nonlocal correlations appear across the QPC/junction.
They inevitably lead to nonvanishing CAR between contacts 1
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FIG. 1. Schematic of the system: Each edge of a quantum spin
Hall sample is coupled to separate contacts 1–4. The sample itself con-
tains a heterostructure, composed of a region with proximity-induced
s-wave superconductivity and a quantum point contact including the
terms t0 and tc, defined in Eqs. (4) and (5).

and 2 in Fig. 1. Additionally, the QPC provides three accessible
channels for EC. Therefore, the EC per channel is reduced.
The combination of both effects leads to a domination of CAR
over EC for a wide range in parameter space. This dominance
is observable in the linear (nonlocal) conductance, as it directly
probes the difference between CAR and EC, which hence
implies the presence of odd-frequency SC.

The article is structured as follows: In Sec. II, we introduce
the model and give a theoretical description of the symmetry
of the superconducting pairing amplitude in terms of the
corresponding Green’s function. In Sec. III, we analyze the
different pairing amplitudes present in our system, while in
Sec. IV we discuss their relation to transport channels by
means of the differential (nonlocal) conductance. Finally, we
conclude in Sec. V. Technical details are provided in two
Appendcies.

II. MODEL AND GREEN’S FUNCTION

A. Model

The system we investigate is formed by the helical edge
of a 2D TI, partially covered by an s-wave superconductor
and coupled to a QPC, as schematically shown in Fig. 1. The
physics of each edge of the 2D TI channel is captured by the
effective edge state Hamiltonian

Hλ,0 =
∫

dx �
†
λ(x)Hλ(x)�λ(x) (1)

with Hamiltonian density

Hλ(x) = −λh̄vF i∂xτzσz − μ(x)τzσ0 + �(x)τxσ0 (2)

and basis

�λ(x) = (ψλ,↑(x),ψλ,↓(x),ψ†
λ,↓(x), − ψ

†
λ,↑(x))T , (3)

where λ ∈ {+,−} (for upper and lower edge). The Pauli
matrices τi,σi with i ∈ {x,y,z} act on particle-hole and spin
space, respectively. We assume a spatially varying chemical
potential μ(x). Furthermore, we include a proximity-induced
s-wave pairing by �(x) with the characteristic length scale
ξ� = h̄vF /�. In the following we fix h̄vF = 1. In the constric-
tion of the quantum point contact, we additionally add two TR
invariant scattering processes across the edges [49–53], which

are (i) spin-conserving backscattering

Ht0 =
∫

dx t0(x)[ψ†
+,↑(x)ψ−,↑(x) + ψ

†
+,↓(x)ψ−,↓(x)]

+ H.c., (4)

and (ii) forward scattering, breaking axial spin symmetry
[11,54–58]

Htc =
∫

dx tc(x)[ψ†
+,↑(x)ψ−↓(x) − ψ

†
+,↓(x)ψ−,↑(x)]

+ H.c. (5)

The full Hamiltonian of the system then reads

H =
∑

λ

Hλ,0 + Ht0 + Htc . (6)

In compact form, we can state the full Hamiltonian density as

H(x) = −i∂xszτzσz − μ(x)s0τzσ0 + �(x)s0τxσ0

+ t0(x)sxτzσ0 − tc(x)syτzσy (7)

using the basis �(x) = (�+(x),�−(x))T and the Pauli matrices
si with i ∈ {x,y,z} acting on edge space. We model the
heterostructure shown in Fig. 1 by using piecewise constant po-
tentials �(x) = �θ (x)θ (ls − x), t0(x) = t0θ (x − xq)θ (xq +
lq − x), and tc(x) = tcθ (x − xq)θ (xq + lq − x) with θ (x) the
Heaviside function. Here, �, t0, and tc are real and positive
parameters, while xq marks the beginning of the quantum point
contact. Furthermore, lq and ls are the length of the constriction
and the superconductor, respectively.

We can solve the first-order differential Schrödinger equa-
tion H(x)�(x) = ω�(x) by integration. From

∂x�(x) = i[h(x) + szτzσzω]�(x) (8)

with

h(x) = szτzσz[μ(x)s0τzσ0 − �(x)s0τxσ0

− t0(x)sxτzσ0 + tc(x)syτzσy], (9)

we find the general solution

�(x) = S←U (x,x0)�0(x0), (10)

where

U (x,x0) = exp

{
i

∫ x

x0

dx[h(x) + szτzσzω]

}
. (11)

In Eq. (10), S← is a spatial-ordering operator, required to
order all operators, acting on �0(x0), with their spatial co-
ordinates increasing from right to left [59]. As we only apply
piecewise constant potentials, we can neglect S← whenever
the integration runs within a homogeneous section. Together
with the condition of continuity of the wave function at each
interface between sections of different potentials, the scattering
problem, defined by the Hamiltonian (7), can be formulated as

�out,l(xq + lq) = Ut (xq + lq ,xq)U0(xq,ls)Usc(ls,0)�in,l(0)

(12)

with the propagators Ut (xt ,x
′
t ), U0(x0,x

′
0), and Usc(xsc,x

′
sc)

defined according to Eq. (11) in the bounds {xt ,x
′
t } ∈ [xq,xq +

lq], {x0,x
′
0} ∈ [ls ,xq], and {xsc,x

′
sc} ∈ [0,ls]. The form of the
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vectors �in,l(x) and �out,l(x) are fixed by spin-momentum
locking, together with the basis of Eq. (3).

However, we still need to select a channel for an incident
particle, whose amplitude we fix to unity [60]. This procedure
allows us to derive eight independent scattering states denoted
by the index l ∈ [1,8]. They are classified according to the
incoming amplitude: incoming electron/hole from the right/left
in edge +/−. A detailed derivation thereof is provided in
Appendix A. Consequently, an incoming particle χ ∈ {e,h}
from edge λ can be reflected as an electron with amplitude
rλλ′
χe (ω) or as a hole with amplitude rλλ′

χh (ω) into edge λ′.
Likewise, transmission is possible with amplitude tλλ′

χe (ω) and

tλλ′
χh (ω).

B. Scattering state Green’s function

From the scattering states, it is possible to construct the
Green’s function of the system [61,62]. With the equation of
motion, it can be demonstrated in general, that for any time-
independent Hamiltonian and any x �= x ′, any Green’s function

ĜR/A(x,x ′,ω) =
∫

dt ei(ω±i0+)t ĜR/A(x,x ′,t) (13)

with ĜR(x,x ′,t) = −iθ (t)〈{�(x,t),�†(x ′,0)}〉 and
ĜA(x,x ′,t) = ĜR(x ′,x, − t)†, can be constructed from
eigenstates �(x,ω) of the Hamiltonian H(x,p̂x) and
eigenstates �̃(x ′,ω) of its transposed HT (x ′, − p̂x ′ ), i.e.,

ĜR/A
n,m (x,x ′,ω) =

∑
i,j

a
R/A

i,j (ω)φi,n(x,ω)φ̃j,m(x ′,ω), (14)

where φi,n and φ̃j,m are the nth and mth, components of the ith
and j th eigenstates. The indices i,j then run over all indepen-
dent scattering states. Likewise, by integration of the equation
[ω − H(x,p̂x)]ĜR/A(x,x ′,ω) = δ(x − x ′), ĜR/A(x,x ′,ω) has
to satisfy a discontinuity at x = x ′,

lim
ε→0

[ĜR/A(x ′ + ε,x ′,ω) − ĜR/A(x ′ − ε,x ′,ω)] = C. (15)

For the Hamiltonian, given in Eq. (7), C = iszτzσz. Any
function of the form of Eq. (14), together with the constraint
(15), provides a valid Green’s function. However, for deriving a
particular one, such as retarded or advanced, more information
is needed to determine the coefficients a

R/A

i,j (ω). As all aR/A

i,j (ω)
are independent of x and x ′, it is sufficient to know the exact
form of the Green’s function of interest in a single set of points
x0 and x ′

0. Since it is significantly easier to calculate the Green’s
function in a semi-infinite domain, it is suitable to position x0

and x ′
0 far in the left or right reservoirs.

We are interested in the superconducting pairing am-
plitude, which is related to the anomalous part of the re-
tarded Green’s function. To compute the retarded Green’s
function in the semi-infinite lead, we apply outgoing
wave boundary conditions [63,64]. We split the Green’s
function into two parts ĜR(x,x ′,ω) = ĜR

<(x,x ′,ω)θ (x ′ −
x) + ĜR

>(x,x ′,ω)θ (x − x ′). We explicitly derive the re-
tarded Green’s function in the leftmost lead (x0,x

′
0 < 0) in

Appendix B. Then, we can construct the Green’s function of
any x and x ′ as

ĜR(x,x ′,ω) = U (x,x0)ĜR(x0,x
′
0,ω)Ũ T (x ′,x ′

0), (16)

where Ũ (x ′,x ′
0) is the corresponding propagator derived from

HT (x ′, − p̂x ′ ). For our system, the Green’s function is an 8 × 8
matrix with the general structure

ĜR(x,x ′,ω) =
(

ĜR
++(x,x ′,ω) ĜR

−+(x,x ′,ω)

ĜR
+−(x,x ′,ω) ĜR

−−(x,x ′,ω)

)
. (17)

Each ĜR
λλ′(x,x ′,ω) is itself a 4 × 4 matrix, representing the

intraedge Green’s function for λ = λ′ and the interedge
Green’s function for λ = −λ′, respectively. Furthermore, each
ĜR

λλ′(x,x ′,ω) can be decomposed into

ĜR
λλ′(x,x ′,ω) =

(
ĜR

λλ′,ee(x,x ′,ω) ĜR
λλ′,eh(x,x ′,ω)

ĜR
λλ′,he(x,x ′,ω) ĜR

λλ′,hh(x,x ′,ω)

)
. (18)

The off-diagonal parts of GR
λλ′(x,x ′,ω) thereby carry the

information about the superconducting pairing. In the basis
of Eq. (3), we can directly illustrate the spin texture of the
pairing with the decomposition into Pauli matrices

ĜR
λλ′,eh(x,x ′,ω) = f R

λλ′,0(x,x ′,ω)σ0 + f R
λλ′,j (x,x ′,ω)σj , (19)

where j ∈ {x,y,z}. In Eq. (19), f R
λλ′,0(x,x ′,ω) is the sin-

glet (S) component of the pairing, relating to the antisym-
metric spin configuration (↑↓ − ↓↑). Likewise, the triplet
(T ) components relate to the symmetric spin configura-
tion with f R

λλ′,z(x,x ′,ω) with (↑↓ + ↓↑), and the equal-spin
pairing f R

λλ′,↑↑ = f R
λλ′,x(x,x ′,ω) − if R

λλ′,y(x,x ′,ω), f R
λλ′,↓↓ =

f R
λλ′,x(x,x ′,ω) + if R

λλ′,y(x,x ′,ω), having ↑↑, ↓↓ configuration,
respectively. From the definition of the advanced Green’s
function ĜA(x,x ′,ω) = ĜR(x ′,x,ω)†, using Eq. (13), we can
translate the antisymmetry of the pairing amplitudes under
exchange of the constituents into relations between retarded
and advanced pairing amplitudes

f R
λλ′,0(x,x ′,ω) = f A

λ′λ,0(x ′,x, − ω), (20)

f R
λλ′,j (x,x ′,ω) = −f A

λ′λ,j (x ′,x, − ω) (21)

with j ∈ {x,y,z}. Here, f A
λ′λ,l(x

′,x,ω) (l ∈ {0,x,y,z}) is built
from the advanced Green’s function. Besides spin, orbit, and
frequency, in case λ �= λ′, we additionally have the edge index
as degree of freedom to fulfill Eqs. (20) and (21) [65]. However,
in this paper, we will focus on the symmetry classification for
one edge, i.e., λ = λ′.

We can further decompose the symmetry requirements of
Eqs. (20) and (21) into orbital and frequency symmetries. The
orbital symmetries are captured by

f R
λλ,l(x,x ′,ω) = ζ

R,+
λλ,l (x,x ′,ω) + ζ

R,−
λλ,l (x,x ′,ω) (22)

with even (E) and odd (O) parts ζ
R,±
λλ,l (x,x ′,ω) =

1/2[f R
λλ,l(x,x ′,ω) ± f R

λλ,l(x
′,x,ω)]. To obey Eqs. (20) and

(21), the symmetries in ω are then required to be

ζ
R,±
λλ,0 (x,x ′,ω) = ±ζ

A,±
λλ,0 (x,x ′, − ω), (23)

ζ
R,±
λλ,j (x,x ′,ω) = ∓ζ

A,±
λλ,j (x,x ′, − ω), (24)
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where j ∈ {x,y,z} and ζ
A,±
λλ,j (x,x ′, − ω),ζA,±

λλ,0 (x,x ′, − ω) are
the even and odd orbital parts of the advanced pairing am-
plitude. Equations (20)–(24) describe all possible symme-
try classes, which are coined in the order frequency, spin,
and orbit as ESE [ζR,+

λλ,0 (x,x ′,ω)], OSO [ζR,−
λλ,0 (x,x ′,ω)], ETO

[ζR,−
λλ,j (x,x ′,ω)], and OTE [ζR,+

λλ,j (x,x ′,ω)].

III. LOCAL AND NONLOCAL PAIRING SYMMETRIES

As translation symmetry is broken in heterostructures, it
is inevitable that any pairing is constituted by a mixture of
even and odd orbital parts. Furthermore, since spin-momentum
locking naturally implies triplet pairing, by construction ETO
and OTE pairings are expected. In bare TI-SC heterojunc-
tions, triplet pairing exists only in the form of the amplitude
f R

λλ,z(x,x ′,ω) corresponding to the spin configuration (↑↓
+ ↓↑). It is thus difficult to discriminate this triplet amplitude
in any (spin sensitive) conductance measurement from their
singlet counterparts. This dilemma can be overcome if equal-
spin pairing is generated in the heterojunction. Then, the CAR
process across the junction, which is usually suppressed by
spin-momentum locking [66], is directly related to the injection
of a Cooper pair with ↑↑ (↓↓) spin texture. A way to design
↑↑ or ↓↓ pairing at the helical edge is to include ferromagnetic
ordering [28]. As it seems to be very difficult to combine
ferromagnetic insulators and TIs in the laboratory, we identify
a setup, in the absence of ferromagnetic ordering, in which
(odd-frequency) ↑↑ and ↓↓ pairing at the helical edge can be
generated. This is possible, due to the simultaneous presence of
two TR invariant coupling terms [see Eqs. (4) and (5) above].
By introducing a spin preserving coupling between the edges,
Eq. (4) generates Andreev bound states between SC and QPC
that extend over both edges. Additionally, Eq. (5) breaks axial
spin symmetry and thus allows for ↑↑ and ↓↓ pairing in each
edge.

To demonstrate this effect, we proceed with the calculation
of the pairing amplitudes. We apply Eq. (16), withGR(x0,x

′
0,ω)

for x0,x
′
0 → 0− and calculate the amplitudes f R

++,j (x,x,ω)
with j ∈ {0,z} and x ∈ [0,xq + lq]. As x = x ′, we naturally
compute the ESE and OTE symmetries by construction. We
find that local equal-spin correlations are totally suppressed
throughout the whole junction f R

++,↑↑(x,x,ω) = 0. However,
nonlocal equal-spin correlations are present in the form of
f R

++,↑↑(x,x + ξ,ω) with x ∈ [0,xq + lq − ξ ]. The results are
depicted in Fig. 2.

The suppression of local equal-spin pairing amplitudes is
different with respect to the TR symmetry breaking case, where
it is typically related to the amplitude of electron-electron
(hole-hole) reflection r++

ee (ω) [r++
hh (ω)], which vanish by TR

symmetry in our system. The nonlocal equal-spin pairing
f R

++,↑↑(x,x + ξ,ω) created by the QPC, however, is finite
whenever there is at least one point χ with χ ∈ [x,x + ξ ] that
belongs to the region of the QPC. This is realized when at
least one of the two spatial coordinates of the corresponding
correlation function is part of the QPC region, i.e., x,x + ξ ∈
[xq,xq + lq] [see Figs. 2(c) and 2(d)], or when the pairing
happens across the whole QPC/junction (Fig. 3). In both cases,
even- and odd-frequency parts appear [Figs. 2(c) and 2(d)].
As expected, the nonlocal pairing f R

++,↑↑(0,xq + lq ,ω) has a

FIG. 2. Superconducting pairing in the heterojunction of Fig. 1
as a function of position x and energy ω. (a) and (b) illustrate the
local singlet and triplet (↑↓ + ↓↑) pairing, while (c) and (d) show
the even- and odd-frequency equal-spin pairing with x ′ = x + ξ and
ξ = 0.5ξ�. We use the parametersμ = 0, t0/� = tc/� = t/� = 0.4,
ls = 4ξ�, lq = 3ξ�, and xq = 10ξ�.

maximum, whenever the energy of an Andreev bound state
is matched (see Fig. 3). Using Eqs. (22) and (23), we derive
that the non-local equal-spin pairing across the junction is
equally distributed from OTE and ETO parts. This turns out to
be a very generic result, implied by spin-momentum locking.
As the retarded Green’s function implements time-ordering,
nonlocal equal-spin pairing from x = 0 to x ′ = xq + lq rep-
resents a correlation acting, for instance, forward in time
and forward in space, while correlations from x = xq + lq
to x ′ = 0 describe the corresponding process backward in
space. For a defined pairing amplitude [f R

λλ,↑↑(0,xq + lq ,ω)
or f R

λλ,↓↓(0,xq + lq ,ω)] at the helical edge, only one of the
two processes is finite due to spin-momentum locking. This
behavior inverts as x and x ′ are exchanged. Consequently,
from Eq. (22), we conclude that ETO and OTE pairing
amplitudes are necessarily equal. Importantly, the presence of
both coupling terms of Eqs. (4) and (5) is crucial for finite
equal-spin pairing at a single edge (Fig. 4).

(a) (b)

FIG. 3. (a) OTE part of the pairing amplitude |f R
++,↑↑(0,xq +

lq ,ω)| as a function of coupling strength t/� = t0/� = tc/� and
energy ω/�. (b) Line cut from (a) for t/� = t0/� = tc/� = 0.4
and the other parameters given in Fig. 2.
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FIG. 4. Nonlocal ↑↑ pairing as a function of ω for different values
of the QPC coupling. We introduce the dimensionless parameter ratio
κ = tc/t0. Other parameters are the same as in Fig. 2.

IV. TRANSPORT SIGNATURES

As a consequence of spin-momentum locking in our struc-
ture, the observable directly related to the nonlocal equal-spin
pairing is the CAR process. However, an incident particle,
while transmitted, can either undergo CAR or EC. Since the
two processes carry opposite charge, they enter with different
signs in the nonlocal conductance. For concreteness, we are
interested in the nonlocal differential conductance G21(ω),
measuring the transmission between contacts 1 and 2 of Fig. 1
at excitation energy ω. By definition G21(ω) is given as the
differential change of the current at contact 2, when a voltage
V1 is applied at contact 1, i.e.,

G21(eV1) = −∂I2(eV1)

∂V1
= e2

h

[|t++
eh (eV1)|2 − |t++

ee (eV1)|2].
(25)

The coefficients t++
eh (ω) and t++

ee (ω) are obtained from the
corresponding scattering problem, defined in Appendix A.
Clear evidence of CAR is thus only provided if G21(eV1) > 0.
Unfortunately, this is not the generic case [39,67], especially
not at the helical edge, where CAR is additionally assigned
to a spin configuration of the attributed Cooper pair [28]. Our
system, however, has two major advantages in this respect:
First, it provides nonlocal odd-frequency equal-spin pairing
across the junction, directly related to t++

eh (ω), without any TR
breaking term. Second, as the QPC includes the other edge
and we break axial spin symmetry, there are now three open
channels available for EC. This possibility yields a reduced
rate tλλ′

ee (ω) for each individual channel. The combination of
those two effects leads to a domination of CAR over EC in a
large domain of parameter space, which hence obeys a nonlocal
conductance G21(ω) > 0 (see Fig. 5). Notably, unlike other
proposals, ours implies that nearly no fine-tuning is needed in
order to measure CAR. Comparing Figs. 3 and 5(a), we notice
that the area of positive nonlocal conductance is indeed related
to the area of pronounced nonlocal equal-spin pairing, where in
both cases we recognize the presence of Andreev bound states
in the form of maxima.

Influence of the chemical potential

When including a finite chemical potential μ in the hetero-
junction, we obtain an asymmetry of the nonlocal conductance
signature G21(ω) with respect to ω → −ω [see Figs. 6(c) and
6(d)]. For positive chemical potential, negative excitation ener-

FIG. 5. (a) Nonlocal conductance G21(ω) in units of e2/h for the
setup shown in Fig. 1 with the parameters of Fig. 2. In the gray area we
obtain G21(ω) < 0, while in the colored region we have G21(ω) > 0.
(b) Line cut for t/� = 0.4.

gies are favored in showing a nonlocal conductance G21(ω) >

0 and vice versa. The explanation for this effect is found in
the dispersion relation of the (infinitely extended) QPC [see
Figs. 6(a) and 6(b)]. While the forward scattering Htc is not
affected by μ, the backscattering term Ht0 is sensitive to the
chemical potential, which acts in the opposite way to electron-
and holelike excitations. For μ �= 0 we can thus emphasize
or suppress backscattering on electron- and holelike states by

(a) (b)

(c) (d)

FIG. 6. (a), (b) Dispersion relation of the QPC with the parameters
t0/� = tc/� = 0.6, and μ/� = −1 in (a) and μ/� = 1 in (b).
Electronlike excitations are shown in blue, and holelike excitations
in red. (c), (d) Nonlocal conductance G21(ω) in units of e2/h for the
parameters ls = 3ξ�, lq = 2ξ�, xq = 9ξ�, and μ/� = −1 in (c), and
μ/� = 1 in (d), respectively.
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finite excitation energies ω �= 0. To obtain G21(ω) > 0 it is
important to enhance the transmission of holelike excitations
and likewise suppress transmission of electronlike excitations
across the QPC. Hence, comparing with Figs. 6(a) and 6(b),
for positive chemical potential, negative excitation energies
are favorable and vice versa. This is indeed consistent with our
results [see Figs. 6(c) and 6(d)].

V. CONCLUSION

In this paper, we have demonstrated the emergence of
equal-spin triplet superconductivity at the helical edge without
the need of ferromagnetic ordering. This can be achieved
by the combination of proximity-induced s-wave pairing and
scattering off a QPC. In the absence of axial spin symmetry,
the QPC provides two possible coupling terms. In the presence
of both, equal-spin triplet pairing is generated. While its
local pairing amplitude is suppressed throughout the junction,
nonlocal correlations arise whenever the spatial coordinates of
the correlation function (partially) include the QPC or extend
across it. On the basis of a symmetry analysis, we verify
the (partial) odd-frequency nature of the nonlocal equal-spin
pairing amplitude. This correlation is intimately related to the
creation of equal-spin triplet Cooper pairs in the junction and
thus to the process of cCAR. Notably, the QPC provides us with
direct access to this transmission channel, as it likewise lowers
the rate of EC. Thus, the nonlocal conductance G21(ω), given
by the difference between CAR and EC, exhibits a positive
signal. The domination of CAR over EC is given for a wide
range in parameter space and thus persists without fine-tuning.
The presence of CAR provides unambiguous evidence of
odd-frequency superconductivity at the helical edge.
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APPENDIX A: SCATTERING PROBLEM

The scattering problem, defined by Eq. (12), has eight
independent solutions, classified according to the incident
particle. Four of them, �in,1−4(x), represent a particle incident
from the left. At x = 0 we have

�in,1(0) = (1,r++
ee ,r++

eh ,0,r+−
ee ,0,0,r+−

eh )T , (A1)

�in,2(0) = (0,r++
he ,r++

hh ,1,r+−
he ,0,0,r+−

hh )T , (A2)

�in,3(0) = (0,r−+
ee ,r−+

eh ,0,r−−
ee ,1,0,r−−

eh )T , (A3)

�in,4(0) = (0,r−+
he ,r−+

hh ,0,r−−
he ,0,1,r−−

hh )T . (A4)

At x = xq + lq , the corresponding outgoing modes are

�out,1(xq + lq) = (t++
ee ,0,0,t++

eh ,0,t+−
ee ,t+−

eh ,0)T , (A5)

�out,2(xq + lq) = (t++
he ,0,0,t++

hh ,0,t+−
he ,t+−

hh ,0)T , (A6)

�out,3(xq + lq) = (t−+
ee ,0,0,t−+

eh ,0,t−−
ee ,t−−

eh ,0)T , (A7)

�out,4(xq + lq) = (t−+
he ,0,0,t−+

hh ,0,t−−
he ,t−−

hh ,0)T . (A8)

All scattering amplitudes are functions of the excitation energy
ω, where the explicit dependence is dropped here for simplicity.
Furthermore, each transmission amplitude has to be multiplied
by a phase factor containing the position, energy, and chemical
potential. However, since all transport properties do not depend
on phases of the transmission amplitudes and as they do not
enter into the lead Green’s function, derived below, we absorb
these phases in the amplitudes.

Another set of four independent scattering states is consti-
tuted from a particle incident from the right �out,5−8(x):

�out,5(xq + lq) = (ρ++
ee ,1,0,ρ++

eh ,0,ρ+−
ee ,ρ+−

eh ,0)T , (A9)

�out,6(xq + lq) = (ρ++
he ,0,1,ρ++

hh ,0,ρ+−
he ,ρ+−

hh ,0)T , (A10)

�out,7(xq + lq) = (ρ−+
ee ,0,0,ρ−+

eh ,1,ρ−−
ee ,ρ−−

eh ,0)T , (A11)

�out8(xq + lq) = (ρ−+
he ,0,0,ρ−+

hh ,0,ρ−−
he ,ρ−−

hh ,1)T , (A12)

partially transmitted to the left:

�in,5(0) = (0,τ++
ee ,τ++

eh ,0,τ+−
ee ,0,0,τ+−

eh )T , (A13)

�in,6(0) = (0,τ++
he ,τ++

hh ,0,τ+−
he ,0,0,τ+−

hh )T , (A14)

�in,7(0) = (0,τ−+
ee ,τ−+

eh ,0,τ−−
ee ,0,0,τ−−

eh )T , (A15)

�in,8(0) = (0,τ−+
he ,τ−+

hh ,0,τ−−
he ,0,0,τ−−

hh )T . (A16)

Each scattering problem of the form of Eq. (12) is therefore
an 8 × 8 linear eigenvalue problem. The complexity of the
propagators Ut (x,x ′), though, requires a numerical treatment
of the problem.

APPENDIX B: GREEN’S FUNCTION
FOR SEMI-INFINITE SECTION

The retarded Green’s function in a semi-infinite section,
attached to a scattering region, can be calculated using outgo-
ing wave boundary conditions. Now we construct the retarded
Green’s function in the left lead of our system, i.e., forx,x ′ < 0.
Therefore, we separate the Green’s function into

ĜR(x,x ′,ω) = ĜR
<(x,x ′,ω)θ (x ′ − x)

+ĜR
>(x,x ′,ω)θ (x − x ′), (B1)

and choose

ĜR
<(x,x ′,ω) = �in,1(x)AT

1 (x ′) + �in,2(x)AT
2 (x ′)

+�in,3(x)AT
3 (x ′) + �in,4(x)AT

4 (x ′), (B2)

ĜR
>(x,x ′,ω) = �in,5(x)AT

5 (x ′) + �in,6(x)AT
6 (x ′)

+�in,7(x)AT
7 (x ′) + �in,8(x)AT

8 (x ′) (B3)

with the unknown vectors Aj (x ′)T = (Aj1,Aj2,Aj3,Aj4)T .
Furthermore, the eigenstates �in,j (x) are given by

�in,j (x) = U0(x,0)�in,j (0). (B4)
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Inserting Eqs. (B2) and (B3) in Eq. (15) yields the solution for the vectors Aj (x ′) and thus the form of the retarded Green’s
function in the TI leftmost of the scattering region for x,x ′ < 0. Adopting the notation of Eq. (17), we obtain

ĜR
++(x,x ′,ω) = −i

⎛
⎜⎜⎜⎜⎝

ei(x−x ′)(μ+ω)θ (x − x ′) 0 0 0

e−i(x+x ′)(μ+ω)r++
ee e−i(x−x ′)(μ+ω)θ (x ′ − x) 0 ei[x ′(μ−ω)−x(μ+ω)]r++

he

ei[x(μ−ω)−x ′(μ+ω)]r++
eh 0 ei(x−x ′)(μ−ω)θ (x ′ − x) ei(x+x ′)(μ−ω)r++

hh

0 0 0 e−i(x−x ′)(μ−ω)θ (x − x ′)

⎞
⎟⎟⎟⎟⎠,

(B5)

ĜR
−−(x,x ′,ω) = −i

⎛
⎜⎜⎜⎜⎝

e−i(x−x ′)(μ+ω)θ (x ′ − x) e−i(x+x ′)(μ+ω)r−−
ee ei[x ′(μ−ω)−x(μ+ω)]r−−

he 0

0 ei(x−x ′)(μ+ω)θ (x − x ′) 0 0

0 0 e−i(x−x ′)(μ−ω)θ (x − x ′) 0

0 ei[x(μ−ω)−x ′(μ+ω)]r−−
eh ei(x+x ′)(μ−ω)r−−

hh ei(x−x ′)(μ−ω)θ (x ′ − x)

⎞
⎟⎟⎟⎟⎠,

(B6)

ĜR
−+(x,x ′,ω) = −i

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 e−i(x+x ′)(μ+ω)r−+
ee ei[x ′(μ−ω)−x(μ+ω)]r−+

he 0

0 ei[x(μ−ω)−x ′(μ+ω)]r−+
eh ei(x+x ′)(μ−ω)r−+

hh 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠, (B7)

and

ĜR
+−(x,x ′,ω) = −i

⎛
⎜⎜⎜⎜⎝

e−i(x+x ′)(μ+ω)r+−
ee 0 0 ei[x ′(μ−ω)−x(μ+ω)]r+−

he

0 0 0 0

0 0 0 0

ei[x(μ−ω)−x ′(μ+ω)]r+−
eh 0 0 ei(x+x ′)(μ−ω)r+−

hh

⎞
⎟⎟⎟⎟⎠. (B8)

Eqs. (B5)–(B8) define the lead Green’s function that is used in the main text to construct the Green’s function anywhere in the
heterojunction.
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