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Charge/spin supercurrent and the Fulde-Ferrell state induced by crystal deformation
in Weyl/Dirac superconductors
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It has been predicted that emergent chiral magnetic fields can be generated by crystal deformation in Weyl/Dirac
metals and superconductors. The emergent fields give rise to chiral anomaly phenomena as in the case of Weyl
semimetals with usual electromagnetic fields. Here, we clarify effects of the chiral magnetic field on Cooper pairs
in Weyl/Dirac superconductors on the basis of the Ginzburg-Landau equation microscopically derived from the
quasiclassical Eilenberger formalism. It is found that Cooper pairs are affected by the emergent chiral magnetic
field in a dramatic way, and the pseudo-Lorentz force due to the chiral magnetic field stabilizes the Fulde-Ferrell
state and causes a charge/spin supercurrent, which flows parallel to the chiral magnetic field in the case of
Weyl/Dirac superconductors. This effect is in analogy with the chiral magnetic effect of Weyl semimetals. In
addition, we elucidate that neither Meissner effect nor vortex state due to chiral magnetic fields occurs.
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I. INTRODUCTION

Surface states of topological insulators and topological su-
perconductors are endowed with Dirac and Majorana fermions
as low-energy excitations protected by topology [1–4]. The
notion of the topologically protected gapless fermionic ex-
citations has been extended to bulk metallic systems, i.e.,
Dirac/Weyl semimetals [5–19]. Both the Dirac semimetals
(DSMs) and Weyl semimetals (WSMs) are characterized by the
monopole charges of the Dirac/Weyl points in the momentum
space. In the former systems, the monopole charges with
opposite signs are located at the same point, and hence, the pro-
tection mechanism based on symmetry, e.g., crystal rotational
symmetry, is necessary for their stability. On the other hand,
in the latter systems, the monopoles with opposite signs are
separated in the momentum or energy space because of broken
time-reversal symmetry or inversion symmetry, and thus they
are stable against any symmetry-breaking perturbations. In
WSMs, the monopoles in the momentum space give rise to
various intriguing transport phenomena associated with chiral
anomaly, such as the anomalous Hall effect, chiral magnetic
effect (CME), and negative magnetoresistivity [8,10,19–26].

Recently, it has been revealed that crystal deformation
affects low-energy properties of Weyl and Dirac metals in
a dramatic way, and generates an emergent U(1) chiral
gauge field [27–37]. The idea of generating an emergent
electromagnetic field from lattice distortion was originally
proposed and examined for graphene, which is a classical Dirac
fermion system in condensed matter physics [38,39]. Crystal
deformation yields the nontrivial spatial dependence of the
position of Dirac points, which plays a role of a fictitious vector
potential, leading to an emergent magnetic field. This idea can
be naturally generalized to cases of DSMs and WSMs. It has
been predicted that a uniform emergent chiral magnetic field
can be realized by applying strain in DSMs, which leads to

the Landau quantization of the energy spectrum [31,37]. The
theory is applicable to real Dirac materials such as Cd3As2

and Nb3Pb. Also, the emergent chiral electromagnetic field
can give rise to chiral anomaly phenomena in WSMs, as in
the case with usual electromagnetic fields [27–29,31–33]. For
instance, lattice defects such as dislocation also give rise to
emergent chiral magnetic fields, which lead to the torsional
chiral magnetic effect (or chiral torsional effect) in WSMs with
broken time-reversal symmetry; i.e., an equilibrium current
flowing along dislocation lines is generated without applying
real electromagnetic fields [32]. More generally, various spa-
tially inhomogeneous structures of crystal lattices and order
parameters such as spontaneous magnetization can be sources
of emergent chiral electromagnetic fields acting on Dirac/Weyl
quasiparticles.

In this paper, we investigate effects of strain-induced chiral
magnetic fields in Weyl superconductors (WSCs) and Dirac
superconductors (DSCs) [41–43]. It is noted that the coupling
charge of chiral magnetic fields of electrons and holes have the
same sign, and hence, the Meissner effect of chiral magnetic
fields due to supercurrents does not occur. Because of this
feature, the chiral magnetic fields lead to the Landau quan-
tization of the energy spectrum of Dirac/Weyl quasiparticles
[40]. Furthermore, chiral anomaly phenomena arising from
spatially inhomogeneous structures of the superconducting
order parameter in the Weyl superconducting state have been
extensively studied so far, particularly, for the ABM phase
of the superfluid helium 3 [44,45]. However, effects of chiral
magnetic fields on Cooper pairs composed of Weyl/Dirac
quasiparticles are not well understood so far. The purpose of
this paper is to address this issue on the basis of a microscopi-
cally derived Ginzburg-Landau (GL) equation. As mentioned
above, the emergent chiral magnetic field does not give rise to
the Meissner effect. Nevertheless, it still affects dynamics of
Cooper pairs via an interaction with a pseudo-Lorentz force
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generated by the chiral magnetic field. It is well known that
the usual Lorentz force proportional to �v × �B, where �v is the
velocity and �B is a magnetic field, does not directly couple to
Cooper pairs, because Cooper pairs consist of electrons with
momentum �k and −�k, and thus, the Lorentz force acting on
these two electrons cancels with each other [46]. In contrast,
the pseudo-Lorentz force indeed interacts with Cooper pairs,
since the coupling charge of strain-induced chiral magnetic
fields depends on chirality, and two electrons, which constitute
a Cooper pair, carry opposite chiralities as well as opposite
signs of momenta.

Here we clarify some nontrivial effects arising from the
pseudo-Lorentz force acting on Cooper pairs. The main results
are as follows. An emergent chiral magnetic field �Bem induced
by lattice distortion gives rise to supercurrents �Js flowing
parallel to the direction of the chiral magnetic field in WSCs:

�Js = αW �Bem, (1)

where αW is a constant determined from material parameters.
It is noted that this is not a Meissner current, the direction
of which should be perpendicular to applied magnetic fields.
The supercurrent parallel to the chiral magnetic field is akin
to the chiral magnetic effect of Weyl semimetals, i.e., a charge
current induced by a magnetic field [21]. However, we stress
that this effect is not directly related to chiral anomaly of
Weyl fermions, but caused by the coupling of Cooper pairs
with the pseudo-Lorentz force. Accordingly, the Fulde-Ferrell
state, in which the phase of the superconducting gap is spatially
inhomogeneous, is stabilized in the case that bulk supercurrent
flow is prohibited because of boundary conditions [47].

In the case of DSCs, where time-reversal symmetry is pre-
served, assuming a spin-triplet pairing state, we elucidate that
the chiral magnetic field due to lattice deformation generates
a spin supercurrent,

�J spin
s = αD �Bem, (2)

where αD is a response coefficient. This result also implies
that the realization of the spin-dependent Fulde-Ferrell state,
where Cooper pairs with opposite spin directions has opposite
signs of the phase of the superconducting gap. These findings
for DSCs is relevant to Cd3As2, which shows superconduc-
tivity under applied pressure [48]. It has been argued that
momentum-orbital locking in the DSM suppresses ordinary
spin-singlet s-wave pairings, and hence, a spin-triplet orbital-
singlet pairing state is realized [49,50]. In this pairing state, the
Dirac points in the normal state result in the existence of point
nodes of the superconducting gap, characterizing the Dirac
superconducting state. As long as the chemical potential is
located close to the Dirac points, the emergent chiral magnetic
field acts on Cooper pairs, which are composed of electrons on
the Fermi surfaces surrounding the Dirac points.

The organization of this paper is as follows. In Sec. II, we
consider the case of WSCs using a simple toy model. In this toy
model, we introduce a chiral magnetic field by hand without
referring to its physical origin. Although the model is not
directly related to real materials, the analysis of this toy model
is useful for qualitative understanding of effects of the pseudo-
Lorentz force on Cooper pairs. Exploiting the quasiclassical
Eilenberger equations, we derive microscopically the GL

equation, in which the pseudo-Lorentz force is incorporated.
It is found that although the chiral magnetic field does not lead
to the Meissner effect, it gives rise to supercurrents flowing
parallel to the chiral magnetic field, and that the Fulde-Ferrell
state is realized in the case that a bulk supercurrent flow is
prohibited by boundary conditions. In Sec. III, the case of DSCs
is investigated on the basis of the effective two-orbital model
for DSMs in which Dirac points are protected by C4 rotational
symmetry. This model is relevant to Cd3As2 and Nb3Pb. Lattice
strain, which gives rise to a chiral magnetic field, is explicitly
incorporated in this two-orbital model. The analysis based on
this microscopic model confirms the predictions obtained for
the toy model in Sec. II. Assuming a spin-triplet orbital-singlet
pairing state [50], and exploiting the Eilenberger equations, we
demonstrate that lattice torsion induces spin supercurrent flow.
This result also implies that in the situation that the bulk current
flow is prohibited by boundary conditions, the spin-dependent
Fulde-Ferrell state is realized. Also, we consider an effect of the
Zeeman magnetic field applied to the system, which generates
a charge supercurrent from a spin supercurrent. A summary is
given in Sec. IV.

II. WEYL SUPERCONDUCTOR WITH EMERGENT
CHIRAL MAGNETIC FIELD

In this section, we consider a three-dimensional chiral p-
wave superconductor with the gap function �k = �(kx + iky),
which is a typical example of a Weyl superconductor. To
incorporate an emergent chiral magnetic field due to lattice
distortion into our system, we need to deal with a multiorbital
model. However, it is desirable to avoid extrinsic complexity
of the analysis arising from the multiorbital character. To focus
on qualitative understanding of effects of chiral magnetic fields
on Cooper pairs, we here exploit a toy model in which a chiral
vector potential is incorporated by hand without referring to
its microscopic origin.

In the following, we first derive the quasiclassical
Eilenberger equation. From this equation, it is found that the
chiral vector potential gives rise to the pseudo-Lorentz force
acting on Cooper pairs as well as Bogoliubov quasiparticles.
We elucidate that this effect results in supercurrent flow parallel
to the chiral magnetic field, which is akin to the chiral magnetic
effect of Weyl semimetals. Furthermore, it is found that the
Fulde-Ferrell state, i.e., an inhomogeneous superconducting
state with a spatially varying phase, is realized, when the bulk
current flow is prohibited by boundary conditions.

A. Eilenberger equation for a p + i p superconductor
with chiral magnetic fields

We consider a toy model of a spinless chiral p-wave
superconductor with a chiral vector potential. This toy model is
used for qualitative understanding of effects of chiral magnetic
fields on Cooper pair dynamics. The chiral p + ip pairing state
has the point nodes of the superconducting gap at north and
south poles on the Fermi sphere, which accompany monopole
charges in the momentum space. In the vicinity of the point
nodes, Bogoliubov quasiparticles behave as Weyl fermions
[41]. The Hamiltonian for the three-dimensional spinless chiral
p-wave superconductor coupled with both a usual vector
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potential and a chiral vector potential is given by,

H =
∫

d3xψ†(�x)

[
(−i∇x−e �A(�x)−e �Aem(�x,η))2 − k2

F

2m

]
ψ(�x)

+
∫

d3x

[
ψ†(�x)

{
�

2kF

,

(
−i

∂

∂x
− ∂

∂y

)}
ψ†(�x)

+ ψ(�x)

{
�∗

2kF

,

(
−i

∂

∂x
+ ∂

∂y

)}
ψ(�x)

]
, (3)

where ψ and ψ† are annihilation and creation operators of
spinless fermions with mass m and charge e, � is the supercon-
ducting gap, kF is the Fermi momentum, and {a,b} = ab + ba.
�A(�x) is a vector potential for a real magnetic field, and �Aem(�x,η)

is an emergent chiral vector potential, which is originated from
crystal deformation. η = ±1 is chirality of a Weyl point in the
momentum space. It is noted that �Aem depends on the chirality

of Weyl point and satisfies �Aem(�x,−η) = − �Aem(�x,η) because
of its chiral character [27,28].

In the following, we discuss unusual transport phenomena
induced by the emergent chiral vector potential using the
quasiclassical Eilenberger equation based on the Matsubara
Green’s function formalism in the Nambu-Gor’kov space. We
assume clean limit for simplicity. The left-hand and right-hand
Gor’kov equations for this system are given by

[−iωnτ̌3 + ȞNambu(�x, − i∇x)]Ǧ(�x,�x ′,ωn) = δ(x − x ′)1̌,

(4)

Ǧ(�x,�x ′,ωn)[−iωnτ̌3 + ȞNambu( �x ′, − i∇x ′ )] = δ(x − x ′)1̌,

(5)

where ωn = (2n + 1)πT is the Matsubara frequency. τ̌j (j =
1,2,3) and 1̌ are, respectively, the Pauli matrix and identity
matrix in the Nambu-Gor’kov space. Here, we introduced
a matrix representation of the Hamiltonian in the Nambu-
Gor’kov space,

ȞNambu(�x,−i∇x) = ζ̌ (�x,−i∇x) + �̌(�x,−i∇x), (6)

ζ̌ (�x,−i∇x) =
(

[−i∇x−e �A(�x)−e �Aem(�x,η)]2−k2
F

2m
0

0 [i∇x−e �A(�x)+e �Aem(�x,η)]2−k2
F

2m

)
, (7)

�̌ =
(

0 −{ �
2kF

,
(−i ∂

∂x
− ∂

∂y

)}
{

�∗
2kF

,
(−i ∂

∂x
+ ∂

∂y

)}
0

)
, (8)

where ζ̌ and �̌ are, respectively, the kinetic energy part and the
gap function part of the Hamiltonian. The Matsubara Green’s
function Ǧ(x,x ′) in the superconducting state is defined as,

Ǧ =
(

G F

−F † G

)
, (9)

G(x1,x2) ≡ 〈Tτψ(x1)ψ†(x2)〉, (10)

F †(x1,x2) ≡ 〈Tτψ
†(x1)ψ†(x2)〉, (11)

F (x1,x2) ≡ 〈Tτψ(x1)ψ(x2)〉, (12)

G(x1,x2) ≡ −〈Tτψ
†(x1)ψ(x2)〉, (13)

where ψ(x) and ψ†(x) are annihilation and creation operators
with x = (τ,�x). Tτ is the T -ordering operator for the imaginary
time τ .

We now apply quasiclassical approximation to this model,
which is valid for kF ξ � 1 with ξ the coherence length,
and derive the Eilenberger equations for the quasiclassical
Green’s function by performing energy integral of the Gor’kov
equations [51]. The quasiclassical Green’s function is defined
as follows:

ǧ( �k‖, �R,ωn) ≡
∫

dζ

iπ
Ǧ(�k, �R,ωn) =

(
g f

−f † g

)
, (14)

where k‖ is the momentum component parallel to the Fermi
surface, �R = (�x1 + �x2)/2 is the center of mass coordinate
of a Cooper pair, ζ = (k2 − k2

F )/(2m), and Ǧ(�k, �R,ωn) is
the Fourier transform of Green’s function Ǧ(�x1,�x2,ωn) with
momentum �k reciprocal to �x1 − �x2. Following the standard
procedure [46,51], we derive the Eilenberger equation satisfied
by the quasiclassical Green’s function up to the leading order
in 1/(kF ξ ) 
 1,

[iωnτ̌3 − �̌ + e�vF · �Aτ̌3,ǧ] + i
(
�vF − e

m
�Aem
)

· ∇Rǧ

+ ie

2
�vF × �B · ∂

∂ �k‖
{τ̌3,ǧ} − ie

2m
�A · ∇R{τ̌3,ǧ}

+ ie�vF × �Bem · ∂

∂ �k‖
ǧ = 0, (15)

where [a,b] = ab − ba, {a,b} = ab + ba, �vF is the Fermi
velocity, �B = ∇ × �A, �Bem = ∇ × �Aem, and �̌ in Eq. (15) is
the Wigner transformation of the gap function, which is given
by,

�̌(�k, �R) =
(

0 −�( �R)
kF

(kx − iky)
�∗( �R)

kF
(kx + iky) 0

)
. (16)

Equation (15) describes responses of quasiparticle excitations
and Cooper pairs to an applied magnetic field and an emergent
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chiral magnetic field. It is worth noting that in the last term of
Eq. (15), the coupling with the pseudo-Lorentz force due to
the chiral magnetic field �Bem appears. There is an important
difference between this pseudo-Lorentz force term and the
usual Lorentz force term, i.e., the third term of Eq. (15),
which depends on �B. As seen from Eq. (15), the usual Lorentz
force term couples only with the normal Green’s functions
g and ḡ, which describe Bogoliubov quasiparticles, and does
not couple to the anomalous Green’s functions, f and f † in
Eq. (15), because of τ̌3 in this term. The physical reason of this
feature is understood as follows. Cooper pairs are composed
of electrons with momentum �k and −�k, and hence the Lorentz
force ∼�v × �B ∝ �k × �B acting on these two electrons cancels
with each other. In contrast, the pseudo-Lorentz force term
due to �Bem couples with both g and f in Eq. (15), and hence,
dynamics of Cooper pairs is affected by this term. This is
because the two fermions, which form a Cooper pair in Weyl
superconductors, carry chirality with opposite signs as well
as momentum �k and −�k, and thus, the pseudo-Lorentz force
due to �Bem, the sign of which depends on the chirality, does
not cancel between these two fermions, but instead adds up to
twice in magnitude.

In the following, we neglect the Lorentz force term due
to a real magnetic field, which is irrelevant to Cooper pair
dynamics. Furthermore, we consider perturbative expansion up
to the first order in terms of the gradient, the vector potential,
and the chiral magnetic field. Then, we obtain a simplified
equation,

[iωnτ̌3 − �̌ + e�vF · �Aτ̌3,ǧ] + ie�vF × �Bem · ∂

∂ �k‖
ǧ

+ i�vF · ∇Rǧ = 0. (17)

Within this approximation, the normalization condition,

ǧ2 = 1̌, (18)

is valid because ǧ2 also satisfies Eq. (17). The normalization
condition gives g = −g and g2 − ff † = 1. Equation (17) and
this normalization condition are the basis of the following
argument. Here, we comment that the normalization condition
for the quasiclassical Green’s functions holds because of the
approximation that the gradient terms of the self-energy are
negligible.

B. Supercurrent flow akin to chiral magnetic effect

In this section, we derive the expression for a supercur-
rent from the Eilenberger equation (17), and demonstrate
that supercurrent flow is induced by the emergent chiral
magnetic field. We would like to stress that this is not
the Meissner current, as clarified below. We expand the
quasiclassical Green’s function up to the first order in the
spatial gradient, the vector potential, and the chiral magnetic
field,

ǧ = ǧ0 + ǧ1, (19)

where ǧ0 is the Green’s function for a homogeneous sys-
tem and ǧ1 is the first-order correction. Solving the zeroth-
order equation of Eq. (17) under the normalization condition

g2
0 − f0f

†
0 = 1, g0 = −g0, we obtain the zeroth-order contri-

butions,

g0 = ωn√
ω2

n + |�( �R) sin θk|2
, (20)

f0 = �( �R)e−iφk sin θk

i

√
ω2

n + |�( �R) sin θk|2
, (21)

f
†
0 = �∗( �R)eiφk sin θk

i

√
ω2

n + |�( �R) sin θk|2
. (22)

Here, we assume an isotropic Fermi surface, and introduce
polar coordinates in momentum space with φk and θk azimuth
and polar angles, respectively. The first-order correction terms
of the quasiclassical equation (17) are given by,

− i�vF · �∂f0 − 2iωnf1 − ie�vF × �Bem ∂

∂ �k‖
f0

+ 2�( �R)e−iφk sin θkg1 = 0, (23)

and

i�vF · �∂f
†
0 − 2iωnf

†
1 + ie�vF × �Bem ∂

∂ �k‖
f

†
0

+ 2�∗( �R)eiφk sin θkg1 = 0. (24)

Here, we introduce the gauge invariant differential operator,

�∂ ≡
{

∇R − 2ie �A for f and �,

∇R + 2ie �A for f † and �∗.
(25)

Solving Eqs. (23) and (24) under the condition 2g0g1 −
f0f

†
1 − f1f

†
0 = 0, g1 = −g1, we obtain

g1 = gM
1 + gT

1 , (26)

gM
1 ≡ i sin2 θk

2
(
ω2

n + |� sin θk|2
) 3

2

�vF · (∇Rχ − 2e �A)|�|2, (27)

gT
1 ≡ −ie sin θk

2kF

(
ω2

n + |� sin θk|2
) 3

2

(�vF × �Bem) · �φ|�|2, (28)

where χ is the phase of the superconducting gap and �φ is a
unit vector in the φk direction. gM

1 is the usual contribution
in the superconducting state, which gives rise to the Meissner
effect. It is noted that this term does not contain the emergent
chiral vector potential and thus the Meissner effects due to the
emergent chiral magnetic field does not occur. The second term
gT

1 , which is originated from the emergent chiral magnetic field
is a distinct feature of this system.

The expression of a charge current can be derived from
Eqs. (27) and (28),

�js = −2eν(0)πiT
∑

n

∫
d�k

4π
�vF g. (29)

Here, ν(0) is the density of states at the Fermi energy,
and

∫
d�k is the integral over the direction of the Fermi

momentum. Since we consider only a static vector potential
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�A, currents carried by quasiparticles are absent, and there is
only a supercurrent. The contribution arising from the pseudo-
Lorentz force is given by

�jT
s = −2eν(0)πiT

∑
n

∫
d�k

4π
�vF gT

1

= −e2ν(0)πT
∑

n

∫
d�k

4π
�vF

sin θk(�vF × Bem) · �φ|�|2
kF

(
ω2

n + |�|2 sin2 θk

) 3
2

.

(30)

We consider a uniform chiral magnetic field along the z

direction. It is noted that the emergent chiral magnetic field
�Bem is an odd function of the momentum, i.e., its sign depends
on chirality of Weyl points at �k = (0,0, ± k0). Therefore, it is
legitimate to assume that �Bem = [0,0,Bem(�k)] satisfies

Bem(�k) =
⎧⎨
⎩

Bem for 0 � θk � �

−Bem for π − � � θk � π

0 otherwise,
(31)

with Bem > 0 a constant. Here, � is the cutoff of the polar
angle, which determines the momentum region where the
approximation of the linearized dispersion is valid. Then,
Eq (30) can be written as

�jT
s = e2ν(0)πT v2

F Bem|�|2
kF

∑
n

∫ �

0
dθk

sin3 θk cos θk(
ω2

n + |�|2 sin2 θk

) 3
2

ẑ,

(32)

where ẑ is unit vector of z direction. Equation (32) implies that
the chiral magnetic field induces supercurrent flow parallel to
the chiral magnetic field. This effect is akin to the CME in Weyl
semimetals. However, it is noted that the result shown above is
not directly related to chiral anomaly of Weyl quasiparticles,
since it arises from the response of Cooper pairs to the chiral
magnetic field.

To capture qualitative features of the supercurrent flow
induced by the chiral magnetic field, we carry out numer-
ical estimation of Eq. (32). The calculated result of the
supercurrent plotted as a function of temperature is shown
in Fig. 1. In this calculation, we used an approximated
temperature dependence of the BCS gap function, |�(T )| 
1.765Tc tanh (1.74

√
Tc

T
− 1) with Tc a critical temperature

[52]. The physical origin of this effect is understood as follows.
Two electrons, which constitute a Cooper pair in WSCs, carry
opposite chiralities as well as opposite signs of momenta.
Thus, the pseudo-Lorentz force due to the chiral magnetic field,
which depends on chirality, does not cancel between these two
electrons, in contrast to the usual Lorentz force, which does not
depend on chirality. As a result, the pseudo-Lorentz force gives
rise to a supercurrent. We stress again that this supercurrent
is not a Meissner current, because the Meissner effect for the
chiral magnetic effect is absent, as shown in Eq. (27). Although
the analysis shown above is based on a single-band toy model
in which the chiral magnetic field is introduced by hand, we
will verify, in Sec. III, that in a realistic superconducting Dirac
semimetal model, supercurrent akin to the CME can actually
be generated by lattice torsion.

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.2  0.4  0.6  0.8  1

jT s,
z
/e
v F

T/Tc

FIG. 1. Temperature dependence of a supercurrent induced by a
chiral magnetic field for eBem = 0.2. The cutoff for integral over polar
angle is set as � = π

10 . The magnitude of the current is divided by
evF .

C. Ginzburg-Landau equation and the Fulde-Ferrell state

In Sec. II B, it is found that the pseudo-Lorentz force
induces a supercurrent, which flows parallel to the chiral
magnetic field. This implies that when the bulk supercurrent
flow is prohibited by a boundary condition of the system,
spatial modulation of the superconducting phase occurs and
the Fulde-Ferrell state is realized. To confirm this prediction,
we here derive the GL equation microscopically from the
Eilenberger equation. To derive the GL equation, we expand
the quasiclassical Green’s functions g and f up to the third
order in |�| and the second order in the spatial gradient
[53]. Applying the gradient expansion up to the second
order,

g = g(0) + g(1) + g(2), (33)

f = f (0) + f (1) + f (2), (34)

where g(i) and f (i) are the ith-order corrections with respect
to the spatial gradient, we rewrite the Eilenberger equations up
to the first order in the following form:

− i�vF · �∂f (0) − 2iωnf
(1) − ie�vF × �Bem · ∂

∂ �k‖
f (0)

+ 2�e−iφk sin θkg
(1) = 0, (35)

i�vF · �∂f †(0) − 2iωnf
†(1) + ie�vF × �Bem · ∂

∂ �k‖
f †(0)

+ 2�∗eiφk sin θkg
(1) = 0. (36)

Note that �Bem is the first order in the spatial derivative.
Solving Eqs. (35) and (36) under the normalization condition
2g(0)g(1) = f (0)f †(1) + f (1)f †(0), we obtain the first-order cor-
rections,

g(1) = o(|�|2), (37)

f (1) =
−�vF · �∂f (0) − e�vF × �Bem · ∂

∂ �k‖
f (0)

2ωn

. (38)
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In a similar manner, we can obtain the Eilenberger equations
for the second-order corrections, and their solutions given by,

g(2) = o(|�|2), (39)

f (2) =
−�vF · �∂f (1) − e�vF × �Bem · ∂

∂ �k‖
f (1)

2ωn

. (40)

According to Eqs. (20)–(22), we expand g(0) and f (0) with
respect to the gap function |�| up to the third order,

g(0) = 1 − |�(�x)|2 sin2 θk

2ω2
n

, (41)

f (0) = �(�x)e−iφk sin θk

i|ωn| − |�(�x)|2�(�x)e−iφk sin3 θk

2i|ωn|3 , (42)

f †(0) = �(�x)∗eiφk sin θk

i|ωn| − |�(�x)|2�(�x)∗eiφk sin3 θk

2i|ωn|3 . (43)

Substituting Eqs. (41)–(43) into Eqs. (38) and (40), we obtain
correction terms of the anomalous Green’s function, which are
necessary for the derivation of the GL equation.

We assume an effective pairing interaction for a p + ip

wave superconductor in the following form:

V (k̂,k̂′) = −|V0|(k̂x − ik̂y)(k̂′
x + ik̂′

y). (44)

|V0| is the strength of the effective attraction. Then, the gap
equation can be written as

�(�k‖,�x)

λ
= πiT

∑
n

∫
d�k′

4π
(k̂x − ik̂y)(k̂′

x + ik̂′
y)f (�k′

‖,�x)

= 〈eiφk sin θkf (�k‖,�x)〉Fe
−iφk sin θk, (45)

where λ = |V0|ν(0) is the dimensionless coupling constant
and 〈· · · 〉F means the average over the Fermi surface. From
Eqs. (34) and (42), we have,

〈eiφk sin θkf (�k‖,�x)〉F =
〈
�(�x) sin θk

i|ωn| − |�(�x)|2�(�x) sin3 θk

2i|ωn|3

+ eiφk sin θkf
(1) + eiφk sin θkf

(2)

〉
F

= 2�(�x)

3i|ωn| − 4|�(�x)|2�(�x)

15i|ωn|3
+ 〈eiφk sin θkf

(1)〉F+〈eiφk sin θkf
(2)〉F.

(46)

Using Eqs. (38), (40), and (42), we perform the average over
the Fermi surface and the sum of the Matsubara frequency.
Then, up to the third order with respect to |�| and the second
order in the spatial gradient, we obtain the GL equation,(

1 − T

Tc

)
�(�x) − 7ζ (3)

10π2T 2
c

|�(�x)|2�(�x)

+ 7ζ (3)v2
F

40π2T 2
c

(
∂2
x + ∂2

y + 1

2
∂2
z

)
�(�x) + 7ζ (3)v2

F

64π2T 2
c

×
(

3i
eBem

kF

∂z − 4

(
eBem

kF

)2
)

�(�x) = 0. (47)

The first-order gradient term, which is linear in Bem, implies
that the Fulde-Ferrell state with nonzero center of mass
momentum of Cooper pairs is stabilized by the emergent chiral
magnetic field. For the gap function,

�(�x) = �eiQz, (48)

we determine the value of Q by maximizing the critical
temperature Tc, and obtain Q = − 15eBem

8kF
. It is found that Tc

is decreased as Bem increases, because of the (Bem)2 term in
the GL equation, though the Bem-linear term increases Tc.

The realization of the Fulde-Ferrell state is in accordance
with the result in Sec. II B for a supercurrent induced by
the chiral magnetic field, since the spatially modulated phase
implies supercurrent flow along the direction of the modulation
provided that the current flow is not forbidden by a boundary
condition.

III. DIRAC SUPERCONDUCTIVITY REALIZED IN DIRAC
METAL MODEL WITH LATTICE TORSION

In this section, we consider a DSM model with lattice
torsion, and the Dirac superconducting state realized in this
system. We exploit a two-orbital model for real DSM materials
such as Cd3As2 and Ni3Pb. In this model, because of orbital
texture on the Fermi surface, spin-triplet and orbital-singlet
pairing states are stabilized [49,50]. Using the quasiclassical
Eilenberger equation for this model, we find that although the
lattice torsion does not induce charge supercurrents, because
of time-reversal symmetry, it generates spin supercurrent flow
parallel to an emergent chiral magnetic field.

A. C4 symmetric Dirac semimetal model

DSMs have Dirac points in the bulk momentum space and
its low-energy physics is described by the Dirac Hamilto-
nian. DSMs have both time-reversal and inversion symme-
tries. The minimal effective Hamiltonian of these systems
is constructed from at least four degrees of freedom, e.g.,
two spin and two orbital degrees of freedom. The Kramers
theorem guarantees doubly degenerate Bloch states. As men-
tioned before, the stability of Dirac points requires symmetry
protection mechanism. In the case of Cd3As2 and Ni3Pb,
C4 rotational symmetry protects the Dirac points, which is
characterized by C4 topological invariant [54]. In the basis set
{|P 3

2
, 3

2 〉 , |S 1
2
, 1

2 〉 , |P 3
2
,− 3

2 〉 , |S 1
2
,− 1

2 〉}, the effective Hamilto-
nian for this topological DSMs near the � point [31,37] can be
written as,

HN (�k) =
(

hlatt(�k) 0
0 [hlatt(−�k)]∗

)
, (49)

where hlatt(�k) = mkσz + �(σx sin akx + σy sin aky), mk =
t0 + t1 cos akz + t2(cos akx + cos aky), and σj (j = 1,2,3) is
the Pauli matrix for orbital space. The effective Hamiltonian
is diagonal in spin space, and in the energy spectrum, there
are Dirac points at �kη = [0,0,η arccos(− t0+2t2

t1
)] ≡ (0,0,ηk0),

as shown in Fig. 2. Here, η = ±1 is chirality of Dirac fermions,
i.e., a sign of a monopole charge in the momentum space.

The expansion of the upper-left block of the effective
Hamiltonian hlatt(�k) in the vicinity of the Dirac points �kη up to
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FIG. 2. Spin-up and spin-down Dirac fermions in topological
DSMs. Here, η denotes chirality of each Weyl cone, and the arrows
denote the spin states.

the second order in the momentum can be written as,

h(�k − �kη) = v
η

j σj

(
kj − k

η

j

)
− 1

2Mij

(
ki − k

η

i

)(
kj − k

η

j

)
σz, (50)

where �vη ≡ (�a,�a,−ηt1a sin ak0) is the Fermi velocity and
Mij is the effective mass tensor, which is given by

(Mij )−1 ≡

⎧⎪⎨
⎪⎩

0 for i �= j

a2t2 for i = j = x, y

a2t1 cos ak0 for i = j = z

. (51)

The leading term of the mechanical strain can be incorpo-
rated in the lattice model by modifying the hopping amplitude

along the z direction [31],

t1σz → t1(1 − u33)σz + i�(u13σx + u23σy). (52)

Here, uij = (∂iuj + ∂jui)/2 is the symmetric strain tensor, and
�u = (u1,u2,u3) represents the displacement vector. Within the
leading order in terms of momentum, the mechanical strain
behaves as a chiral vector potential. The upper-left block of
the effective Hamiltonian for a distorted crystal is given by,

h(�k − �kη) = v
η

j σj

[
kj − k

η

j − eAem
j (η)

]
− 1

2Mij

(
ki − k

η

i

)(
kj − k

η

j

)
σz = �

η

j (�k)σj .

(53)

The Gor’kov equations for the superconducting state of the
DSM model have the form similar to Eqs. (4) and (5), but with
matrices defined in the 8 × 8 spin, orbital, and particle-hole
spaces. In this case, the Green’s function Ǧ is defined by Eq. (9)
with,

G(x1,x2) =
(

G↑ 0
0 G↓

)
, F (x1,x2) =

(
F↑ 0
0 F↓

)
,etc.

Here,

G↑(x1,x2) =
(

GP 3
2 ,P 3

2
GP 3

2 ,S 1
2

GS 1
2 ,P 3

2
GS 1

2 ,S 1
2

)
, (54)

G↓(x1,x2) =
(

GP− 3
2 ,P− 3

2
GP− 3

2 ,S− 1
2

GS− 1
2 ,P− 3

2
GS− 1

2 ,S− 1
2

)
, (55)

with

Gαβ(x1,x2) = 〈Tτψα(x1)ψ†
β(x2)〉, (56)

and α,β = {P 3
2 ,S 1

2 ,P − 3
2 ,S − 1

2 }. The other Green’s func-
tions, F↑, F↓, Ḡ↑, and Ḡ↓, are defined in a similar way. The
kinetic energy term ζ̌ in the Gor’kov equation is given by,

ζ̌ =

⎛
⎜⎜⎜⎜⎝

�
η

j (�k)σj − μ 0 0 0

0 �
−η

j (−�k)σ ∗
j − μ 0 0

0 0 �
−η

j (−�k)σ ∗
j − μ 0

0 0 0 �
η

j (�k)σj − μ

⎞
⎟⎟⎟⎟⎠, (57)

where �
η

j (�k) ≡ v
η

j qj − 1
2Mlm

(kl − k
η

l )(km − k
η
m)δjz and qj =

kj − k
η

j − eAem
j (η). The chiral vector potential generated by

mechanical strain reads,

�Aem(η) = − η

ea
(u13 sin ak0,u23 sin ak0,u33 cot ak0). (58)

From now on, for simplicity, we assume a uniform chiral
magnetic field, which can be realized by twisting topological
DSMs [31] (see Fig. 3). In this case, the chiral vector potential
and the chiral magnetic field can be, respectively, written as
�Aem(η) = ηBem(−y,x,0), �Bem( �kη) = (0,0,ηBem).

According to Refs. [49,50], in this DSM model, a spin-
triplet, orbital-singlet pairing state rather than the ordinary s-
wave pairing state is favored because of its momentum-orbital
texture on the Fermi surface. The order-parameter matrix of

this pairing state for the same basis as Eq. (57) is given by,

�̌ =

⎛
⎜⎝

0 0 −iσy� 0
0 0 0 −iσy�

−iσy�
∗ 0 0 0

0 −iσy�
∗ 0 0

⎞
⎟⎠. (59)

This superconducting gap also preserves C4 symmetry. This
guarantees the existence of the point nodes in the energy spec-
trum of the Bogoliubov quasiparticles, which characterize the
Dirac superconducting state. Since both of the kinetic energy
matrix (57) and the order-parameter matrix (59) are block
diagonalized in spin space, we can deal with each spin sector
separately. In the following, we denote the spin-up (spin-down)
states corresponding to {|P, 3

2 〉,|S, 1
2 〉} ({|P,− 3

2 〉,|S,− 1
2 〉}) as
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FIG. 3. Emergent chiral magnetic field generated by torsion.

the sz = 1 (−1) state. The Nambu Hamiltonian of each spin
sector can be written as,

Ȟ sz=1η =
(

�
η

j (�k)σj − μ −iσy�

−iσy�
∗ �

−η

j (−�k)σ ∗
j − μ

)
, (60)

Ȟ sz=−1η =
(

�
−η

j (−�k)σ ∗
j − μ −iσy�

−iσy�
∗ �

η

j (�k)σj − μ

)
. (61)

To proceed further, we introduce parameters θη and φη defined
as,

cos θη ≡ �
η
z

�η
, (62)

sin θη cos φη ≡ �
η
x

�η
, (63)

sin θη sin φη ≡ �
η
y

�η
, (64)

where�η ≡ |��η| is the energy of the quasiparticle in the normal
state. Performing the unitary transformation from the orbital
basis to the band basis which diagonalizes the normal-state
Hamiltonian, we obtain the total Hamiltonian represented by
the band basis,

Ȟ sz=1η

→
(

diag(�η − μ, − �η − μ) ��η

−�∗�η∗ diag(|�η| − μ, − |�η| − μ)

)
,

and

Ȟ sz=−1η

→
(

diag(�η − μ, − �η − μ) −��η∗

�∗�η diag(�η − μ, − �η − μ)

)
.

Here, the matrix �η is defined by,

�η =
(

eiφη

sin θη −eiφη

cos θη

−eiφη

cos θη −eiφη

sin θη

)
. (65)

We assume μ > 0, and neglect the lower bands which do not
cross the Fermi level. The simplified Nambu Hamiltonian of

each spin sector can be written as,

Ȟ
szη

2×2 =
(

�η − μ sz�eiszφ
η

sin θη

−sz�
∗e−iszφ

η

sin θη �η − μ

)
. (66)

This expression is similar to that of the chiral p-wave model.
However, the spin-up p + ip state and the spin-down p − ip

state constitute the Kramers pair, as in the case of the helical
p-wave or planar state, because of time-reversal symmetry.

B. Quasiclassical equation for DSM model

We apply the quasiclassical approximation to this model and
derive the Eilenberger equation for the DSM model from the
Hamiltonian (66). The procedure is similar to the case of Weyl
superconductors in Sec. II. The quasiclassical Green’s function
ǧszη for the band with spin sz and the Fermi surface surrounding
the Dirac point at �kη satisfies the Eilenberger equation,

[iωnτ̌3 − �̌szη(�k, �R),ǧszη] + i �V η

F · ∇Rǧszη + ie �V η

F × �Bem

· ∂ǧszη

∂ �k‖
= 0, (67)

where �V η

F = �V η(�k)|�k=�kF
is the Fermi velocity, which is given

by,

�V η(�k) ≡ ∂�η

∂ �k = 1

�η

[
vη 2

x qx

−
{
vη

z qz − 1

2Mij

(
ki − k

η

i

)(
kj − k

η

j

)} kx

Mxx

,

vη 2
y qy−

{
vη

z qz − 1

2Mij

(
ki−k

η

i

)(
kj−k

η

j

)} ky

Mxx

,

(
vη

z qz − 1

2Mij

(
ki − k

η

i

)(
kj − k

η

j

))

×
(

vη
z − 1

Mzz

(
kz − kη

z

))]
. (68)

Equation (67) implies that the pseudo-Lorentz force due to
a chiral magnetic field exists in the DSM model, and affects
Cooper pair dynamics. Here, we note that the normalization
condition for the quasiclassical Green’s functions holds, be-
cause we use the approximation that the gradient terms of the
magnetic field and the self-energy are negligible.

C. Spin supercurrent akin to the CME

The Eilenberger equation for each spin sector obtained
in the previous subsection implies that supercurrents can be
induced by the torsion-induced chiral magnetic field. However,
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because of time-reversal symmetry, supercurrents carried by
spin-up Cooper pairs and spin-down Cooper pairs propagate
in the opposite directions. Thus, the net supercurrent does not
carry charge but spin; i.e., the nonzero spin supercurrent flows
along the chiral magnetic field.

To confirm this prediction, we calculate a spin supercurrent
using the Eilenberger equation (67) in a way similar to that
in the previous section. We expand the quasiclassical Green’s
function up to the first order in the spatial gradient and a chiral
magnetic field.

ǧszη = ǧ
szη

0 + ǧ
szη

1 . (69)

Solving the zeroth-order equation of Eq. (67) under the
normalization condition g

szη

0 =−g
szη

0 , g
szη 2
0 − f

szη

0 f
szη †
0 =1,

we obtain the zeroth-order terms of the Green’s functions,

g
szη

0 = ωn√
ω2

n + |�|2 sin2 θη

, (70)

f
szη

0 = isz�eiszφ
η

sin θη√
ω2

n + |�|2 sin2 θη

, (71)

f
szη †
0 = isz�

∗e−iszφ
η

sin θη√
ω2

n + |�|2 sin2 θη

. (72)

The first-order corrections for the Green’s functions satisfy,

2iωnf
szη

1 + sz�eiszφ
η

sin θη
(
g

szη

1 − g
szη

1

)
+ i �V η

F · ∇Rf
szη

0 + ie �V η

F × �Bem · ∇k‖f
szη

0 = 0, (73)

and

2iωnf
szη †
1 + sz�

∗e−iszφ
η

sin θη
(
g

szη

1 − g
szη

1

)
− i �V η

F · ∇R

(
f

szη

0

)† − ie �V η

F × �Bem · ∇k‖
(
f

szη

0

)† = 0. (74)

Solving Eq. (73) and Eq. (74) under the normalization condi-
tion 2g

szη

0 g
szη

1 − f
sη

0 f
szη †
1 − f

szη

1 f
szη †
0 = 0, g

szη

1 = −g
szη

1 , we
obtain the first-order correction term g

szη

1 as

g
szη

1 = g
szη M

1 + g
szη T

1 , (75)

g
szη M

1 ≡ i

2

�V η

F · ∇Rχ(
ω2

n + |�|2 sin2 θη
)3/2 |�|2, (76)

g
szη T

1 ≡ i

2

sz
�V η

F · ∂φη

∂ �R + esz
�V η

F × �Bem · ∂φη

∂ �k‖(
ω2

n + |�|2 sin2 θη
)3/2 |�|2, (77)

where χ is the phase of the superconducting gap, and,

∂φη

∂ �R =
(

eηBemkx

k2
x + k2

y

,
eηBemky

k2
x + k2

y

,0

)
. (78)

Equation (76) is a conventional contribution from the phase
gradient, which generates usual supercurrent flow. The second
term Eq. (77) is originated from the pseudo-Lorentz force due
to a torsion-induced chiral magnetic field. Since this term is
proportional to sz, it does not contribute to total charge currents.
However, it can induce a spin supercurrent, which is defined

(d)

FIG. 4. (a)–(c) Fermi surfaces of the DSM model for different values of the effective mass: (a)
k2

0
Mxx t0

= 0, (b)
k2

0
Mxx t0

= 1.0, and (c)
k2

0
Mxx t0

=
−1.0. The other parameters are set to fit the energy dispersion of Cd3As2 as follows: t0 = −0.2 eV, t1 = 0.1 eV, t2 = 0.07 eV, � = 0.040 eV.
Also, we put a = 4.0 Å, μ = 0.05 eV. (d) Spin supercurrent plotted as a function of anisotropy of the effective mass 1/Mxx . We put Bem = 0.2 T,
temperature T = 0.756Tc with a critical temperature Tc = 0.0002 eV, and the superconducting gap � = 0.000266 eV. The other parameters
are the same as those used in (a)–(c). In this plot, the magnitude of the spin supercurrent is divided by the elementary charge e.
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by,

�j spin
s ≡ j↑

s − j↓
s

2(−e)
. (79)

Then, we obtain,

�j spin
s = ν(0)πiT

∑
n

∑
szη

∫
d�k

4π
sz

�V η

F g
szη

1

= −ν(0)πT
∑

n

∑
η

∫
d�k

4π

× �V η

F

�V η

F · ∂φη

∂ �R + e �V η

F × �Bem · ∂φη

∂ �k‖(
ω2

n + |�|2 sin2 θη
)3/2 |�|2, (80)

where ν(0) is the density of state at the Fermi energy. From
numerical calculations, it is found that the z component of
Eq. (80) is nonzero, while the x and y components vanish.
Therefore, in this case, the emergent chiral magnetic field
induces a spin supercurrent parallel to the field.

We will demonstrate below that to obtain nonzero �j spin
s , we

need anisotropy of the Fermi surface: i.e., the Fermi velocity
on a Fermi surface, which surrounds a Dirac point should be
anisotropic. This anisotropy suppresses cancellation of spin
supercurrents due to the average over the momentum direction
in Eq. (80). As a matter of fact, the Fermi surfaces of DSMs
surrounding Dirac points are generally anisotropic in realistic
situations, and hence, we have nonzero spin supercurrent
induced by a chiral magnetic field. The anisotropy of the
Fermi surface is parametrized by effective mass Mxx = Myy

in our model. The 1/Mxx term of the Hamiltonian changes
the shape of Fermi surfaces from spheroid to asymmetric one
[Figs. 4(a)–4(c)]. We show the anisotropy dependence of the
spin supercurrent in Fig. 4. In this calculation, we dropped
the term proportional to 1/Mzz, which gives subleading cor-
rections. It is found that the spin supercurrent is nonzero as
long as 1/Mxx �= 0 [Fig. 4(d)]. This feature is not seen in
the case of a single-band WSC model considered in Sec. II,
where anisotropy of the Fermi surface does not play a role.
This is due to the oversimplification of the single-band model.
It is expected that for more realistic multiorbital WSC models,
anisotropy of the Fermi surface is necessary for the realization
of nonzero supercurrent induced by a chiral magnetic field.

The above result also implies that, if bulk current flow is
prohibited by boundary conditions of the system, the spin-
dependent Fulde-Ferrell state occurs. In this Fulde-Ferrell
state, the superconducting gap function �sz

for spin sz = ±1
pairs is modulated as,

�sz
(z) = �0e

iszQz, (81)

with Q ∝ Bem.
We, furthermore, investigate effects of a Zeeman magnetic

field on spin and charge supercurrents. The Zeeman field
results in spin polarization, leading to nonzero net charge
supercurrents. In Fig. 5, we show a calculated result for a
charge supercurrent, js,z, induced by the uniform Zeeman field
parallel to the z axis. In this figure, the magnitude of the
charge supercurrent is normalized by the magnitude of the spin
supercurrent for zero magnetic field, j

spin
s,z .

-0.15

-0.1

-0.05

 0

 0  0.01  0.02  0.03  0.04  0.05

j s,
z/
ej
sp
in

s,
z  

(ε
Ze
em
an

=0
)

εZeeman

FIG. 5. Charge supercurrent �jsz divided by the electric charge e

plotted as a function of the Zeeman energy εZeeman. The magnitude
of the supercurrent is normalized by the value of a spin supercurrent
for εZeeman = 0. The chemical potential and the effective mass is set
as μ = 0.05,Mxx = 0.89,Mzz = −1.04. The other parameters are the
same as those used in Fig. 4.

IV. SUMMARY

We have investigated effects of strain-induced chiral mag-
netic fields on Cooper pairs in Weyl and Dirac superconductors.
It is found that although the chiral magnetic field leads to
neither Meissner effect nor vortex states, the pseudo-Lorentz
force due to the chiral magnetic field affects dynamics of
Cooper pairs drastically, and gives rise to charge/spin su-
percurrent in Weyl/Dirac superconductors. These effects are
akin to the CME in WSMs. Accordingly, the Fulde-Ferrell
state characterized by spatially inhomogeneous phase of the
superconducting order parameter is realized by the chiral
magnetic field, if bulk current flow is prohibited by boundary
conditions. Our findings for DSCs are relevant to the DSM
material Cd3As2, which shows superconductivity under ap-
plied pressure ∼8.5 GPa. [48] Also, WSCs can be realized in
superlattice structures composed of a topological insulator and
a conventional superconductor, as proposed in Ref. [41].

Although the experimental detection of the Fulde-Ferrell
state is quite difficult, supercurrents induced by strain can
be observed via various methods. For instance, for a ring-
shape WSC sample, strain-induced supercurrents generate a
magnetic field penetrating the ring, which is experimentally
measurable. For the case of DSCs, a spin supercurrent results
in spin accumulation on surfaces of the sample, which can
be also detected [55,56]. Experimental exploration for these
effects in real materials remains as interesting future issues.
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