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We analyze the coupling of two qubits via an epitaxial semiconducting junction. In particular, we consider
three configurations that include pairs of transmons or gatemons as well as gatemonlike two qubits formed by an
epitaxial four-terminal junction. These three configurations provide electrical control of the interaction between
the qubits by applying voltage to a metallic gate near the semiconductor junction and can be utilized to naturally
realize a controlled-Z gate (CZ). We calculate the fidelity and timing for such a CZ gate. We demonstrate that in
the absence of decoherence, the CZ gate can be performed under 50 ns with gate error below 10−4.
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I. INTRODUCTION

Over the last 10 years, superconducting circuits based
on Al/AlOx/Al tunnel Josephson junctions (JJ) have clearly
became a leading platform for implementing a solid-state
based quantum computer [1–6]. Many factors contribute to
this leadership. Absence of normal carriers helps to reduce
decoherence; reproducibility of junction fabrication allows the
pursuit of complex devices; and the availability of quantum
optics type of control of qubits, such as interactions of super-
conducting circuits with microwave cavities [7–12], helps to
achieve the highest degree of control at times even surpassing
the benchmarks of conventional atomic systems. The most
challenging task is to develop architectures that still maintain
the high degree of control and a reasonable cost for scaling up.
The scaling to a larger number of qubits meets technological
challenges for current approaches with complicated circuitry
necessary for individual control of large qubit systems.

A spectacular solution to scaling up these systems was
found in conventional classical computers where successful
simultaneous control of over a trillion transistors comes
from the marvels of semiconductors. The transistor is the
key element of this technology as it can switch on and
off conductivity of a nanoscale region of a semiconductor
chip by applying local nanosecond-scale voltage pulses. It
is therefore tempting to explore an approach where highly
scalable gate control of semiconductors can be incorporated
into superconducting devices. A nanowire-based gatemon is
a transmon whose tunnel Josephson junction is replaced with
a hybrid super/semiconductor junction. This junction can be
formed by InAs nanowires in epitaxial contact with Al leads
[13–19]. The Josephson energy EJ of such junctions is tuned
by a side electric gate that controls the transmission of con-
ducting channels in the semiconductor. The ability to tune the
Josephson energy introduces Z gates for single qubit operations
[18], permits additional reconfigurability of multiqubit systems
to address frequency crowding, and brings options for scaling
quantum processors to a large number of qubits, by analogy
with the operation of conventional transistors of classical
processors.

A universal quantum processor requires a combination of
one- and two-qubit gates. One approach for two-qubit gates
was proposed for frequency tunable qubits by Strauch et al.
[20]. This approach was demonstrated for transmonlike qubits
[3,21,22] and more recently for gatemons [18]. However, as
the number of qubits increases, their energy spectrum becomes
very dense, making two-qubit gates based on frequency tuning
a hardly scalable solution. A preferable approach would be to
use tunable couplers between qubit pairs.

In this paper we propose a realization of a controlled-Z
gate achieved by an electrically tuned semiconductor junction
connecting two transmon qubits, see Fig. 1 for an illustration.
This approach is similar to the two-qubit gates in g-mon
systems [23,24], but in our case, the inductive coupling is
controlled by the transparency of a semiconductor junction
connecting two superconducting qubits.

We assume that the connector can be completely closed by a
proper negative voltage applied to a nearby gate. When the gate
voltage is removed, an Andreev bound state (ABS) forms in the
connector and its energy depends on the difference in phases
of superconducting order parameters on the transmon super-
conducting islands. When the coupling between transmons
through the junction is turned on, the additional Josephson
energy associated with the ABS introduces an effective inter-
action between two qubits and changes the energy spectrum
of the two-qubit system. This change allows one to perform a
controlled-Z gate (CZ), similar to frequency-tunable CZ gates
[20]. The great advantage of this electrostatically controlled
gate is that the interaction between the qubits can be turned off
and thus completely decouple the qubits. At the same time, the
interaction can reach strong magnitude during the two-qubit
gate operation necessary for a realization of fast high-fidelity
CZ gates.

The paper is organized as follows. In the next section we
introduce three transmonlike systems that we analyze in this
paper. Then, in Secs. III, IV, and V we consider a conventional
transmon with Josephson junction formed by a tunnel junction,
a gatemon, and an H-shaped hybrid junction forming two
gatemon qubits and the coupling between them, respectively.
In Sec. VI we present discussion and conclusions.

2469-9950/2018/97(13)/134518(11) 134518-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.134518&domain=pdf&date_stamp=2018-04-23
https://doi.org/10.1103/PhysRevB.97.134518


ZHENYI QI et al. PHYSICAL REVIEW B 97, 134518 (2018)

ON OFF

ON OFF

ON OFF

(a)

(b)

(c)

Time

Tr
an

sm
is
si
on T0(d)

FIG. 1. A schematic picture of two qubits connected by an
epitaxial semiconductor junction (green bar). The three configurations
presented here are: (a) two transmons formed by tunnel Josephson
junctions, (b) two gatemons, where the Josephson elements are
formed by other epitaxial semiconductor junctions, and (c) two
gatemonlike qubits, where their Josephson junction are combined
into an H-shaped four-terminal epitaxial junction. The voltage on the
gate (vertical bar) switches connection between two qubits on (left
column) and off (right column). (d) The connector transmission Tc as
a function of time. The transmission changes according to Eqs. (13)
during time τs for switching on and off and is maintained at constant
value T0 during waiting time τw .

II. TRANSMONLIKE QUBIT SYSTEMS

In this paper we focus on the following three qubit config-
urations:

Transmon [Fig. 1(a)] is current favorite among supercon-
ducting qubits due to its reduction in sensitivity to charge
noise relative to the Cooper pair box and increase in the
qubit-photon coupling [3,4,25–27]. We analyze the CZ gate
characteristics for two transmons coupled by an electrically
controlled epitaxial semiconductor junction. This configura-
tion will take advantage of the coherence of conventional
Al/AlOx/Al transmons and electrically tunable interaction
between them, see Sec. III.

Gatemon [Fig. 1(b)] is a form of transmon where the
tunnel junction is replaced by a semiconductor Josephson
junction [14–19]. The configuration of two gatemons coupled
by a semiconductor junction has a benefit as this system has
an all-semiconductor system without AlOx tunnel junctions.
However, an always “on” semiconductor Josephson junction

TABLE I. Eigenenergies for noninteracting (Tc = 0) two trans-
mons, two gatemons, and H-pair qubit systems. The Josephson energy
EJ /h = 20.55 GHz for both transmon and gatemon qubits and
EJ /h = 20.24 GHz for H-junction qubits, the charging energy for
qubit one EC1/h = 240 MHz and qubit two EC2/h = 255 MHz. All
the eigenenergies are written in reference to the ground state energy.

Transmon (GHz) Gatemon (GHz) H pair (GHz)

ω
(1)
10 /h 6.02 6.22 6.17

ω
(2)
10 /h 6.20 6.41 6.36

β (1)/2π −0.294 −0.063 −0.066
β (2)/2π −0.315 −0.067 −0.070

of a gatemon may reduce coherence of the individual qubits.
We discussed this configuration in Sec. IV.

H pair [Fig. 1(c)] is a system of two gatemonlike qubits with
their Josephson junctions combined into a single H-shaped
four-terminal junction which is lithographically patterned as
epitaxial super/semi Josephson junctions [16]. The H pair
may simplify the fabrication process of coupled qubits. This
junction also shows an interesting physical structure of the
Andreev bound states and was a focus of recent theoretical
studies [13,28–32]. We describe properties of an H pair in
Sec. V.

The energy spectrum of the three lowest energy states of a
transmon is characterized by the transition frequency ω10 be-
tween the ground and first excited states and the anharmonicity
β:

h̄ω
(α)
10 = E

(α)
1 − E

(α)
0 , (1)

h̄β(α) = E
(α)
2 − E

(α)
1 − h̄ω

(α)
10 . (2)

In this paper we take parameters so that the qubit frequencies
and anharmonicities are practical in experiments [19]. The
values of the qubit frequencies and anharmonicities for all three
qubit systems are listed in Table I. In general, a transmon has
larger anharmonicities than a gatemon or H pair. This explains
the different relative positions of states ˜|11〉 and ˜|02〉 for the
transmon system and the other two in this paper. For other
choices of charging energies, this difference may not manifest
as the obvious different energy configurations, but depending
on different ways of realizing qubit gates, the transmon with
larger anharmonicity may have a better fidelity as it distin-
guishes transitions among its computational basis from other
transitions better than the small anharmonicity system. Below
we choose parameters of transmon and gatemon qubits that are
consistent with experimentally realizable devices.

The interaction between qubits is turned on when the
connecting junction acquires nonzero transmission Tc and an
Andreev bound state (ABS) develops in the junction with
energy [33]

δEABS = �

[
1 −

√
1 − Tc sin2

(
θ1 − θ2

2

)]
, (3)

where θ1,2 are superconducting phases of the transmons and
� is the superconducting energy gap. By changing Tc in time
using the gate voltage, we realize energy shifts in the system
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FIG. 2. Error as a function of gate time for qubit systems with
waiting time τw = 0. The charging energies are EC1/h = 240 MHz
and EC2/h = 255 MHz. The Josephson energy Ej = 20.55 GHz for
transmons and gatemons, and Ej = 20.24 GHz for qubits in H pair.
The corresponding qubit frequencies are listed in Table. I. For gate
time about 50 ns, all three qubit configurations allow for gate errors
at the order of or less than 10−4.

of two interacting qubits and with proper timing we realize the
conditional Z gate, see Fig. 1(d).

The lowest order term that entangles the two qubits is

δE
(1,1)
ABS = �Tc

4
θ1θ2 ∝ Tc

√
ω

(1)
10 ω

(2)
10 , (4)

where the superscript (1,1) denotes the order of θ1 and θ2.
The proportionality factor is determined by the transmission
coefficients of qubit Josephson junctions. For a conventional
transmon system, the proportionality factor is at the order
of one. Assuming the coupled two qubits have similar qubit
frequencies which are around 5 GHz, the expression (4) means
a coupling energy of �10 MHz for Tc at the order of 0.01 can
be achieved. Therefore, it is sufficient to keep Tc � 1 during
the CZ gate operations to have a CZ gate within 50 ns.

Since the semiconductor junction is turned off during single
qubit operations, we do not expect that these junctions will
degrade significantly coherent properties of the qubit system,
and should not exceed decoherence of gatemon qubits over the
short time interval when the junction between qubits is on [19].
The decoherence and relaxation times for the state-of-the-art
gatemons are �10 μs, as reported in Ref. [19]. Assuming
a CZ gate is realized in 50 ns, with similar structure but
a much smaller transmission, the gate-controlled semicon-
ductor junction may introduce infidelity that is much less
than 1 − exp (−50/10000) � 0.005, depending on the specific
engineering of the tunable coupler and the system to which this
tunable coupler is applied. In this paper, systems are assumed
to be decoherence-free and we investigate the intrinsic errors in
a CZ gate operation. In practice, if the decoherence dominates
the error generation of a qubit system, a shorter gate time is
required.

In Fig. 2, with the decoherence-free assumption, we show
that all three qubit systems demonstrate small error (�10−4)
for gate time about 50 ns. The H pair has longer gate time in our
choice of parameter set. However, when the coupling between
beam splitter and connecting junction is small, it allows a wide

range of connector transmission for tuning the system. And
when equipped with gatemon, it inherits the freedom of tuning
qubit frequencies. Therefore, even with a slightly longer gate
time and potential operation error compared to a traditional
transmon, it allows for easy control of the energy scales
and interactions, thus both single qubit gates and two-qubit
entangling gates can be easily realized with little error coming
from either crosstalk or frequency crowding.

III. TWO COUPLED TRANSMONS

A. Model of coupled transmons

We consider two transmon qubits coupled by a semicon-
ductor junction. When the junction is open, the transmons are
decoupled. Each transmon is characterized by the charging
EC,α and Josephson EJ,α energies, where α = 1,2. To suppress
effects of charge noise on qubit, transmon capacitances Cα

are chosen large and the charging energy ECα = e2/2Cα

are much smaller than the Josephson energy ECα � EJα .
The Hamiltonian of a transmon contains both charging and
Josephson energies [25] and can be written in the form

H (0)
α = 4EC,αn̂2

α + EJ,α

(
θ̂2
α

2
− θ̂4

α

24

)
. (5)

Here the electron number operator n̂α and the superconducting
order parameter phase operator θ̂α do not commute, [n̂α,θ̂α] =
i. The qubit transition frequency and anharmonicity, see
Eqs. (1) and (2), are approximately given by the following
expressions in terms of the Josephson and charging energies
[25]:

h̄ω
(α)
10 ≈ √

8EJ,αEC,α − EC,α, β(α) ≈ EC,α/h̄. (6)

While the condition EJ,α � EC,α is necessary to reduce trans-
mon sensitivity to charge noise, this same condition results
in weak anharmonicity of transmons and imposes certain
constraints on time dependence of control pulses, including
the CZ gate.

In the discussion below, we assume that the Josephson
energies of both transmons are equal, EJ,α = EJ , but the
charging energies EC,α are different to provide distinguishable
frequencies ω

(α)
10 by about 3%, which requires EC1/EC2 �

0.94. In particular, we take

EJ

h
= 20.55 GHz,

EC,1

h
= 240 MHz,

EC,2

h
= 255 MHz.

(7)
The qubit energies and anharmonicities for this choice of qubit
parameters are presented in Table I. The energy spectrum of
two noninteracting qubits is such that computational state |11〉
is above both noncomputational states |20〉 and |02〉. This
order of energy states happens when the frequency separation
between two qubits is smaller than the qubit anharmonicities.
A counterexample is considered in Sec. III for the case of
two gatemons, where the anharmonicity is reduced and the
computational state |11〉 is between states |20〉 and |02〉.

Assuming that the phase fluctuations of both transmons are
small, θ1,2 � 1, we expand Eq. (3) to quartic terms in the qubit
phases:

Vint � Tc�

8

(
(θ̂1 − θ̂2)2 − 1

12
(θ̂1 − θ̂2)4

)
. (8)
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FIG. 3. Energy shifts on eigenenergies δEm = Ẽm − Em of the
two-transmon system as a function of transmission Tc. Only three out
of four states in computational subspace are depicted. For both qubits,
the Josephson energy EJ /h = 20.55 GHz, and the charging energies
EC1/h = 240 MHz and EC2/h = 255 MHz.

Here we consider a small transmission coefficient Tc � 1 of
the connecting junction, sufficient for a high-fidelity CZ gate.
This interaction modifies the instantaneous eigenstates |̃m〉 and
energies Ẽm of the full system Hamiltonian

H = H1 + H2 + Vint. (9)

As the transmission coefficient Tc increases, the distance
between neighboring energy states increases as a consequence
of energy level repulsion.

Below we identify states |̃m〉 by their adiabatic evolution as
a function of Tc from the noninteracting case Tc = 0, i.e., index
m is composed of two integers m → (n1,n2), representing the
nαth excited state of noninteracting transmon α = 1,2. We
evaluate the relative energy shifts δẼm = Ẽm − E(1)

n1
− E(2)

n2
of

computational subspace eigenstates m = {00; 01; 10; 11} as a
function of transmission coefficient Tc, represented in Fig. 3.

The evolution operator in the computational subspace in the
eigenstate basis |̃m〉 has the form

W (t) = diag{e−iφ00 ; e−iφ01 ; e−iφ10 ; e−iφ11}, (10a)

φm(t) = Ẽmt/h̄. (10b)

The interaction provides a nonzero value for the CZ gate
rate [20,34,35]

�CZ = (Ẽ11 + Ẽ00 − Ẽ01 − Ẽ10)/h, (11)

so that after time t = 1/(2|�CZ|), the evolution operator is
equivalent to the ideal CZ gate UCZ = diag{1; 1; 1; −1} with
the phase shifts φ10 − φ00 and φ01 − φ00 to be compensated
by single qubit Z gates Uz1 and Uz2. The dependence of �CZ

on Tc is shown in Fig. 3 by a solid thick line. We demonstrate
below that the energy shift �CZ is sufficient for performing
gate operation over time of (2|�CZ|)−1 � 50 ns.

With tunable coupler between two qubits, the CZ gate can
be realized by simply switching interaction on over time τs ,
waiting time τw ≈ 1/(2|�CZ|), and switching interaction off
over time τs . The total gate time is

τg = 2τs + τw. (12)

First, we analyze the phase accumulation and transition
probabilities during switching processes. In particular, we
demonstrate that the relatively small separation of the com-
putational state ˜|11〉 from the leakage states ˜|20〉 and ˜|02〉
results in nonnegligible leakage of the system state from the
computational subspace due to transitions during switching on
and off. Then, we describe the overall gate performance that
combines the evolution of the system during switching on and
off processes and waiting for τw at fixed Tc.

B. Switching interaction on/off

We now consider the process of switching on and off
interaction between the transmon qubits which is realized by
electrically changing the transparency of the connector by
tuning the voltage on the gate. Specifically, we assume that
the connector transmission Tc(t) during the switching on and
off processes is

T (on)
c (t) = T0

erf(4t/τs − 2) + 1

2
, (13a)

T (off)
c (t) = T (on)

c (τs − t). (13b)

During the switching on and off of the interaction between
qubits, care is needed to avoid transitions from |11〉 state
to double excited states |20〉 and |02〉, as well as transitions
between states |01〉 and |10〉. We take τs to be longer than the
inverse anharmonicities 1/β(1,2) or qubits detuning, 1/|ω(1)

10 −
ω

(2)
10 | to suppress these transitions.

The evolution operator of the two-qubit system during
the switching of interaction is a solution to the Schrödinger
equation

ih̄∂tU (t) = H (t)U (t), (14a)

H (t) =
∑

α=1,2

H (0)
α + Vint(t), (14b)

where the interaction Vint(t), see Eq. (8), changes in time in
response to the changing connector transmission Tc(t). The
evolution operators Uon/off (τs) at the end of switching on and
off processes are used below to compose the evolution operator
for the whole gate and to evaluate the gate fidelity.

In particular, the operators Uon(τs) define the phase shifts
ϕ(on)

m of instantaneous eigenstates |̃m〉 of the full Hamiltonian
H (t) that are utilized later to work out timing for the full CZ
gate. We numerically evaluate Uon/off (τs) by solving Eq. (14a)
in a 10 × 10 Hilbert space in the basis of a harmonic oscillator
wave functions and make sure that the low energy states
are evaluated accurately for the actual Hamiltonian H (t) of
the system, Eq. (14b). Then, we analyze the 4 × 4 matrix
[U (Q2)

on ]mm′ = 〈̃m|Uon(τs)|m′〉 in the computational subspace
Q2 of two qubits. Matrix [U (Q2)

on ]mn defines the evolution
of a state from the noninteracting computational subspace
Tc = 0, to a final state, projected to the dressed computa-
tional subspace at Tc = T0, where m,n = {00,01,10,11}. The
diagonal elements of this matrix determine the phase factor
accumulated by state |̃m〉 during the switching process ϕ(on)

m =
−arg{[U (Q2)

on ]mm}. We obtain the relative phase difference

134518-4



CONTROLLED-Z GATE FOR TRANSMON QUBITS COUPLED … PHYSICAL REVIEW B 97, 134518 (2018)

FIG. 4. Leakage probability from state |11〉 to |02〉 and |20〉
during the switching on of transmission Tc of a junction connecting
two transmons as a function of switching time τs for the final
transmission T0 = 0.015. The solid line is obtained by integrating
Eq. (21), i.e., for a two-level system. The dashed and dotted lines are
obtained by numerical integration of Eq. (14a) and evaluating Pm,11

for a full two-transmon system. This leakage implies the worst case of
gate performance since the transition from |11〉 to |02〉 is the dominant
undesired transition.

relevant for the CZ gate

δ

(on)
CZ = ϕ

(on)
11 + ϕ

(on)
00 − (

ϕ
(on)
10 + ϕ

(on)
01

)
, (15)

which we utilize δ

(on)
CZ in the next subsection to evaluate the

full gate time.
In the rest of this subsection we evaluate the probabili-

ties of transitions between pairs of instantaneous eigenstates
since these transitions reduce the gate fidelity. We compute
[U (Q2)

on ]mn and determine the probability of transition Pm,n =
|〈̃m|U (τs)|n〉|2 for a system of two transmons from state |n〉
to state |̃m〉. The result of this calculation is shown in Fig. 4
by dashed and dotted lines for the transitions from state ˜|11〉
to its neighboring states ˜|02〉 and ˜|20〉. The probability of
transitions between pairs of energy states decreases fast as the
energy difference increases. For the energy spectrum of the
two transmons analyzed here, the dominant leakage happens
from ˜|11〉 to ˜|02〉. The transition probabilities also decrease
fast as the switching time τs increases and drop below 10−3 for
τs � 20 ns.

To better understand the transition probabilities between
the states during the switching on and off processes, we
perform the perturbation theory analysis following Ref. [35].
In our case the bare level spacing is fixed and the interaction
strength changes in time, while in Ref. [35] the interaction was
fixed and individual qubit spectrum was changing. Denoting

a dressed state of interest by ˜|m(t)〉, we can write ˜|m(t)〉 =∑
n Cn(t) exp[iϑn(t)] ˜|n(t)〉, where ϑn(t) = − ∫ t

0 Ẽn(t ′)dt ′/h̄
and Ẽn(t) is an eigenenergy of instantaneous eigenstate ˜|n(t)〉
at time t . The coefficients Cn(t) are obtained as solutions to

the Schrödinger equation

Ċm(t) = − Cm(0)˜〈m(t)|
[

∂

∂t
˜|m(t)〉

]

−
∑

n

Cn(t)ei(ϑn−ϑm)
˜〈m(t)|Ḣ (t) ˜|n(t)〉
Ẽn(t) − Ẽm(t)

,

(16)

where H (t) is the time-dependent Hamiltonian (14b) of the
system.

Here we only provide perturbative analysis for the leakage
from |11〉 and˜|02〉, as these two states have the closest energy
separation. Other pairs of neighboring states can be evaluated
using the expressions obtained below with corresponding
values for the instantaneous energy states and matrix elements
of the interaction. The resulting transition probability from
the initial state can be taken as the sum of probabilities of
transitions to nearby states, provided that all these probabilities
are small. We reduce our problem to the analysis of a two-level
system formed by states |11〉 and |02〉:

H2L(t) =
(

E11(t) J (t)
J (t) E02(t)

)
. (17)

The time derivative of H2L is given by that of transmission Tc,
which in general results in the time dependence of the energies
E11/02(t) and the interaction J (t).

Starting from initial state |11〉, we take C11(t = 0) = 1 and
assume that the C11(t) ≈ 1 throughout the switching process.
The equation for C02(t) takes the form

Ċ02(t) = −eiχ(t)M(t). (18)

Here

χ (t) =
∫ t

0

√
[E11(t ′) − E02(t ′)]2 + 4J 2(t ′)dt ′ (19)

and the matrix element of the time derivative of the Hamilto-
nian can be cast in the form

M(t) =
˜〈02(t)|Ḣ (t) ˜|11(t)〉
Ẽ11(t) − Ẽ02(t)

= J̇ (t)[E11(t) − E02(t)] − [Ė11(t) − Ė02(t)]J (t)

[E11(t) − E02(t)]2 + 4J 2(t)
.

(20)

The transition probability P02(t) after time t is determined by
the integration of Eq. (18) over time with the initial condition
C02(t = 0) = 0:

C02(t) =
∫ t

0
Ċ02(t ′)dt ′, P02(t) = |C02(t)|2. (21)

The perturbative analysis of the transition probability from
|11〉 to ˜|02〉 is then accomplished by a numerical integration
of Eq. (18). The result is shown in Fig. 4. The solid line in
Fig. 4 represents P02(τs) at the end of the switching on the
connector transmission to T0 = 0.015 during time τs . Estimate
(21) captures the main features of the full numerical solution, to
improve quantitative agreement between the curves, we would
have to expand the above analysis to include multiple energy
states into account. The structure of Eq. (21) reveals that the
suppression of P02(τs) as a function of switching time is due
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to the fast oscillating factor exp[iχ (t)] in Eq. (18) for Ċ02(t),
while M(t) is a smooth function of time.

C. Controlled-Z gate

Now we analyze the dynamics of quantum states when
the connector transmission is fixed, Tc = T0, during time τw.
The phase difference combination for the CZ gate is given by
2π�CZτw and the waiting time τw is found from the condition

2δ
on
CZ

2π
+ �CZτw = 1

2
, (22)

where the phase difference δ
on
CZ was introduced in Sec. III B.

To evaluate fidelity of the full gate, we numerically calculate
the evolution operator U for the process that is described by
switching on transmission of the connector in the form of
Eqs. (13), maintaining Tc(t) = T0 for waiting time τw, and
switching off Tc as a time-reversed process as illustrated in
Fig. 1(d).

For numerical evaluations, the corresponding evolution
operator U = UoffUw(τw)Uon is defined as the product of
evolution operators Uoff and Uon, discussed in Sec. III B
and the evolution operator Uw(τw) = exp(−iHwτw/h̄), where
Hw is the Hamiltonian in Eq. (9) with Tc = T0. Then, the
fidelity is calculated by comparing matrix [Ŵ ]nm = 〈n|U |m〉
in computational 2 × 2 subspace n,m = {00,01,10,11}, to the
ideal CZ gate UCZ, using the following expression for the
fidelity [36]:

F = 1

20
[Tr{ŴŴ †} + |Tr{Ûz1Ûz2Ŵ ÛCZ}|2], (23)

where Ûz1 and Ûz2 are single qubit gates such that Ûz1Ûz2 =
diag{1,ei(φ01−φ00),ei(φ10−φ00),ei(φ10+φ01−2φ00)}, and φm are the
phases of the diagonal elements of matrix Ŵ .

The gate errors of this voltage-controlled CZ gate, defined
as 1 − F , are calculated as a function of T0, as shown in
Fig. 5(a). The error increases as T0 becomes larger because for
fixed switching time τs = 15 ns, larger T0 means the energy
levels are shifted faster, which results in greater transition
error, see Fig. 4. The benefit of larger transmission T0 is the
shorter gate time because it requires less time for Eq. (22)
to be achieved, as shown in Fig. 5(b). The trade-off between
the gate fidelity and time determines the optimal value for T0.
The kink of the red solid line, located at T0 � 0.013, happens
because the relative phase accumulated during the switching on
and off processes equals −π , i.e., τw = 0. Further increasing
T0 means the relative phase during the switching processes
exceeds −π . To satisfy the phase condition (22), a finite-time
interacting plateau is needed to complete another 2π rotation.
The blue dashed lines represent the gate error and time of
pulses whose interacting plateau is absent, τw = 0, and the
gate time τgate = 2τs. The time-averaged Tc(t) is smaller for
τw = 0 pulses, therefore longer gate times are required. At the
same time, longer switching times allow for smaller gate errors.
We observe that for small T0 (�0.01), the error can be reduced
below 10−6 while the gate time is shorter than 100 ns.

FIG. 5. (a) Error for the CZ gate and (b) corresponding gate time
as functions of “on” transmission T0 for the two-transmon system.
The solid red lines are calculated assuming a pulse shape with an
interacting plateau, so the gate time is τw + 2τs . Here we take τs =
15 ns. The dashed blue lines assumes the transmission is turned off
right after it arrives at its maximum value T0, thus τw = 0, and the
gate time is 2τs , which is determined by the phase condition Eq. (22).

IV. TWO COUPLED GATEMONS

Replacing the insulating tunnel barrier between supercon-
ducting electrodes by semiconductor allows one to easily
tune the Josephson energy by using a electrostatic gate [14].
This type of transmon is thus named a gatemon for its gate
tunable feature. With higher transparency between the tunnel
barrier and the superconducting electrodes, expanding the ABS
energy to the first order of Tα no longer well approximates the
ABS energy, where α = 1,2 denotes the qubit index. Here we
consider single channel tunnel barriers with transmission Tα

of gatemon α = 1,2. Then the Josephson energy of a qubit to
the quartic order in θα is

HJα = −�

√
1 − Tα sin2

(
θ̂α

2

)
� −�

[
1 − Tα

8
θ̂2
α + Tα

96

(
1 − 3Tα

4

)
θ̂4
α

]
.

(24)

The anharmonicity of gatemon is suppressed [19] by (1 −
3Tα/4) in Eq. (24), which can usually be ignored in trans-
mon systems with tunnel junctions containing many weakly
transparent channels, Tα � 1. We choose the parameters of
the gatemon and transmon system to be identical and they are
to be given by Eq. (7). The Josephson energy EJ of a gatemons’
single channel junctions corresponds toTα=1,2 = 1. The energy
spectrum, including their anharmonicities, are different for
transmons and gatemons, see Table I, due to the difference
in coefficients of θ̂4

α terms in Eqs. (5) and (24).
The connecting junction between two qubits, once it ac-

quires nonzero transmission Tc �= 0, introduces an interaction
between two qubits the same way as in transmon systems (see
Sec. III A). With reduced anharmonicity, the state ˜|02〉 has
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FIG. 6. Energy shifts on eigenenergies δEm = Ẽm − Em of the
two-gatemon system as a function of transmission Tc. Only three
out of four states in computational subspace are depicted. The shift
δE00, omitted for a clearer view, can be calculated using the relative
shifts �CZ = [Ẽ11 + Ẽ00 − (Ẽ10 + Ẽ01)]/h, shown as thick black
solid line. The parameters are the same as the transmon system, as
listed in Eq. (7).

higher energy than its counterpart in transmon qubits. State
˜|11〉 is therefore sandwiched between ˜|02〉 and ˜|20〉 in this
case. We also make a plot of the relative energy shift �CZ as a
function of Tc for the gatemon, shown in Fig. 6. As discussed
in Sec. III C, the nonzero �CZ enables the realization of CZ
gate by switching on and off Tc, which inevitably introduces
transition error. The most probable transition, the same as in
transmon qubits, still happens between states ˜|11〉 and ˜|02〉
since this transition has a smaller energy gap and larger inter-
action than other transitions involving computational basis.

To see how much the transition between states with smallest
energy separation can reduce the gate fidelity during switching
processes, we start from state˜|11〉 and calculate the transition
probability during the switching-on process by (i) numerically
calculating the evolution operator and (ii) approximating the
system by a two-level model and using Eq. (21). The two-level
approximation has been discussed in Sec. III B.

FIG. 7. Leakage from state |11〉 to states |02〉 and |20〉 during the
switching on of transmission Tc of a junction connecting two gatemon
qubits as a function of switching time τs for T0 = 0.015.

FIG. 8. (a) Error for the CZ gate on gatemon qubits and
(b) corresponding gate time as functions of on transmission T0.
The solid red lines are calculated assuming a pulse shape with an
interacting plateau, so the gate time is τw + 2τs . Here τs = 15 ns. The
dashed blue lines assumes τw = 0.

As shown in Fig. 7, the transition probability from state
|11〉 to state ˜|02〉 drops fast as the switching time increases.
Specifically, the transition probability to state ˜|02〉 can be
smaller than 10−3 when the switching time is larger than
20 ns.

The relatively smaller shift of �CZ in Fig. 6 indicates longer
CZ gate time for gatemon than transmon qubits for the same
Tc. And the decrease in anharmonicity results in potentially
smaller fidelity for other qubit operations not discussed in this
paper, since it makes the qubit transition frequencies among
computational basis less distinguished from other undesired
transitions involving levels out of the computational basis.
Figure 8 shows both the gate error and gate time as functions of
transmission T0 for gatemon qubits. The solid lines are the gate
error and gate time when finite-τw pulses are applied while the
dashed lines correspond to τw = 0 pulses.

Figure 8(a) does not show an obvious suppression in
fidelity compared to the transmon qubits due to the reduced
anharmonicity since the error in this CZ gate mainly comes
from the transition error between states ˜|11〉 and ˜|02〉 during
switching processes and no coherent drive is applied. The
oscillations are a result of interference between states˜|11〉 and
˜|02〉 during the gate. Figure 8(b) shows that the gate time can
be well below 50 ns when T0 > 0.01.

V. TWO QUBITS FORMED BY A
FOUR-TERMINAL JUNCTION

A. Josephson energy

We formulate a model for a system of two gatemon qubits
connected through lithographically formed multiterminal junc-
tions, such as an H junction shown in Fig. 9. We assume that the
junction is short, its scattering matrix Ŝ is energy independent,
and each terminal has only one conduction channel. Two
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θ

BS BS

1

1

θ2

2

θ=0

W

FIG. 9. H junction consists of two semiconductor beam splitters
(BS1,2) connected by a short wire (W). The other two terminals of
each beam splitter are attached to the ground superconducting strip
and to the superconducting plates of the transmonlike qubit, with
superconducting phase θ1,2.

terminals are connected to the superconducting ground lead,
while the other two terminals are connected to the gatemon
capacitor plates, see Fig. 9.

A set of localized subgap Andreev bound states are formed
in the junction. These states are spin degenerate which is
guaranteed by Kramer’s theorem. The energies of Andreev
bound states are determined by the eigenvalue equation [33]

det[1 − e−2iχ Ŝeiθ̂ Ŝ∗e−iθ̂ ] = 0, (25)

where the phase factor χ = arccos(ε/�) captures the An-
dreev electron-hole reflection at the superconductor-normal
interface, � is the superconducting gap in the leads, ε is
the energy of the Andreev bound state, and eiθ̂ is a diagonal
matrix that assigns the superconducting phase θi to each
channel θ̂ = diag{θ1,θ2,θ3,θ4}. Ŝ is the scattering matrix of
size 4 × 4 for the H junction, which is a combination of two
three-terminal junctions with two terminals connected by a
short wire with transmission Tc; see the Appendix. Since the
phases of channels coupled to the ground superconducting lead
can be fixed to zero, the Josephson energy is defined by Eq. (25)
in terms of only two phase variables θ1,2.

The Andreev energy states of the H junction are [31]

ε(θ ) = ±
√

A(θ) + 4 ±
√

A2(θ) − 4B(θ ) + 8

8
, (26)

where θ ≡ (θ1,θ2) and the A and B functions take the form

A(θ ) = A0 +
2∑

α=1

Aα cos θα + A12 cos(θ1 − θ2), (27a)

B(θ ) = B0 +
2∑

α=1

Bα cos θα + B−
12 cos(θ1 − θ2)

+B+
12 cos(θ1 + θ2). (27b)

In terms of the matrix elements of Ŝ the coefficients in
Eqs. (27a) and (27b) read

A0 = 2|S14|2 +
4∑

β=1

|Sββ |2, A12 = 2|S23|2,

Aα = 2
(|S1,α+1|2 + |Sα+1,4|2

)
, (28)

and

B0 = 2(|S12S24 − S14S22|2 + |S13S34 − S14S33|2)

+
∑
α<β

∣∣SααSββ − S2
αβ

∣∣2
,

B1 = |S13S23 − S12S33|2 + |S14S24 − S12S44|2

+ |S12S14 − S11S24|2 + |S24S33 − S23S34|2,
B2 = |S12S23 − S13S22|2 + |S14S34 − S13S44|2

+ |S13S14 − S11S34|2 + |S23S24 − S22S34|2,
B−

12 = |S12S13 − S11S23|2 + |S24S34 − S23S44|2

+ |S14S23 − S12S34|2 + |S14S23 − S13S24|2,
B+

12 = |S13S24 − S12S34|2.

(29)

The Josephson energy of an H junction has a series expansion
to the fourth order in the superconducting phases θ1,2:

HJJ(θ1,θ2) = �

4∑
i,j=0

Kij θ
i
1θ

j

2 , (30)

where coefficients Kij are obtained from the expansion of
Eq. (26) to the fourth order in θ1,2, and we take Kij = 0 for
i + j > 4 to avoid higher order terms. For Tc = 0, the two
qubits do not interact and

HJJ(θ1,θ2) = �
(
K

(0)
20 θ2

1 + K
(0)
40 θ4

1 + K
(0)
02 θ2

2 + K
(0)
04 θ4

2

)
. (31)

The full Hamiltonian of the system is similar to the Hamilto-
nian of a transmon Hamiltonian, Eq. (5), with EJ,1 = 2�K

(0)
20 ,

EJ,2 = 2�K
(0)
02 , and a modified anharmonicity. When the wire

acquires finite transmission Tc �= 0, the interaction between the
qubits develops with the interaction term given by

Vint = �

4∑
i,j=0

δKij θ
i
1θ

j

2 , δKij = Kij − K
(0)
ij . (32)

The scattering matrix for the H junction, Fig. 9, can be
constructed in terms of the scattering matrices for each beam
splitter and the connecting wire, see the Appendix. We use
Eqs. (26)–(29) to characterize the qubit system, called H pair,
and evaluate the CZ gate fidelity for a particular choice of
parameters for the beam splitters. We demonstrate that this
system is sufficient for control of energy splitting of individual
qubits and fast switching the interaction between qubits.

B. Controlled-Z gate

For the H pair, state˜|11〉 is close to leakage states˜|20〉 and
˜|02〉. To reduce the excitations to noncomputational states,
we keep the interaction strength below the anharmonicity
level ∼ EC , and imply that the transmission of the connector
is small, Tc �

√
Ec/� � 1. Here we allow for the wire

transmission to have larger values Tc � 1, but we choose such
parameters of the Y junction that the resulting conductance
of the H junction between the qubits is small. The Josephson
energy, Eq. (30), acquires terms with small Kij �= 0 for
both i,j �= 0, resulting in interaction between the qubits. In
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FIG. 10. Energy shifts on eigenenergies δEm = Ẽm − Em of
the H-pair system. The charging energies Ec1/h = 240 MHz and
EC2/h = 255 MHz for qubit one and qubit two, respectively, the
same as the values given in Eq. (7). K02,20 = 0.123 corresponding to
Josephson energy EJ /h = 20.24 GHz.

particular, the coefficient K11 is the dominant term describing
the coupling between the qubits.

The anharmonicity of the H pair is reduced by a numerical
factor as compared to a conventional AlOx oxide tunnel
Josephson junction [19], as we also discussed in Sec. IV, but
this reduction is not significant and still permits high-fidelity
gates for two qubits coupled by the nanowire. We still choose
the charging energies of each gatemon to be Ec1 = 255 MHz
and Ec2 = 240 MHz, as shown in Eq. (7). Below we choose
parameters for beam splitters so that K20,02 � 0.1. For the spe-
cific case K20,02 = 0.123, the qubit transition frequencies and
anharmonicities are listed in Table I. For nonideal transmission
of conduction channels, the qubit frequency is smaller, but
additional conduction channels in the junction can help adjust
this frequency to a desirable value.

Due to relatively large connectivity of the individual qubit
junction, the absolute value of anharmonicities are suppressed
so that state ˜|11〉 is sandwiched between states ˜|02〉 and ˜|20〉.

FIG. 11. Transition probability to from state |11〉 to states |02〉
and |20〉 as a function of switching time for the H-junction qubits.
On transmission T0 = 0.6. Charging energies and superconducting
gap are the same as the transmon qubits and gatemon qubits. For our
choice of parameters, K02,20 = 0.123, corresponding to Josephson
energy EJ /h = 20.24 GHz.

FIG. 12. (a) Error for the CZ gate and (b) corresponding gate time
as functions of on transmission T0 of an H pair. The solid red lines
are calculated assuming a pulse shape with an interacting plateau, so
the gate time is τw + 2τs . Here we take τs = 15 ns. The dashed blue
lines assumes the transmission is turned off right after it arrives at its
maximum value T0, thus the gate time is 2τs .

As expected from previously discussed two-qubit systems, the
nonzero transmission gives rise to finite �CZ, shown by a thick
solid line in Fig. 10, enabling the construction of CZ gate by
switching Tc.

In absence of decoherence, the gate error comes from the
transitions to levels outside the computational basis during
switching on/off interactions. Taking T0 = 0.6 for the connect-
ing wire, we investigate how transition probability decreases as
switching time τs increases. As shown in Fig. 11, the transition
error can be readily reduced to 10−3 for switching time longer
than 20 ns.

The relatively small change of �CZ in Fig. 10 in trans-
mission from Tc = 0 to Tc = 0.8 indicates a quite flexible
tunable coupler for the H pair. For a fixed switching time,
smaller on interaction, which corresponds to smaller T0, can
prevent transitions during switching, but requires longer time to
accomplish the CZ gate. In contrast, a larger interaction is good
for gate time, though it acquires a larger transition error. Trun-
cating unpractical ranges for on transmission T0, we make plots
of gate error and time as functions of T0, as shown in Fig. 12.
Figure 12 shows that for a large range of wire transmission,
the worst case error can be smaller than or on the order of 10−2

with the gate time shorter than 200 ns for this parameter set.

VI. CONCLUSIONS

We compared three kinds of qubits, namely a pair of
transmons or gatemons as well as an H pair by theoretically
realizing a CZ gates through tuning interqubit interaction
and taking a look at their gate fidelity and gate time as
functions of experimentally practical transmission range. For
all three systems, fidelity and gate time are generally not
positively correlated and optimal transmission needs to be
chosen to ensure reasonable gate time and error. Fortunately,
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numerical analysis show the existence of this optimal regime
of transmission for all three systems, as shown in Fig. 2.

The CZ gate can be realized in systems with always-
on interaction by shifting qubits’ spectrum in resonance to
temporarily enhance the interaction between two qubits, e.g.,
by bringing energies of states |11〉 and |20〉 to the same
value [20,35]. But even for the off configuration of qubits,
the phase difference ∝�CZ continuously accumulates and
reduces gate fidelities of single qubits. Such error accumulation
becomes especially crucial for large scale qubit systems. Also,
changing qubit frequency in the crowded spectrum of a large
interacting system will cause numerous level crossings that
will cumulatively result in large gate errors. Therefore, a
tunable coupler between the qubits is a necessary element
for a scalable quantum processor. The previous realization
of inductive tunable coupler was utilized in g-mon systems
[23,24,37], where the coupling is controlled by the flux bias. In
this paper we demonstrated that an inductive tunable coupling
can also be controlled by electrostatic gate voltages by utilizing
the epitaxial semiconductor Josephson junctions.
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APPENDIX: SCATTERING MATRIX FOR
THE H JUNCTION

We construct the scattering matrix Ŝ for the H junction as
shown in Fig. 9. The short-wire scattering matrix Ŵ takes
the form

Ŵ =
(

r t

t r ′

)
, (A1)

with r = √
1 − T eiϑ , r ′ = √

1 − T ei(2η−ϑ), and t = √
T eiη,

where T is the transmission and ϑ and η are two independent
phases.

A beam-splitter scattering matrix Ŷ (l,r) is characterized by
six parameters as follows:

Y11 = a eiϕ11 , Y12 = b
√

1 − a2 eiϕ12 ,

Y13 =
√

(1 − a2)(1 − b2) eiϕ13 ,

Y22 = −ab2ei(2ϕ12−ϕ11) + (1 − b2)eiϕ22 ,

Y23 = −b
√

1 − b2 eiϕ13 [aei(ϕ12−ϕ11) + ei(ϕ22−ϕ12)],

Y33 = ei2ϕ13
[−a(1 − b2)e−iϕ11 + b2ei(ϕ22−2ϕ12)

]
,

Yαβ = Yβα, 1 � α < β � 3, (A2)

where a,b ∈ [0,1], and ϕ11,22,12,13 ∈ [0,2π ]. For a = 1, b =
0, and b = 1, the 1, 2, and 3 lead is decoupled to the rest,
respectively. The H-junction scattering matrix elements Sαβ

are determined by the linear equations⎛⎝S00

S10

x

⎞⎠ = Ŷ (l)

⎛⎝ 1
0

rx + ty

⎞⎠,

⎛⎝S20

S30

y

⎞⎠ = Ŷ (r)

⎛⎝ 0
0

tx + r ′y

⎞⎠,

⎛⎝S01

S11

x

⎞⎠ = Ŷ (l)

⎛⎝ 0
1

rx + ty

⎞⎠,

⎛⎝S21

S31

y

⎞⎠ = Ŷ (r)

⎛⎝ 0
0

tx + r ′y

⎞⎠,

⎛⎝S22

S32

y

⎞⎠ = Ŷ (r)

⎛⎝ 1
0

tx + r ′y

⎞⎠,

⎛⎝S02

S12

x

⎞⎠ = Ŷ (l)

⎛⎝ 0
0

ty + rx

⎞⎠,

⎛⎝S23

S33

y

⎞⎠ = Ŷ (r)

⎛⎝ 0
0

tx + r ′y

⎞⎠,

⎛⎝S03

S13

x

⎞⎠ = Ŷ (l)

⎛⎝ 0
0

ty + rx

⎞⎠.

(A3)
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