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Mutual interactions of phonons, rotons, and gravity
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We introduce an effective point-particle action for generic particles living in a zero-temperature superfluid.
This action describes the motion of the particles in the medium at equilibrium as well as their couplings to sound
waves and generic fluid flows. While we place the emphasis on elementary excitations such as phonons and
rotons, our formalism applies also to macroscopic objects such as vortex rings and rigid bodies interacting with
long-wavelength fluid modes. Within our approach, we reproduce phonon decay and phonon-phonon scattering
as predicted using a purely field-theoretic description of phonons. We also correct classic results by Landau and
Khalatnikov on roton-phonon scattering. Finally, we discuss how phonons and rotons couple to gravity, and show
that the former tend to float while the latter tend to sink but with rather peculiar trajectories. Our formalism can
be easily extended to include (general) relativistic effects and couplings to additional matter fields. As such, it
can be relevant in contexts as diverse as neutron star physics and light dark matter detection.
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I. INTRODUCTION

Neutron scattering experiments [1] show that the spectrum
of elementary excitations in superfluid helium-4 at very low
temperatures looks schematically as in Fig. 1. A similar
dispersion relation was also observed numerically [2] as well as
experimentally [3] in trapped gases made of weakly interacting
dipolar particles. There are two regions of momenta where
the corresponding excitations are always kinematically stable:1

one is around p = 0, the other is around p = p∗. Excitations in
these regions are usually treated as different species of particles
and are referred to as phonons and rotons, respectively. Phe-
nomenologically, their dispersion relations can be extracted
by Taylor-expanding the experimental dispersion curve around
p = 0 and p = p∗ to obtain

Ephonon � csp, Eroton � � + (p − p∗)2

2m∗
. (1)

The precise values of the parameters cs,�,p∗, and m∗ depend
on temperature and pressure (or, equivalently, temperature and
chemical potential), but their orders of magnitude are cor-
rectly determined by dimensional analysis alone. For instance,
the only relevant microscopic quantities in liquid helium-4
are the mass of the helium atom m, the Bohr radius a, and
the typical interatomic distance, also of order a. In terms of
these quantities, we have

cs ∼ 1

ma
, � ∼ 1

ma2
, p∗ ∼ 1

a
, m∗ ∼ m. (2)

1Depending on the precise shape of the dispersion curve, excitations
in the region surrounding the local maximum could also be kinemat-
ically stable. Such excitations are usually referred to as maxons. The
formalism that we will use here can be applied to maxons as well.

(Throughout the paper we are working in units such that h̄ =
kB = 1. Moreover, for nonrelativistic systems such as the one
at hand, the speed of light c cannot appear in our estimates.)

It is important to stress that phonons and rotons have a very
different status. In fact, phonons are the Goldstone modes as-
sociated with the spontaneous breaking of the particle number
U (1) symmetry, which occurs in all superfluids. Specifically,
calling Q the generator of such a symmetry and H0 the
Hamiltonian, superfluids can be thought of as systems that
spontaneously break both while preserving the combination

H = H0 − μQ, (3)

which is the relevant generator of time translations at finite
chemical potential μ [4]. The existence and physical properties
of phonons follow exclusively from symmetry principles [5]
and, as a consequence, they belong in the spectrum of any
superfluid. On the other hand, the existence of rotons is not
enforced by any symmetries and, in fact, not all superfluids
feature roton-type excitations.

This dichotomy also manifests itself in the field theory
description of these two kinds of excitations. On the one
hand, at energy scales much smaller than the roton gap �,
phonons are the only relevant degrees of freedom and admit
a well-known effective field theory description based on the
action [6]

S =
∫

d4x P (X), X = μ/m + π̇ − 1

2
( �∇π )2. (4)

Here π (x) is the phonon field; it is a scalar under rotations,
but transforms nontrivially under (Galilei or Lorentz) boosts.
The quantity X is the local value of the chemical potential per
unit mass, which, in the presence of a nontrivial π (x), differs
from the equilibrium value μ/m. Furthermore, the equation of
motion for π (x) coincides with the hydrodynamical equation
for the superfluid, which allows one to infer the definition
of other macroscopic quantities such as the pressure, mass
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FIG. 1. Prototypical phonon-roton dispersion curve.

density, and velocity fields:

p = P, ρ = dP

dX
, �u = −�∇π. (5)

Different choices for the function P (X) correspond to different
equations of state for the superfluid. Moreover, by expanding
the action (4) up to quadratic order in π , one finds that the
speed of sound is indeed equal to dp/dρ, as expected for
a compressional wave. Since in the following we will use
p also to denote the momentum of our excitations, to avoid
confusion from now on we will denote the pressure simply
by P .

On the other hand, it is not obvious how to extend the
action (4) in order to include rotons in the effective field theory
description. Perhaps the main difficulty in achieving this is
that phonons are no longer meaningful degrees of freedom
at the typical roton momentum scales, since at such high
scales an infinite number of higher derivative corrections to
(4) become important. Nevertheless, unconcerned by these
theoretical challenges, rotons play a crucial role in determining
low-temperature macroscopic quantities that can be measured
in the laboratory, such as the specific heat and the viscosity
coefficients [7,8]. Notice that this is true even at temperatures
as low as 1 K, even though the roton gap is � ∼ 10 K. This is
because, compared to gapped excitations at zero momentum,
the roton contribution to thermodynamic quantities has an
enhanced phase space, due to their large typical momentum. It
is therefore important to have both phonons and rotons under
full theoretical control.

In this paper we are going to propose a unifying effective
field theory (EFT) framework2 to describe mutual interactions
of phonons and rotons. Since rotons are stable at low energies,
we are going to treat them as “heavy,” pointlike objects that
can interact either with soft phonons or with each other
by exchanging virtual phonons. Our formalism is heavily
inspired by recent developments concerning vortex lines in
relativistic fluids and superfluids [10–13] as well as by the

2See for instance [9] for a review of effective field theory techniques
in a condensed matter context.

nonrelativistic general relativity (NRGR) approach [14–16] to
the dynamics of nonrelativistic extended objects coupled to
gravity.

Since phonons and rotons lie on the same dispersion curve,
they are usually said to be the same kind of excitation, just with
different momenta. It is not obvious what operational meaning
to attach to that statement. In systems with boost invariance,
either of the Galilei or the Lorentz type, we have a symmetry
that relates identical particles with different momenta: a very
energetic electron is the same as an electron at rest, seen from a
highly boosted reference frame. Here instead, the surrounding
medium breaks boosts (spontaneously), and so there is no
symmetry that relates particles with different momenta. The
most precise meaning we can find for the above statement is
as follows: (i) Phonons and rotons have the same quantum
numbers, that is, they transform in the same way under the
symmetries, and (ii) in the energy versus momentum plane for
states with those quantum numbers, at low enough energies
there is only one line occupied by single-particle states (for any
given momentum, at higher energies there will be a continuum
occupied by multiparticle states).

From this viewpoint, the qualitative difference between
rotons and phonons is no more dramatic than that between
two phonons of different momenta. In the following we will
invest in this idea, and argue that from the standpoint of an
effective theory for a point particle interacting with long-
wavelength bulk modes (i.e., soft phonons or macroscopic
fluid flows), phonons, rotons, and even macroscopic objects
such as vortex rings and rigid bodies can all be described
by the same general Lagrangian, expanded about different
values of the point particle’s velocity and with different
parameters.

As a check of our formalism, we will compute the rates
for certain phonon processes in kinematical regimes that
are also amenable to a more standard effective field theory
analysis, and we find perfect agreement between the two
approaches. Encouraged by these results, we will compute
the cross section for roton-phonon scattering, a process orig-
inally considered by Landau and Khalatnikov in [7]. We
find new interaction terms that had been overlooked in their
computation.

Finally, in the point-particle limit it becomes straightfor-
ward to discuss an aspect rarely considered in the condensed
matter literature, namely the coupling of collective excitations
to gravity. In this respect, phonons resemble photons to the
extent that their effective gravitational mass is proportional to
their momentum, but differ in a very important way: they have
a negative effective gravitational mass, so their trajectories
bend upwards rather than downwards in a gravitational field.
This result can also be understood in more conventional terms
using the language of wave mechanics. However, our results
concerning rotons are novel: we find that rotons in superfluid
helium-4 tend to sink, although they do so by following
very peculiar trajectories. While the individual trajectories
are unlikely to be directly observable, it is at least plausible
that they might lead to measurable effects in the aggregate,
especially when compared with the qualitatively different
behavior of phonons. For instance, at nonzero temperature the
thermal distributions of phonons and rotons will depend on
height in different ways.
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II. THE EFFECTIVE POINT-PARTICLE THEORY

Consider one of the excitations of Fig. 1, propagating
in a homogeneous superfluid at rest. According to standard
representation theory, single-particle states have to fall into
irreducible representations of the unbroken symmetries. Our
medium breaks spontaneously the original internal U (1) sym-
metry and boosts, but preserves spatial translations, time trans-
lations [modified as in (3)], and rotations. For given momentum
�p, as usual, one looks for irreducible representations of the little
group of �p, which in this case are nothing but rotations around
�p. The associated quantum number is the particle’s helicity,
and we already know that phonons are zero-helicity particles,
since they are the quanta of longitudinal compressional waves.
Assuming that all excitations of Fig. 1 have the same quantum
numbers as phonons (apart from �p ), we thus see that the
single-particle states we are interested in are labeled just by
�p, and have no other degrees of freedom.

The curve in Fig. 1 gives the Hamiltonian as a function of �p,

E = H (| �p |). (6)

In the point-particle limit, that is, if we consider a small
wave packet localized around �x(t), the associated classical
Lagrangian is just the Legendre transform of this:

Lpp = �p · �̇x − H (| �p |) = f (| �̇x|), �̇x = ∂H

∂ �p . (7)

Such a Lagrangian is clearly invariant under translations and
rotations. It is not invariant under Galilei boosts, but that
has to be expected since the surrounding medium breaks
boosts. In fact, if we now consider turning on long-wavelength
perturbations in the surrounding medium, Galilei invariance
forces �̇x to always appear in the combination �̇x − �u, where �u is
the local fluid velocity at the particle’s position. Moreover,
the parameters that define the function Lpp, which are in
one-to-one correspondence with those that define the curve
E = H (| �p|) in Fig. 1, can now depend on the local invariants
one can construct using the bulk degrees of freedom. To lowest
order in the bulk modes’ derivatives, the only such invariant is
X, defined in Eq. (4). In the presence of perturbations π (x),
the most general point-particle action for helicity-zero particles
thus is

Spp[�x,π ] =
∫

dt f (| �̇x − �u|,X). (8)

Notice that, in principle, we could add to this action the
standard Galilean kinetic energy:∫

dt
1

2
Mi �̇x 2, (9)

with constant inertial mass Mi . This is invariant under Galilean
boosts only up to total derivatives, which is why it is
not contemplated by the form (8). However, recalling that
�u = −�∇π and X = μ/m + π̇ − 1

2 ( �∇π )2, after straightfor-
ward manipulations we get

1

2
Mi �̇x 2 = 1

2
Mi | �̇x − �u|2 + Mi(X − μ/m) + d

dt
(Miπ ), (10)

which is in fact of the form (8) up to a total derivative term.
We can thus restrict ourselves to the original action (8).

This action includes the most general interactions of our
particle with long-wavelength bulk modes, such as fluid flows,
pressure gradients, or soft phonons. We should keep in mind
though that, according to standard effective field theory logic,
the action (8) is just the leading order one in a derivative
expansion. Subleading corrections will involve the following:

(1) Higher spatial derivatives acting on the bulk fields:
these are suppressed by coefficients that scale like the appropri-
ate power of the typical size of our particle. For small material
objects or classical fluid configurations (such as a vortex ring),
this is just their size; for quantum excitations such as phonons
and rotons, this is the generalized de Broglie wavelength, 1/p.

(2) Higher time derivatives acting on the bulk fields or
on �x(t): these are suppressed by coefficients that scale like
the appropriate power of the typical internal timescale for our
particle. This be could the period of the slowest normal mode
if our particle has any, or just the sound-crossing time—the
typical size defined above over cs , whichever is longer.

For all the computations that follow, the lowest-order action
above will suffice.

The symmetries of the system do not constrain the func-
tional dependence of the function f in (8) any further. The
actual function has to be determined from experimental data.
However, it is interesting that, at this order, for phonons
and rotons all the necessary information is contained in the
H (| �p|) of Fig. 1 and in its dependence on any thermodynamic
quantity at equilibrium, such as the pressure or the chemical
potential: At X = μ/m, f as a function of | �̇x − �u| is just the
Legendre transform of H (| �p|); the X dependence instead can
be inferred by looking at how the parameters in H (| �p|) vary
with pressure or chemical potential. We will see explicitly how
this works for phonons, rotons, and vortex rings. In particular,
for phonons and vortex rings, the functional form of f is
uniquely determined by the superfluid’s equation of state.

Because of certain technical subtleties that we will en-
counter in taking the Legendre transform of H in the phonon
and roton limits, it is useful to keep in mind that an action can
always also be interpreted as a functional of the q’s and the p’s
separately,

S[q,p] ≡
∫

dt pαq̇α − H (q,p). (11)

The variational problem with arbitrary δq and δp (with fixed
boundary conditions for q) yields Hamilton’s equations in this
case. If the q̇ = ∂H/∂p equations can be solved for all the p’s,
then one can plug back the solutions into the action and obtain
the usual Lagrangian formulation, with a variational principle
for S[q]. If instead some of the p’s cannot be integrated out, one
can keep them explicitly in the action as in (11). In fact, from a
quantum mechanical viewpoint the mixed q,p formulation in
(11) is the fundamental one, since that is what appears in the
path integral starting from the canonical formalism.

A. Phonons

Phonons correspond to the low-momentum region in Fig. 1.
For the moment, let us set to zero the perturbations in the
surrounding fluid. The phonon Hamiltonian thus is

H = cs | �p | + · · · , (12)
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where cs is the sound speed, and the dots stand for higher
powers of | �p |. To take the Legendre transform, we first need
to solve

�̇x = ∂H

∂ �p � csp̂ (13)

for �p. However, at this order this equation does not involve
the magnitude p, and thus cannot be solved to eliminate �p
completely. As recalled above, we can still define the action as
usual, but now we should treat p as an independent variable.
So, starting from the full action functional for p, p̂, and �x,

S ≡
∫

dt ( �̇x · �p − H ) �
∫

dt p ( �̇x · p̂ − cs), (14)

we only impose the Hamilton equation associated with varying
p̂, which, recalling that p̂ is constrained to have unit norm,
reads

(δij − p̂i p̂j )ẋj = 0 ⇒ p̂ = �̇x
| �̇x| . (15)

Notice that in principle the equation above does not determine
the sign of p̂. However, it is easy to check that the solution with
the opposite sign, i.e., p̂ = −�̇x/| �̇x|, would lead to a dynamical
system that does not admit any solution for cs > 0. This can
already be seen at the level of Eq. (13). Plugging therefore the
solution (15) into the action, we finally get an action functional
for p and �x only:

S[�x,p] �
∫

dt p (| �̇x| − cs). (16)

Alternatively, we could have kept the first correction to the
phonon Hamiltonian,

H = cs | �p | + cs

�2

| �p |3
3

+ · · · , (17)

where � is some large momentum scale of order 1/a, which
eventually we would like to send to infinity (in the sense that
p 	 �). Such a cubic term is indeed needed to describe the
phonon spectrum beyond leading order, and it makes phonon
decay a kinematically allowed process in helium-4 [17]. The
velocity now reads

�̇x = ∂H

∂ �p � csp̂

[
1 + p2

�2

]
, (18)

which allows us to eliminate �p completely:

p̂ ‖ �̇x, p = �(| �̇x|/cs − 1)1/2. (19)

The resulting action is

S[�x] =
∫

dt
2

3
�cs(| �̇x|/cs − 1)3/2. (20)

At this stage, the limit � → ∞ is clearly not well defined.
This is of course just a reflection of the fact that Eq. (18) cannot
be solved for p in this limit. An analogous situation occurs for
an ordinary relativistic point particle, whose Lagrangian does
not admit a straightforward massless limit. In that case, the
m → 0 limit can be taken only after introducing an auxiliary
variable playing the role of an “einbein” [18]. A similar

procedure allows one to go from the Nambu-Goto action for
a relativistic string to the Polyakov action by introducing a
dynamical metric on the world sheet—although in that context
this step is taken to simplify the quantization procedure rather
than to take a zero-tension limit.

We can follow a similar approach, and rewrite the La-
grangian (20) by introducing an auxiliary variable, which with
the benefit of hindsight we are going to denote as p:

S[�x,p] =
∫

dt p (| �̇x| − cs) − csp
3

3�2
. (21)

It is easy to check that after integrating out p one indeed
recovers the Lagrangian (20). Written in this form, though,
S remains well defined in the limit � → ∞, where it reduces
to our original action (16).

We can now introduce long-wavelength bulk modes π (x)
according to the general prescription outlined above. We get

Sphonon[�x,p,π ] =
∫

dt p[ | �̇x − �u| − cs(X)]. (22)

Recall that c2
s = dP/dρ, and that X can be interpreted as the

local chemical potential per unit mass. The function cs(X) is
thus uniquely determined by the superfluid’s equation of state
at equilibrium, i.e., by how P and ρ depend on the chemical
potential.

We can use the action above to describe the interactions of
our phonon with much softer ones. All the couplings follow
from expanding this action in powers of the bulk phonon field
π (x). Of course, interactions that only involve phonons can
also be described using the effective theory (4). The pointlike
action (22) offers an alternative viewpoint which, as we will see
in Sec. III, is completely equivalent to the field theory approach.

B. Rotons

Rotons correspond to excitations close to the minimum in
Fig. 1. They are stable for kinematical reasons, as shown in
Appendix A. In the absence of external perturbations, their
Hamiltonian reads

H = � + (| �p | − p∗)2

2m∗
+ · · · , (23)

where the dots stand for higher powers of (| �p | − p∗). The
velocity/momentum relationship now is

�̇x = ∂H

∂ �p � p̂
(p − p∗)

m∗
, (24)

which can be inverted, but yields two branches of solutions for
the momentum:

p > p∗: p̂ ‖ �̇x, p = p∗ + m∗| �̇x|, (25)

p < p∗: p̂ ‖ −�̇x, p = p∗ − m∗| �̇x|. (26)

Correspondingly, there are two branches for the resulting
action, depending on whether the roton is to the right (R) or to
the left (L) of the minimum:

SR,L[�x ] �
∫

dt

[
−� ± p∗| �̇x| + 1

2
m∗| �̇x|2

]
. (27)
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Clearly, this action is singular right at the minimum, where �̇x =
0, which is also related to the fact that Eq. (24) cannot be solved
for the direction p̂ for zero velocity. So, for computations that
require regularity at �̇x = 0, one can refrain from integrating
out p̂, in which case both p and the action are single-valued
and regular at any �̇x:

p = p∗ + m∗( �̇x · p̂),

S[�x,p̂] �
∫

dt

[
−� + p∗( �̇x · p̂) + 1

2
m∗( �̇x · p̂)2

]
. (28)

Introducing bulk perturbations as above, we finally get

S
R,L
roton[�x,π ]

�
∫

dt
[−�(X) ± p∗(X)| �̇x − �u| + 1

2m∗(X)| �̇x − �u|2],
(29)

or, equivalently,

Sroton[�x,p̂,π ] �
∫

dt

{
−�(X) + p∗(X)( �̇x − �u) · p̂

+ 1

2
m∗(X)[( �̇x − �u) · p̂]2

}
. (30)

Like for phonons above, the actions (29) and (30) describe
all possible low-energy interactions of a roton with long-
wavelength bulk modes. These interactions can be deduced
by expanding the action in powers of the bulk phonon field
π (x). The associated coupling constants involve X derivatives
of the parameters �, p∗, and m∗, which can be traded for
derivatives with respect to pressure, which for helium-4 have
been measured experimentally [19].

C. Vortex rings

We can apply the same formalism to describe macro-
scopic circular vortex rings and their interactions with long-
wavelength bulk modes. Clearly, in no sense is a macroscopic
vortex ring an elementary excitation. However, from the
viewpoint of our symmetry considerations above, a circular
ring has the same transformation properties as a phonon or
a roton: definite momentum and zero helicity. It should thus
be possible to describe it in the point-particle limit using the
general formalism developed above. Let us see how this works.

Starting from the classical action for a vortex line in an
unperturbed fluid, one can parametrize a circular vortex ring
by its center’s position �x(t), its orientation—the normal unit
vector n̂(t)—and its radius R(t), and end up with an effective
action for these degrees of freedom only [11]:

S[�x,n̂,R] =
∫

dt[πρ̄ 	 R2(n̂ · �̇x) − 2πR T (1/R)], (31)

where 	 is the vortex line’s circulation, ρ̄ the background mass
density, and T the vortex line’s energy per unit length (i.e.,
its tension), which runs logarithmically with momentum scale
[11]:

T (1/R) = ρ̄ 	2

4π
log(Rp0), (32)

where p0 is a UV momentum scale, typically of order of the
string’s inverse thickness ∼1/a, but logically separate from it.3

However, we can see right away that R and n̂ appear in
the action without time derivatives, and can thus be integrated
out. In fact, it is clear that together they play the role of the
conjugate momentum to �x:

�p = ∂L

∂ �̇x = πρ̄ 	 · R2n̂, (33)

so that the action above is really a mixed q,p action of the form
(11):

S[�x, �p ] =
∫

dt �p · �̇x − H (| �p|), (34)

with associated Hamiltonian

H (p) =
√

ρ̄ 	3

16π
· p log

(
p2

0 p

πρ̄ 	

)
. (35)

Solving �̇x = ∂H/∂ �p for �p we get

p̂ ‖ �̇x, p � ρ̄ 	3

16π | �̇x|2 log2 	p0

8π | �̇x| (36)

(we are assuming that the logarithms are large and positive,
so that one can invert the relation y = log z

z
approximately by

z � log 1/y

y
). Plugging back into the action, we get the desired

action for �x(t) only:

S[�x ] � −
∫

dt
ρ̄ 	3

16π

1

| �̇x| log2 	p0

8π | �̇x| . (37)

Using the same logic as above, we can now introduce long-
wavelength bulk modes simply by replacing �̇x with the relative
velocity �̇x − �u, and the background quantities ρ̄ and p0 with
their X-dependent counterparts. Notice that the circulation
	 does not depend on bulk quantities for a nonrelativistic
superfluid (it is in fact quantized in units of 1/m). Notice also
that, within our large-log approximation, the X dependence of
p0 can be safely ignored. We thus get

Sring[�x,π ] � −
∫

dt
ρ(X)	3

16π

1

| �̇x − �u| log2

(
	p0

8π | �̇x − �u|

)
.

(38)

We thus see that the interactions of a circular vortex ring with
much longer bulk modes are completely constrained, in the
sense that they are uniquely determined by the symmetries and
by the superfluid’s equation of state, via the function ρ(X).

A macroscopic vortex ring with R  a has a typical speed
much lower than that of sound: up to logarithms, we have
v ∼ cs(a/R). However, the zero-velocity limit is singular, as
clear from the action above, since it corresponds to infinitely
large rings. We can thus think of rotons and vortex rings
as qualitatively different low-velocity point particles. Their
difference is clearer in the Hamiltonian formulation: rotons
have typical momenta of order p∗ ∼ 1/a and typical energies

3If needed, the exact value of p0 has to be determined from experi-
ment. However, for rings much bigger than the string’s thickness, the
logarithm is large and one can safely replace p0 with 1/a.

134516-5



ALBERTO NICOLIS AND RICCARDO PENCO PHYSICAL REVIEW B 97, 134516 (2018)

of order � ∼ cs/a, while vortex rings have much bigger
momenta and energies: up to logarithms,

p ∼ ρ	3

v2
 1/a, H (p) ∼

√
ρ	3p  cs/a. (39)

From this viewpoint, macroscopic vortex rings with, say, one
quantum of circulation can be thought of as occupying the far
right of the energy spectrum in Fig. 1, with an energy scaling
as

√
p log p. (This statement however should be taken with a

grain of salt, since experimentally one finds that the thin curve
of Fig. 1 gets in fact significantly smeared out on the right by
a two-roton state continuum.)

D. Objects

Finally, we can also use our formalism to describe how
an ordinary material object (or an ordinary massive particle)
interacts with long-wavelength modes in the surrounding
superfluid. We will publish elsewhere a more complete analysis
that takes into account possible anisotropies in the object’s
shape as well as the effects of considering an ordinary fluid
rather that a superfluid. Here instead we just want to mention
some basic facts.

What is an “ordinary object”? To some extent, the answer
is a matter of definition. However, we can notice that phonons,
rotons, and vortex rings all correspond to somewhat peculiar
limits of our general action (8). Phonons have small momenta
(p 	 p∗) but large velocities (v � cs); rotons and vortex rings
have small velocities (v 	 cs) but large momenta (p � p∗ and
p  p∗.) We can thus define an ordinary object in our point-
particle limit as a particle described by an action of the general
form (8), but with an ordinary v → 0, p → 0 limit: at least at
low speeds, we want p ∝ v. We thus have (in the presence of
generic perturbations in the superfluid)

Sobj =
∫

dt

[
−E0(X) + 1

2
Meff (X)| �̇x − �u|2 + · · ·

]
, (40)

where the dots stand for higher powers of | �̇x − �u|, which we
expect to be suppressed by inverse powers of cs . Our definition
of an object tells us nothing about the structure of the action
at high (relative) speeds, which suggests that there might not
be any fundamental difference between ordinary objects and
more general excitations at high speeds.

The E0 term in the action above measures the rest energy
of the object. It can depend on the local value of X, which is
related to the local pressure. This is obvious for a compressible
object—such as a balloon—but in fact the X dependence of
E0 is associated which much more general effects, as we will

see in Sec. V. The coefficient of the kinetic energy Meff also
depends on the local value of X, and in general can be very
different from the mass of the object in empty space: on general
grounds, one expects the interactions between the object and
the surrounding superfluid to yield contributions to Meff on the
order of the mass of the fluid displaced (see, e.g., [20], Sec. 11,
Problem 1). In our formalism, these come from a classical
self-energy diagram in which the object exchanges a π field
with itself.

III. A CHECK: PHONON PROCESSES

As a check of our point-particle formalism, we will now
consider two processes involving phonons, and show that
they match the results obtained from the effective field theory
described by (4). There is in fact a nontrivial overlap of the
regimes of validity of the two effective theories: Our point-
particle theory is valid for a phonon of momentum p interacting
with much longer bulk modes, such as phonons with typical
momenta k 	 p; theP (X) effective field theory is valid for any
number of low-energy phonons, with momenta much smaller
than the UV cutoff p∗ ∼ 1/a. If we consider processes with
one incoming and one outgoing phonon with typical momenta
p 	 p∗, and any number of much softer incoming or outgoing
phonons, we should be allowed to use either theory. We will
call “hard” the former phonons, and “soft” the latter.

As a first application, consider the decay of a hard phonon
into a hard one and a soft one. This is nothing but Cherenkov
sound emission by the hard phonon. It is kinematically possible
in helium-4, because the phonons’ dispersion law is E=csp +
αp3 + · · · , with positive α, and so hard phonons have faster
propagation speeds than soft ones. In both descriptions, there
is only one Feynman diagram contributing to this process to
leading order.

In the P (X) theory, we need the expansion of the action up
to cubic order in π :

S =
∫

d4xP (X) →
∫

d4x
ρ

c2
s

{
1

2

[
π̇2 − c2

s ( �∇π )2
]

+ g3

3!c2
s

π̇3 − 1

2
π̇ ( �∇π )2 + · · ·

}
, (41)

where g3 and all the gn’s below are equation of state–dependent
dimensionless coupling constants defined as

gn = c2(n−2)
s P (n)/P ′′, (42)

evaluated at the X = μ/m equilibrium value, and ρ and cs are
also equilibrium values. Denoting by �k and �p the momenta of
the outgoing soft phonon and of the incoming hard one, and
using the fact that k 	 p, we find that the probability amplitude
M for the process under consideration is given at lowest order
by the following Feynman diagram:4

iM � � 2c2
s√
ρ

p2k
[
cos θ + 1

2
(1 − g3)

]
, (43)

4Notice that each external phonon line comes with a factor of cs/
√

ρ because our π field is not canonically normalized.
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with θ the angle between the two momenta. The three dashed
lines in this diagram represent the three phonons involved in the
process—one incoming (hard) and two outgoing (one hard and
one soft). The final expression for this diagram follows from
the cubic terms in the Lagrangian (41) using standard quantum
field theory techniques (see, e.g., [21] for a pedagogical dis-
cussion of Feynman diagrams, albeit in a relativistic context).
In particular, notice how the three momenta p2k (two hard, one
soft) follow from the three derivatives in each cubic term.

The decay rate associated with the probability amplitude in
Eq. (43) is

d	 = 1

2E
|M|2d�f (44)

= c2
s p

2k2

ρ

[
cos θ + 1

2
(1 − g3)

]2

× d3k

(2π )3 2csk
× (2π )δ(E − (E′ + ω)), (45)

where in the last line we have used the momentum-conserving
delta to integrate over the final hard phonon’s momentum. The
energy-conserving delta can be simplified in the small-k limit:
from E′ = E(| �p − �k|), we get

δ(E − (E′ + ω)) � δ(ω − �v0 · �k), (46)

where

�v0 = ∂E

∂ �p (47)

is the hard phonon’s group velocity. This gives the usual Mach-
cone condition for Cherenkov radiation,

cos θ = cs/v0. (48)

Integrating over the solid angle we finally get the emission rate
per unit frequency:

d	

dω
= p2

16πρc3
s

(3 − g3)2 ω2, (49)

where we took the limit v0 → c+
s . Notice that the final state

phase space is nonzero even in this limit, that is, even if one
neglects the higher order corrections to the dispersion law that
make the decay possible in the first place.

Consider now the same process in the point-particle effec-
tive theory. To this end, we need to expand the action (22) in
powers of the external field π and read off the terms linear
in π :

Sphonon →
∫

dt p( v̂0 · �∇π − c′
s π̇ ), (50)

where c′
s is the X derivative of cs . Treating the hard phonon as

a source and neglecting its change in momentum from initial
to final state, the probability amplitude for emission of a soft
phonon is given by the following Feynman diagram:

iM � � cspk√
ρ

(cos θ + c′scs) . (51)

Here, the double lines represent the incoming and outgoing
hard phonon, whereas the dashed line represents the outgoing

soft phonon. We have denoted the hard phonon with a different
kind of line compared to the Feynman diagram in (43) to
emphasize the fact that hard and soft phonons have a different
status in the point-particle theory. The single dashed line in (51)
corresponds to the single factor of π that appears in Eq. (50). In
the final expression, the overall factor of cs/

√
ρ follows from

the noncanonical normalization of the field π (see previous
footnote) whereas the factor of k comes from the derivative
acting on π (the time derivative also contributes a factor of cs ,
as dictated by the dispersion relation of the soft phonon).

Using c2
s = dP/dρ, we can rewrite c′

s as

c′
s = (1 − g3)

2cs

, (52)

so that the amplitude in Eq. (51) becomes

iM = cspk√
ρ

[
cos θ + 1

2
(1 − g3)

]
. (53)

We recognize the same angular dependence as in (43), but with
different overall normalization and dependence on p and k.
This had to be expected, for the two computations correspond
to formally different processes from an S-matrix viewpoint:
(43) corresponds to a 1 → 2 process, whereas (53) corresponds
to a 0 → 1 process.

To compare the two results we should compute the rate,
which is physical and independent of how we normalize
the states. Notice that in the point-particle theory, the only
conservation delta function we have is

(2π )δ(ω − �v0 · �k). (54)

This is because in the background of a particle moving at
constant velocity, �x0(t) = �v0t , spatial and time translations
are broken down to this particular combination. This is made
explicit by considering the structure of a generic term in the
world-line action involving external fields as well as point-
particle degrees of freedom:∫

dtf (�x0(t),t)

=
∫

dt
d3k

(2π )3

dω

(2π )
f̃ (�k,ω) ei�k·�v0t e−iωt (55)

=
∫

d3k

(2π )3

dω

(2π )
f̃ (�k,ω) (2π )δ(ω − �v0 · �k). (56)

The rate associated with (53) thus is

d	 = |M|2d�f = c2
s p

2k2

ρ

[
cos θ + 1

2
(1 − g3)

]2

× d3k

(2π )3 2csk
× (2π )δ(ω − �v0 · �k), (57)

in perfect agreement with Eq. (44).
Consider now a slightly more complicated process: elastic

hard phonon–soft phonon scattering. To simplify the algebra
somewhat, let us assume that we have a head-on collision,5

i.e., k̂ = −p̂.

5In systems with boost invariance, this corresponds to a choice of
reference frame. Here however boost invariance is broken by the
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FIG. 2. Lowest-order contributions to phonon-phonon scattering in the P (X) theory.

For the P (X) theory, the relevant Feynman diagrams are
those in Fig. 2. Unlike in the previous case, now there is more
than one diagram contributing to the probability amplitude at
lowest order in perturbation theory (i.e., at tree level in particle
physics parlance). These diagrams all have four external legs,
representing the four phonons involved in a scattering process
(two incoming, two outgoing). The diagrams built out of cubic
vertices can again be calculated using the cubic action in
Eq. (41). The first diagram though consists of a vertex with
four legs, and to calculate it we will need the expansion of the
action up to quartic order. The relevant quartic terms are∫

d4x
ρ

c2
s

{
g4

4!c4
s

π̇4 − 1

4c2
s

π̇2( �∇π )2 + 1

4!
( �∇π )4

}
. (58)

By adding the contributions of all four diagrams in Fig. 2, we
find the tree-level scattering amplitude to be

iM = 2ic2
s

ρ
× 1 − g3 − g2

3 + g4 − (1 + g3) cos θ

1 − cos θ
× p2k2,

(59)
where k is the incoming soft momentum, p is the incoming
hard momentum, and θ is the angle between the momentum
of the hard phonon and that of the outgoing soft one. We have
also used that, by conservation of energy and momentum, the
outgoing soft momentum is equal to

k′ � 2k

(1 − cos θ )
(60)

in the limit of small k and k′ (compared to p).
On the other hand, for the point-particle theory, if we treat

again the hard phonon as an external source, the diagrams are
those in Fig. 3, with the understanding once again that the
double (dashed) line represents the hard (soft) phonon. Notice
that, besides the straight double lines, the third diagram also
contains wiggly double lines, whose meaning we are now going
to explain. The third diagram arises because of a technical
subtlety: even in the k 	 p limit, it is incorrect to treat the
hard phonon as an external source as far as intermediate states
are concerned. This is because in the point-particle theory
expanded about the unperturbed trajectory �x(t) = �v0 t , the
perturbations δ�x(t) of the trajectory are gapless—they are the
Goldstone modes of spontaneously broken translations—and
can thus be excited at arbitrarily low energies. It turns out
that their contribution as intermediate states to the amplitude
under study is of the same order as the other contributions

medium, and so this assumption corresponds to a specific choice of
initial state.

of Fig. 3, and should thus be kept (the same is true for, e.g.,
low-frequency Compton scattering in QED). The same holds
for the fluctuations of p, since p is one of the canonical
conjugate variables of �x. That is why we also need to consider
the third diagram in Fig. 3, in which the wiggly double line
represents the propagator of the fluctuations in the trajectory
of the hard phonon. Notice finally that there is no point-particle
analog of the fourth diagram in Fig. 2. This is because in
our point-particle approach the external hard phonon lines do
not actually correspond to asymptotic states—they are just a
visual aid to make the physical meaning of this diagram more
transparent.

In order to calculate the first two diagrams, we need to
expand the point-particle action (22) up to quadratic order in
π :

Sphonon �
∫

dt p

{
v − cs − c′

s π̇ + v̂ · ∇π

+ 1

2

[
1

v
P

ij

⊥ ∂iπ∂jπ + c′
s(∇π )2 − c′′

s π̇
2

]}
, (61)

where we have simplified the notation by defining �v ≡ �̇x and
P

ij

⊥ = δij − v̂i v̂j . Setting �v = cs v̂0, we find the following on-
shell results for the first two diagrams in Fig. 2:

= −2icsp0k
2

ρ

[
c′
scs cos θ + c′′

s c
3
s

1 − cos θ

]
(62a)

= icsp0k
2

ρ
(1 + csc

′
s)(c

′
scs − cos θ )

1 + cos θ

(1 − cos θ )2

(62b)

Remember again that we are considering a head-on col-
lision. It is worth pointing out that the second diagram re-
produces, up to an overall constant, the contribution coming

FIG. 3. Lowest-order contributions to phonon-phonon or roton-
phonon scattering in the effective point-particle theory.
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from the second diagram in Fig. 2. This is known as the
“u-channel” contribution in high-energy physics parlance. This
result should not be surprising. In fact, each of these two
diagrams is given by the product of three factors—two vertices
and one propagator. The propagators and the bulk vertices are
identical for the two diagrams, and our discussion of phonon
decay has shown that the world-line vertex reproduces the
physics of the bulk vertex. The fact that the soft phonon
interacting with the world line is on-shell for the decay process
and off-shell in the case of scattering is inconsequential:
matching in effective field theories can always be performed
on- or off-shell [22].

To compute the δ�x and δp propagators that enter the third
diagram in Fig. 3, we need the point-particle action expanded
to quadratic order in δ�x, δp and to zeroth order in π :

Sphonon ⊃
∫

dt
1

2

[
p0

cs

P ⊥
ij δẋiδẋj + 2(v̂0 · δ �̇x) δp

]
. (63)

The associated propagators are

〈δp δp〉 = 0, 〈δp δ�x〉 = −〈δ�x δp〉 = − v̂0

ω
,

〈δxi δxj 〉 = cs

p0

i

ω2
P ⊥

ij . (64)

Moreover, to compute the new interaction vertices, we also
need to keep all the δ�x-π bilinear terms:∫

dt

{
δp(v̂0 · ∇π − c′

s π̇ ) + p0

cs

P
ij

⊥ δẋi∂jπ

−p0c
′
sδ�x · ∇π̇ + p0v̂

i
0δx

j ∂i∂jπ

}
. (65)

The new contribution to the scattering amplitude thus is

= icsp0k
2

ρ
(1 − csc

′
s)(c

′
scs + cos θ )

1 − 3 cos θ

(1 − cos θ )2
.

(66)

Adding this result together with the diagrams in Eqs. (62) we
find the following total amplitude:

iM = 2icsp0k
2

ρ

(csc
′
s − 1) cos θ + (csc

′
s)

2 − c3
s c

′′
s

1 − cos θ
. (67)

Using now the fact that

c′′
s = − 1

4c3
s

(
1 − 3g2

3 + 2g4
)

(68)

together with Eq. (52), we can rewrite this amplitude as

iM = icsp0k
2

ρ
× 1 − g3 − g2

3 + g4 − (1 + g3) cos θ

1 − cos θ
. (69)

As we can see, this agrees with the result (59) we obtained from
the P (X) theory up to an overall normalization, as in the case
of Cherenkov radiation. Once again, though, this discrepancy
disappears once we calculate a physical quantity such as the
cross section. The two theories require different kinematical

factors to relate the amplitude to the cross section, because the
asymptotic states are different. Once such factors are taken into
account, the cross sections are the same and are given by6

dσ

d�
= p2k4

32π2c2
s ρ

2

[
1 − g3 − g2

3 + g4 − (1 + g3) cos θ

1 − cos θ

]2

,

(70)

with p and k denoting the incoming hard and soft momenta,
respectively.

We thus see that, for kinematical configurations such that
both effective theories can be applied, our effective point-
particle theory is equivalent to the more standard P (X) ef-
fective field theory. The only technical subtlety one should
consider is that fluctuations of the point particle’s trajectory
contribute as intermediate states in scattering amplitudes, even
in the limit in which the point particle is much harder that the
bulk modes it interacts with. We are now ready to apply this
know-how to rotons, regarding which theP (X) effective theory
has nothing to say. We also refer the reader to Appendix B,
where we sketch how to describe in our formalism the emission
and scattering of soft phonons by a generic particle or pointlike
object.

IV. ROTON-PHONON SCATTERING

Let us now turn our attention to the scattering of a soft
phonon off a roton. In order to discuss this process, we will
use the action (30) where p̂ has not been integrated out. The
relevant diagrams describing this scattering process at lowest
order are again the ones in Fig. 3, where now the double
line stands for a roton rather than a hard phonon. In order
to calculate these diagrams, we will need linear and quadratic
couplings of the phonon field to the roton world line. These
can be easily obtained by expanding the Lagrangian (30) in
powers of π :

Lroton � L0 + L1 + L2, (71)

6We are implicitly using the so-called relativistic normalization for
asymptotic states (see related comments in [23]). So, for the point-
particle theory (a 1 → 1 process), we have

dσ = 1

2ω
× 1

2cs

× |M|2 × 2πδ[ωi − ωf − �v0 · (�ki − �kf )]

× d3kf

(2π )32ωf

,

where the conservation δ function is the appropriate one for world-
line processes [see Eq. (54)], whereas for the P (X) theory (a 2 → 2
process) we have

dσ = 1

(2ω)(2csp)
× 1

2cs

× |M|2 × (2π )4δ(cspi + ωi − cspf

− ωf )δ3( �p + �k − �pf − �kf ) × d3kf

(2π )32ωf

d3pf

(2π )32cspf

.
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with

L0 = −� + p∗( �̇x · p̂) + m∗
2

( �̇x · p̂)2, (72a)

L1 = π̇L′
0 + �∇π · �p, (72b)

L2 = 1
2 π̇2L′′

0 − 1
2 ( �∇π )2L′

0 + π̇ �∇π · �p ′ + 1
2m∗( �∇π · p̂)2.

(72c)

We have simplified the notation by introducing the total
momentum of the roton, �p = (p∗ + m∗ �̇x · p̂)p̂, and as in the
previous sections, primes denote derivatives with respect to X,
evaluated on the X = μ/m background.

For a roton with

�̇x = v0 p̂0, �p = p0 p̂0, (73)

we have

= −�k · �p0 + ωL̄′
0, (74a)

= i[�k1 · �k2 L̄′
0 − ω1ω2L̄

′′
0 − m∗(�k1 · p̂0)(�k2 · p̂0)

+ (ω1�k2 · �p ′
0 + ω2�k1 · �p ′

0)] , (74b)

where by convention all the ω’s and k’s are incoming [and
related by the conservation delta function (54)], and we have
denoted by L̄0 the on-shell value of L0 calculated on the
solution (73).

As remarked in the previous section, in general we also
need to consider contributions coming from intermediate
fluctuations of the point-particle trajectory. For the scattering
process we are considering, these effects are captured by the
last diagram in Fig. 3. In order to calculate it, we need the
propagator for the fluctuations δ�x and δp̂ of the trajectory. To

this end, we expand L0 up to quadratic order to find

L
(2)
0 � 1

2m∗(δ �̇x · p̂0)2 + p0 δ �̇x · δp̂ − 1
2p0v0 δp̂ · δp̂. (75)

We then invert this kinetic term to find the propagator, keeping
in mind that δp̂ contains only two independent components
because p̂ has unit norm. It is easier to work with a slightly
redundant parametrization of the propagator that consists of
a 6×6 matrix acting on the (δ�x,δp̂) space and satisfying the
constraints

p̂i
0〈δp̂iδp̂j 〉 = 0, p̂i

0 〈δp̂iδxj 〉 = p̂i
0 〈δxj δp̂i〉 = 0, (76)

which, to the order we are working, implement the constancy
of p̂ · p̂. Then, the propagator for the fluctuations of the roton
trajectory is

=
⎛
⎝ iv0P

ij

ω2p0
+ ip̂i

0p̂
j

0
ω2m∗

− P ij

ωp0

P ij

ωp0
0

⎞
⎠,

P ij = δij − p̂i
0 p̂

j

0 . (77)

The Feynman rules for the vertices that appear in the third
diagram are obtained by expanding L1 up to linear order in δ�x
and δp̂. In Fourier space, this yields

=
(−i�k(�k · �p0 − ωL̄′

0) + iω̃p̂0(m∗�k · p̂0 − ωp′
0)

−p0�k

)
,

(78)
where ω̃ ≡ ω − �v0 · �k is the frequency of the δ�x, δp̂ pertur-
bation, and the phonon’s frequency and momentum are again
incoming. Physically, this diagram describes the perturbation
that an incoming phonon induces on the trajectory of a roton.

We are now ready to combine all the ingredients we have
derived so far and use them to calculate the Feynman diagrams
in Fig. 3. Denoting with ωi and �ki (ωf and �kf ) the frequency
and momentum of the incoming (outgoing) phonon, and with
�q ≡ �ki − �kf the momentum transfer, we find

= ic2
s

ρ
[ωf ωiL̄

′′
0 − �kf · �kiL

′
0 + m∗(�ki · p̂0)(�kf · p̂0) − (ωi

�kf · �p ′
0 + ωf

�ki · �p ′
0)], (79a)

= −2i

ρ

(
�ki · �kf + c′

s

cs

ωiωf

)
(�v0 · q̂)(L̄′

0�v0 − �p0) · q̂, (79b)

= − ic2
s

ρ

{
�k⊥
i · �k⊥

f

[
v0

ω2p0
(�kf · �p0 − ωf L̄′

0)(�ki · �p0 − ωiL̄
′
0) + (�ki + �kf ) · ( �p0 − �v0L̄

′
0)

ω

]

+ 1

ω2m∗
[(�kf · �p0 − ωf L̄′

0)(�kf · p̂0) + ω̃(m∗�kf · p̂0 − ωf p′
0)][(�ki · �p0 − ωiL̄

′
0)(�ki · p̂0) + ω̃(m∗�ki · p̂0 − ωip

′
0)]

}
,

(79c)
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where �k⊥ is the component of �k perpendicular to �v0. Notice
also that, like before, there is a factor of cs/

√
ρ associated

with each external phonon line.
We can now use the total amplitude—obtained by adding the

three results above—to calculate the scattering cross section.
For simplicity, we will restrict ourselves to a process in which
the roton is at rest, v0 = 0. In this case, the diagram in Eq. (79b)
vanishes, and the phonon frequency is conserved:

ki = kf ≡ k, ωi = ωf = csk. (80)

We should stress once more that this is not just an innocuous
choice of reference frame: since boosts are spontaneously
broken by the medium, the scattering amplitude depends on the
velocities of the excitations with respect to the medium, and
not just on their relative velocity like in a scattering process in
vacuum. In order to make the comparison with earlier results
[7] easier, we will trade X derivatives for derivatives with
respect to the density,

d

dX
= dP

dX

dρ

dP

d

dρ
= ρ

c2
s

d

dρ
. (81)

Then, the total amplitude reduces to

iM|v0=0

= − icsp∗k2

ρ

{
(k̂i · k̂f )(k̂i + k̂f ) · p̂0 + p∗

m∗cs

(k̂i · p̂0)2

× (k̂f · p̂0)2 + ρ2

csp∗

[
d2�

dρ2
+ 1

m∗

(
dp∗
dρ

)2]

+B · ρ

p∗cs

d�

dρ
− ρ

m∗cs

dp∗
dρ

[
(k̂i · p̂0)2 + (k̂f · p̂0)2

]}
,

(82)

where

B ≡ 1 − 2
ρ

cs

dcs

dρ
+ (k̂i · p̂0)(k̂f · p̂0)

[
2 + ρ

m∗c2
s

d�

dρ

+ p∗
m∗cs

(k̂i + k̂f ) · p̂0

]
− ρ

m∗cs

dp∗
dρ

(k̂i + k̂f ) · p̂0.

(83a)

The differential cross section is given in terms of this
amplitude by7

dσ

d�
= |M|2

16π2c4
s

. (84)

The cross section for roton-phonon scattering was first
calculated by Landau and Khalatnikov (LK) [7] in the limit
of small d�/dρ. The first line in our total amplitude (82)
reproduces exactly their result. However, the second line of our
amplitude introduces some corrections: while the first term,
proportional to d�/dρ, was consistently neglected in LK’s
approach, the second term should have been kept. We are

7This cross section is defined similarly to the one for phonon-phonon
scattering (see footnote 6), except that here the relative velocity in the
initial state is cs rather than 2cs .

quite confident of this result, since we have derived it also
starting from the action in Eq. (29), as opposed to the one in
Eq. (30) used in this section. The action (29) leads to different
Feynman rules, but the final result for the total amplitude
remains the same.8 Using standard kinetic theory arguments,
one can relate the phonon-phonon and roton-phonon cross
sections to macroscopic observables, such as the temperature
dependence of viscosity [8]. Hence, our corrections have
potentially observable consequences.

V. ON FLOATING AND SINKING

Let us now turn our attention to a question that is probably
quite natural for a reader with a high-energy background, but it
is admittedly a bit unusual in a condensed matter context: how
does gravity act on a medium’s excitations, such as phonons
and rotons? For ordinary objects immersed in a generic fluid
we have the Archimedean principle, but it is not obvious
how to apply that to more general “objects”: what is the
volume displaced by a phonon or a roton? And what are their
gravitational masses?

The effect of gravity on sound waves can easily be un-
derstood using heuristic arguments based on classical wave
mechanics.9 An external gravitational field gives rise to a
pressure gradient in the fluid, which in turn induces a gradient
in the sound speed. Consider now a wave packet propagating
along a surface of constant pressure. The upper and lower parts
of this wave packet will move at slightly different speeds, and as
a result its trajectory will bend in the direction opposite to that
of the sound speed gradient. The sound speed is usually larger
in regions of larger pressure,10 and so sound will tend to float
rather than sink. It is thus natural to expect that phonons—the
quanta of sound—want to float. But what about inherently
quantum mechanical excitations such as rotons?

The effective point-particle theory developed in Sec. II is
perfectly suited to tackle this question. Essentially, this is
because it is constructed starting from considerations involving
spacetime symmetries, and can thus be extended straightfor-
wardly to incorporate gravitational phenomena, since gravity
is the gauge field for spacetime symmetries. As shown in detail
in Appendices C and D, the effect of an external gravitational
potential �(x) on a nonrelativistic superfluid and on the
particles living in it is captured by a simple �-dependent shift
of the chemical potential, or, equivalently, of our variable X:

X = μ/m + π̇ − 1
2 ( �∇π )2 − �. (85)

For a reader familiar with trapped superfluids, this shift of
the chemical potential will be reminiscent of the way in which
trapping potentials are usually included in the Gross-Pitaevskii
model (see, e.g., Sec. 4.4 of [25]).11 Indeed, a gravitational

8In fact, recently the same result was also found in [24].
9We thank Eric Cornell for discussions about this point.
10For instance, for zero-temperature liquid helium cs ∼ 1/ma ∝

ρ1/3, with a the interparticle separation, and thus

dc2
s

dP
= 1

c2
s

dc2
s

dρ
> 0.

11We are grateful to Angelo Esposito for pointing this out to us.
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potential can always be interpreted as a (admittedly, quite
weak) trapping potential of sorts. However, we should stress
that the rule of thumb for trapping potentials is derived at weak
coupling—which is the regime in which Gross-Pitaevskii is
applicable—whereas (85) is completely general and can be
derived without making any assumption about the underlying
physics that gives rise to the superfluid state.

For what follows, it is also instructive to realize that,
when applied to a superfluid at rest, the prescription (85)
is nothing but a rewriting of hydrostatic equilibrium in a
static gravitational field. In fact, setting the perturbations of
the superfluid to zero, π = 0, we have X = μ/m − �(�x).
According to our effective theory the superfluid density and
pressure are ρ = P ′(X) and P = P (X) [see Eq. (5)], and thus
it follows immediately that

�∇P = −ρ �∇�, (86)

which is the hydrostatic equilibrium condition. This means
that, when applied to the effective point-particle theory for
particles living in the superfluid, the shift (85) describes the
net effect of gravity onto these particles: it includes the direct
gravitational pull as well as the buoyant force of Archimedean
fame, because the pressure gradients induced by gravity are
automatically taken into account.

Let us first see explicitly how this works in the case of an
ordinary object, which we are all familiar with. Performing
the replacement (85) in the action (40), setting to zero the π

perturbations, and expanding to first order in � we get

Sobj →
∫

dt

[
E′

0 � + 1

2
Meff �̇x 2 + · · ·

]
, (87)

where the prime denotes a derivative with respect to X and
we neglected terms of order �ẋ2, which in the nonrelativistic
limit are subleading compared to those that we have kept. The
equation of motion for our particle reads

d �p
dt

= E′
0
�∇�, �p = Meff �̇x. (88)

Comparing this to the Archimedean principle, we see that
E0(X) must be such that

E′
0(X) = −[M(X) − V (X)ρ(X)], (89)

or, equivalently,

E0(X) = −
∫

dX[M(X) − V (X)ρ(X)], (90)

where M is the mass of the object, and V the volume displaced,
both evaluated at the local value of X (we keep a potential
X dependence in M for reasons that will be relevant in the
example below). However, unless we know in advance the mass
and the displaced volume for our object, our effective point-
particle theory shows that in general there is no clear physical
distinction between the two contributions to the force: the two
quantities only appear in the combination E′

0(X). This is also
related to the manipulations that we performed in Eq. (10): a
mass parameter for the standard, empty-space-like kinetic and
gravitational energies, Eqs. (9) and (D18), can be completely
reabsorbed into our more general structure (8).

Perhaps the following example will clarify the arbitrariness
of the gravitational/buoyant splitting of the net force: consider

a sponge. In empty space, when it is dry, it is easy to determine
its mass, but essentially impossible to determine its “solid”
volume. Once we immerse it water and it gets completely
soaked, the Archimedean principle formally applies, but in
practice we do not know what the displaced volume is. There
is a completely equivalent description in which we never talk
about the dry sponge in empty space, but only about the soaked
one in water: we can assign a net mass to it (sponge + soaked up
water), which we do not know how to determine, a displaced
volume, which now is easy to compute in principle—say the
volume of a parallelepiped if the sponge has that macroscopic
shape—and again the Archimedean principle applies. Clearly,
an experimenter who never had access to the dry sponge and
who does not have enough spatial resolution to determine
that it is made of porous material, will adopt this second
viewpoint. In going from one description to the other the mass
of the water soaked up by the sponge moves around as far
as the Archimedean principle is concerned: it moves from the
buoyant term to the gravitational term. But the net buoyancy,
which is the only measurable thing in water, remains the same.

As a further check, consider the gravitational field produced
by an object immersed in a fluid. To simplify the discussion,
consider the case in which we have a big self-gravitating sphere
of an incompressible fluid of given density ρ, and we place at
its center a much smaller rigid sphere of total mass M and
volume V . The Poisson equation in the presence of the object
reads

∇2� = 4πG(ρ θ (r − R) + ρobj θ (R − r)) (91)

= 4πG(ρ + (ρobj − ρ) θ (R − r)), (92)

where ρobj is the density of our object, and R its radius. In the
point-particle limit, we can perform the replacement

(ρobj − ρ)θ (R − r) → δ3(�x)(M − ρV ), (93)

as can be seen from integrating both sides in d3x. The Poisson
equation thus reduces to

∇2� = 4πG(ρ + (M − ρV )δ3(�x)), (94)

from which we see that, even as far as the production of
gravitational fields goes, the coupling of our material object
to gravity is determined solely by the combination (89), with
no physically relevant distinction between the two individual
contributions.

All this is reassuring for us, because for more general
“objects” such as our excitations, there are no obvious can-
didates for masses and displaced volumes. Fortunately, all the
information that we need is already contained in the actions
that we wrote down. In particular, in the presence of gravity
we will derive for our excitations equations of motion of the
form

d �p
dt

= −mg
�∇�, (95)

where �p is the excitation’s momentum, and mg a quantity
playing the role of what −E′

0 is for an ordinary object. This
follows simply from the fact that, to first order in �, our
Hamiltonians have the general structure H ( �p,�x) = H0(| �p |) +
mg(p)�(�x). Given the discussion above, we will call mg the
“net gravitational mass” of the excitation in question.
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A. Phonons

For phonons, performing the replacement (85) and setting
to zero the π perturbations, we get

Sphonon →
∫

dt p[ | �̇x| − cs(μ/m − �)]. (96)

By varying this action with respect to p we recover the
constraint that the phonon must move at the speed of sound,
which now depends on the position if � is not homogeneous.
The variation with respect to �x yields instead

d �p
dt

= p c′
s
�∇�, �p ≡ p �̇x/| �̇x|. (97)

Thus, the net gravitational mass of a phonon of momentum
p is mg = −pc′

s , and its sign determines whether the phonon
tends to sink (positive) or float (negative). Using c2

s = P ′/P ′′
and ρ = P ′, we have

c′
s = dρ

dX

dcs

dρ
= ρ

dcs

dP
, (98)

where the derivatives are understood to be taken at constant
temperature (zero, in our case). Experimental data show that
the sound speed of superfluid helium-4 at low temperatures
increases with pressures [26]. This implies that phonons have
negative net gravitational mass, and thus tend to float, in
agreement with the heuristic argument above. Notice that the
effect is small, but not incredibly so: on dimensional grounds
one has c′

s ∼ 1/cs ∼ 10−2 s/m, and so a phonon traveling
horizontally in the Earth’s gravitational field (∇� ∼ 10 m/s2)
tends to bend upwards at a rate

dθ

dt
∼ (10 s)−1, (99)

where θ is the angle with the horizontal.
It is interesting to compare our effect to the standard

refraction of sound waves in inhomogeneous media. For so-
called stratified media [cs = cs(z), with z being the verti-
cal], refraction is usually phrased in terms of Snell’s law
(see, e.g., [27]),

cos θ

cs(z)
= const., (100)

where θ is again the angle with the horizontal. It is a
matter of simple algebra to see that our Eq. (97) implies
such a conservation law. In fact, this is just a combination
of the conservation laws for energy, cs(z)p = constant, and
for horizontal momentum, p cos θ = constant, which apply
because time translations and horizontal spatial translations are
unbroken. We thus see that our effect is nothing but ordinary
refraction in disguise. We find it interesting that within our
formalism this phenomenon is gravitational in origin, in the
sense that it encodes the net effect of gravity onto phonons,
formally on the same footing as the net effect of gravity
(gravitational force + buoyant force) onto ordinary objects.
We are not sure whether this hints at something deep or trivial.

It is also interesting to compare our Eq. (97) to the rela-
tivistic phenomenon of light bending in vacuum. According
to general relativity, the gravitational mass of a photon in the
weak-field limit is also proportional to its momentum, and its

equation of motion reads [28]

d �p
dt

� −2p

c
�∇�. (101)

Thus, the gravitational mass of photons is positive, which
is why light bends towards rather than away from massive
objects. In other words, while phonons rise in a gravitational
field, photons fall in accordance with the equivalence principle.
The effect on photons is also much weaker, by a factor cs/c ∼
10−6. What a difference a single letter can make!

B. Rotons

Let us now turn our attention to rotons. A roton in a static
superfluid placed in a gravitational field is described by the
action (29) with �u = 0 and X = μ/m − �, i.e.,

S
R,L
roton �

∫
dt

[
−�(μ/m − �) ± p∗(μ/m − �)| �̇x|

+ 1

2
m∗(μ/m − �)| �̇x|2

]
. (102)

Recall that the + (−) sign in the Lagrangian refers to rotons
with momenta on the right (left) of the roton minimum. Varying
this action with respect to �x, we find

d �p
dt

= �′ �∇�, �v ≡ �̇x, �p ≡ (±p∗ + m∗v)v̂, (103)

where we neglected terms of order �v and �v2, since for
rotons v 	 cs . The net gravitational mass of a roton thus is
mg = −�′, which following the same manipulations as above
we can rewrite as

mg = −ρ
d�

dP
. (104)

Experimental results for helium-4 show that this is positive
[29], suggesting that rotons tend to sink. However, given the
unconventional relationship between momentum and velocity,
determining the actual trajectory of a sinking roton can be quite
complicated.

In practice, it is easier to first solve for the momentum as
a function of time, and then to integrate Eq. (24) to find the
trajectory. For a constant gravitational acceleration �g ≡ −�∇�,
the momentum is simply

�p (t) = �p0 + mg �g t, (105)

where �p0 is the initial momentum. The velocity thus is

�̇x(t) = �p0 + mg �g t

m∗

(
1 − p∗

| �p0 + mg �g t |
)

, (106)

and this can be integrated analytically to yield �x(t). The actual
expression is not particularly illuminating,12 but for generic

12With px in units of p∗, t in units of mgg/p∗, and x and z in units
of m∗mgg/p2

∗, the solution for motion in the (x,z) plane reads

x(t) = pxt − px log
t + √

p2
x + t2

px

,

z(t) = −t2/2 + (√
p2

x + t2 − px

)
. (107)
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FIG. 4. Possible trajectories for rotons in a vertical gravitational field �g = −gẑ. For all the trajectories displayed, the horizontal component
of the momentum, which is conserved, is directed towards the right. The arrows point in the direction of forward time evolution. We truncated
the trajectories in the past and in the future when the rotons get too far from the roton minimum for our approximations to apply, which for
definiteness we characterized by |p − p∗|/p∗ > 30%. The coordinates are in units of p2

∗/m∗mgg. According to the classification in the main
text, we have green = no turning points (px = 1.1 p∗); red = two turning points (px = 0.9 p∗); blue, right = one turning point + metamorphosis
(px = 0.69 p∗); blue, left = vice versa (ditto). For comparison, we are showing in dashed gray the trajectory of a normal object with parameters
such that the curvature and velocity at the top are the same as for our no turning point roton trajectory.

initial �p0 the trajectory can be quite spectacular, with the roton
initially exhibiting an erratic behavior before deciding to sink
to the bottom—see Fig. 4.

One can gain some intuition into such a peculiar behavior
by noticing that, depending on the relative direction of �p0 and
�g, and on whether p0 is bigger or smaller than p∗, the velocity
(106) can end up crossing zero. This happens whenever
| �p0 + mg �g t | crosses p∗. At that moment the direction of �̇x
relative to that of �p changes sign, and, since this happens while
�p is nonzero and evolving smoothly with time, this corresponds
to a turning point in the trajectory. In other words: �p (t) is
smoothly “sinking” as in (105), but by doing so it can make
the roton move between the left and the right of the roton
minimum, thus inverting the sign of its velocity.

Specifically, imagine extrapolating the trajectories to all
times, past and future. The time evolution of the momentum,
Eq. (105), happens on a plane, and so does that of the velocity,
which is aligned or antialigned with the momentum. We
can thus restrict to motion in the x-z plane without loss of
generality. Then, in going from t = −∞ to t = +∞, pz(t)
spans all possible values, whereas px is conserved, px(t) =
p0,x for all t’s. We can thus classify these extrapolated orbits
by their px , which without loss of generality we assume to
be positive. Since | �p | = √

p2
x + p2

z becomes large at large
positive and negative times, because pz does, we see that all
orbits start and end on the right of the roton minimum. We
also have that | �p | � px for all times. Keeping in mind that
our approximations break down when we get too far from the
roton minimum, we thus see that trajectories can feature the
following:

(1) No turning points: This happens for px > p∗. In this
case | �p (t)| is always on the right of the roton minimum.

(2) Two turning points: This happens for px < p∗, but with
(p∗ − px) 	 p∗. In this case | �p (t)| momentarily drops below
p∗ at intermediate times, while staying always close to the
roton minimum.

(3) One turning point + metamorphosis (or vice versa):
This happens for px < p∗, but with (p∗ − px) ∼ p∗. In this
case | �p (t)| drops below p∗ at intermediate times, but it
decreases so much that it ends up violating the condition
p∗ − | �p | 	 p∗. At that point we are far from the roton
minimum, and our approximations break down. The roton has
effectively turned into something else. The reverse can also
happen: a roton is created at time t = 0 with overall momentum
| �p | < p∗, with negative pz, and with px substantially smaller
that p∗; the extrapolation back in time of its trajectory at
some point would take it too far to the left of the roton
minimum for our approximations to be valid; however, the
forward time evolution is within the regime of validity of our
approximations, and makes the roton experience one turning
point and then sink.

Of course our approximations also break down at large
times, both in the past and in the future, because the momentum
becomes much bigger than p∗ then. So, overall, during the
lifespan of our roton, we can have zero, one, or two turning
points in its trajectory. All these possibilities are depicted in
position space and in velocity space in Figs. 4 and 5.

On dimensional grounds, the timescale for all these phe-
nomena to happen in the Earth’s gravitational field is roughly
the same as the one relevant for phonon bending,

τ ∼ 10 s. (108)

This is because mg = −�′ ∼ m∗, and �p changes by p∗ (in
direction or magnitude) over a time τ ∼ p∗/mgg ∼ cs/g.
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FIG. 5. Possible velocity-space trajectories for rotons in a vertical
gravitational field. The same conventions as in Fig. 4 apply. The
velocities are in units of p∗/m∗.

However, for an initially very slow roton with momentum
p0 = p∗(1 + ε) forming a small (positive) angle θ0 � √

ε with
the horizontal, the two-turning point phenomenon happens
on a parametrically shorter timescale,

√
ε τ , because the

momentum only has to change by δ �p ∼ p∗
√

ε. The typical
velocities during this period are of order v ∼ εcs , correspond-
ing to typical displacements of order δx ∼ ε3/2csτ ∼ ε3/2 km,
unfortunately still too large to be relevant for experiments
unless ε is extremely small.

VI. DISCUSSION AND OUTLOOK

We have introduced an effective point-particle formalism
to describe how particles—which could be actual particles,
collective excitations, or macroscopic objects alike—couple
to long-wavelength sound modes and bulk flows in an s-
wave superfluid. We have explicitly checked that when this
formalism is applied to phonons it is equivalent to the usual
approach based on a P (X) effective field theory. We also con-
sidered phonon-roton scattering, and corrected earlier results
by Landau and Khalatnikov as well as subsequent calculations
based on similar techniques [30,31]. Purely on dimensional
grounds, we would expect our corrections to the scattering
amplitude to have an O(1) impact on observable quantities
such as finite-temperature transport coefficients. A kinetic
theory calculation along the lines of [8] is required to confirm
this expectation, and we leave it for future work. Ultimately,
since an alternative theoretical approach to rotons is presently
not available, it is our hope that experiments will soon be
able to weigh in on this discrepancy, given that interactions
between phonons and rotons have already been the subject
of very interesting experimental work [3,32–34]. Possible
further applications of our formalism to liquid helium include
analyses of phonon-mediated interactions between rotons [35],

of roton-roton bound states [36], of phonon emission by fast
rotons [37], and of light dark matter detectability [38].

We have also derived how a generic particle living in a
superfluid couples to gravity. Although the associated effects
for liquid helium’s excitations in the Earth’s gravitational
field are probably too weak to be relevant for experiments,
we wonder whether they could be made big enough to be
observable by simulating a much stronger gravitational field
by means of inertial forces, e.g., with a centrifuge.13 Another
possibility would be to look for the same phenomena in
superfluid ultracold quantum gases, whose trapping potentials,
like the gravitational one, can also be thought of as shifts in the
chemical potential.14 In all these cases our formulas still apply,
but the gravitational acceleration has to be replaced by the
appropriate one, that is, the centrifugal acceleration in the case
of a centrifuge, and the gradient of the trapping potential energy
per unit mass in the case of ultracold quantum gases. There
could also be interesting applications to neutron star physics,
where phonons are expected to have interesting seismological
consequences [39], and gravity is obviously much stronger.

More in general, there are interesting consequences due
to the fact that for a nonrelativistic superfluid an external
gravitational field only appears as a shift of the chemical
potential,

μ/m → μ/m − �, (109)

and that the phonon field also enters the effective theory
as a modulation of the local chemical potential. These are
particularly evident for ordinary objects immersed in our
superfluid, for which gravitational phenomena are more readily
observable.

For instance, for a given object in a superfluid at equilibrium
in the Earth’s gravitational field, one could use a dynamometer
to measure the net buoyancy, and then let the object go and
measure the associated acceleration. According to the discus-
sion in Sec. V, these two measurements yield the quantities
E′

0 and Meff . However, if one now imagines expanding the
object’s action (40) in π perturbations, one immediately sees
that precisely these two quantities determine how our object
couples to π at linear order and at low speeds. And, so, by
the simple gravitational experiment just described one can
straightforwardly predict how our object will be shaken by
an incoming sound wave, or how, conversely, it will generate
sound waves if shaken or if its volume “pulsates.” In our
approach these phenomena are sensitive, respectively, to the
combinations (Meff + E′

0)/Meff and Meff + E′
0, and to the time

dependence of E′
0. One can easily check that, with a different

parametrization, precisely the same combinations enter the
final results of [20], Sec. 11 and Sec. 74, which were derived by
more standard (and more laborious) hydrodynamical equations
+ boundary conditions techniques.

We will publish soon a more general analysis of how
particles and small objects interact with superfluids and normal

13One should spin the system without producing vortex lines. In
principle this can be achieved by setting up a 1/r profile for the
superfluid velocity, with r being the distance from the centrifuge axis.
Clearly the superfluid should be kept away from the r = 0 axis.

14We thank Angelo Esposito for this suggestion.
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fluids, including the effects associated with anisotropies and
spin.
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APPENDIX A: ROTON STABILITY

Consider a roton at rest, that is, one with momentum
�p = p∗n̂ and energy E(p∗) = �. By energy conservation, it
can only decay to a combination of excitations (i = 1, . . . ,N )
with lower energies, that is, excitations that, in the spectrum
of Fig. 1, lie to the left of p̄. Momentum conservation reads

�p = �p1 + · · · + �pN, (A1)

which in particular implies

p∗ = | �p | � | �p1| + · · · + | �pN |. (A2)

Let us now denote by cr the roton’s phase velocity �/p∗. It
is a fact about superfluid helium that all the excitations to the
left of p̄ have a strictly larger phase velocity,

Ei

| �pi | > cr, i = 1, . . . ,N. (A3)

Using this in the conservation of energy,

� = E1 + · · · + EN, (A4)

we get

crp∗ > cr | �p1| + · · · + cr | �pN |, (A5)

in clear contradiction with Eq. (A2). This proves that, purely
because of kinematical reasons, rotons at rest cannot decay.

Consider now a roton that has a small but nonvanishing
group velocity. Its momentum is �p = (p∗ + δp)n̂, with |δp| 	
p∗, and its energy is E � � + δp2/(2m∗). It cannot decay to
excitations to the left of p̄ for the same reasons as above (the
modifications to cr due to a nonvanishing δp are negligible),
but, by energy conservation, it could decay to a lower energy
roton with momentum �p ′ = (p∗ + δp′)n̂′ (with |δp′| < |δp|)
plus a combination of soft phonons, with very low momenta
compared to p∗. In other words, it could emit soft phonons and
slow down. Momentum conservation now implies

|δp | � |δp′| + | �p1| + · · · + | �pN |, (A6)

while energy conservation reads

δp2

2m∗
� δp′2

2m∗
+ E1 + · · · + EN. (A7)

Using Ei = cs | �pi | for each phonon, these equations can be
rewritten as

| �p1| + · · · + | �pN | � (|δp | − |δp ′|), (A8)

| �p1| + · · · + | �pN | � 1

2m∗cs

(|δp | + |δp ′|)(|δp | − |δp ′|)

	 (|δp | − |δp ′|), (A9)

in clear contradiction with each other (we used that
|δp|,|δp′| 	 m∗cs ∼ p∗). We thus see that all excitations close
to the roton minimum are absolutely stable.

APPENDIX B: GENERIC POINT PARTICLE–SOFT
PHONON INTERACTIONS

It is interesting to notice that interactions between pointlike
objects and soft phonons can be described in full generality
without the need to specify the form of the function f that
appears in the effective action (8). For example, to describe
soft phonon emission (Cherenkov radiation) all we need are
the interactions that are linear in π ,

fv ( �∇π · v̂) + fX π̇, (B1)

whereas to describe soft phonon scattering we also need those
that are quadratic in π ,

1
2 (fvv − fv/v)( �∇π · v̂)2 + 1

2 (2fv/v − fX)( �∇π )2

+ 1
2fXX π̇2 + fvX π̇ ( �∇π · v̂), (B2)

as well as those that are bilinear in δ�x and π ,

fvX π̇(δ �̇x · v̂) + (fvv − fv/v)(δ �̇x · v̂)( �∇π · v̂)

+ (fv/v − fX)(δ �̇x · �∇π ) + fv δ�x · �∇( �∇π · v̂), (B3)

where the subscripts on f denote derivatives with respect to
its arguments, evaluated on the background (constant �v = v v̂

and X = μ/m). For scattering we also need the δ�x propagator,
which we can get from its quadratic action,

1
2 (fvv P

ij

‖ + fv/v P
ij

⊥ ) δẋiδẋj . (B4)

The Feynman propagator thus is

〈δxiδxj 〉 = i

ω2 + iε

(
1

fvv

P
ij

‖ + v

fv

P
ij

⊥

)
. (B5)

Using these expressions, one can easily calculate emission
rates and scattering cross sections following procedures iden-
tical to those of Secs. III and IV.

APPENDIX C: NONRELATIVISTIC LIMIT
AND COUPLING TO GRAVITY

In this appendix we will derive the effective action (4)
for a nonrelativistic superfluid [6] starting from its relativistic
analog [40] and taking the formal c → ∞ limit. This limit was
also discussed in Appendix D of [11]. Here, however, we will
implement it in a slightly different way, taking into account
also the coupling with a gravitational field. At the relativistic
level, this coupling is achieved by placing the superfluid in a
curved spacetime. Hence, our starting point will be the action

S =
∫

dtd3x
√−g P (Xr), Xr = √−gμν∂μφ∂νφ,

φ = μrt + π, (C1)

where the subscript “r” stands for “relativistic.”
In order to make the nonrelativistic limit more transparent,

it is helpful to reintroduce all factors of c explicitly. When
c → ∞, we only need to keep track of the perturbation to the
(0,0) component of the metric around Minkowski, which is
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related to the Newtonian potential by δg00 = −2�/c2. It is also
convenient to define the nonrelativistic chemical potential μ ≡
μr − mc2, where m is the mass of a helium atom. If we keep
φ dimensionless as in (C1) and define Xr = c

√−gμν∂μφ∂νφ

so that it has units of energy, then Xr admits the following
well-defined nonrelativistic limit:

Xr =
√

(1 − 2�/c2)(mc2 + μ + π̇ )2 − c2(∇π )2 c→∞−→ mc2

+μ +
(

π̇ − (∇π )2

2m
− m�

)
. (C2)

Thus, to lowest order in the derivatives the nonrelativistic
phonon field π and the Newtonian potential � must always
appear in the combination shown in parentheses, which can be
thought of as a local modulation of the chemical potential μ

[41,42]. We can also eliminate m—a microphysics quantity,
not directly accessible from hydrodynamical experiments—
from this combination of π and �, by rescaling the phonon
field as π ≡ mπ̃ . The nonrelativistic action then depends only
on the combination

δX ≡ ˙̃π − (∇π̃ )2

2
− �, (C3)

which is independent of m and reduces to the result in Eq. (4)
once the Newtonian potential is turned off (and tildes are
dropped).15 Notice however that m reappears now in how
δX affects the local chemical potential, μ + m δX. This is
because m is the proportionality factor between mass density
and number (or charge) density [6], and the normalization of
the chemical potential knows about that of the charge. We could
decide to never talk about the number of particles, and only
about the total mass of the system, which, unlike the number, is
directly accessible by macroscopic measurements. In that case
the associated chemical potential would have units of energy
per unit mass, like δX, and m would not appear anywhere
in the effective theory. This is probably the best choice of
normalizations from an effective field theory standpoint, but in
fact, to make referring to experimental data more transparent,
we will stick to the usual definition of the chemical potential.

The right-hand side of Eq. (C2) shows that in order to couple
a nonrelativistic superfluid to gravity it is sufficient to shift the
nonrelativistic chemical potential: μ → μ − m�. Note in fact
that the determinant of the metric in Eq. (C1) becomes trivial
in the c → ∞ limit. For a superfluid at equilibrium, it is easy
to understand the origin of this shift using a thermodynamic
argument. Let us consider a region of space that contains
a macroscopic number N of helium atoms, and yet that is
small enough so that the external gravitational potential � is
approximately constant. Each atom in this region acquires a
potential energy m�. As a result, the total Gibbs free energy
at pressure P̄ becomes G(P̄ ) = G0(P̄ ) + Nm�, where G0 is
the Gibbs free energy one would have at the same pressure
but in the absence of gravity (we are setting the temperature to

15Note that with our conventions Xr and δX have different units:
the former has the dimensions of an energy, while the latter has
dimensions of a velocity squared, that is, energy per unit mass.
Similarly, π is dimensionless whereas π̃ has dimensions of an inverse
mass.

zero, which is the case we are interested in). The total chemical
potential then is given by

μ = ∂G

∂N

∣∣∣∣
P̄

= μ0(P̄ ) + m�, (C4)

where μ0 is the chemical potential one would have without
gravity. Thermodynamic equilibrium requires μ to be constant
throughout the system [43].

The same result follows immediately from our EFT ap-
proach. For any given pressure P̄ , static equilibrium requires
π = constant and so

P̄ = P (μ − m�), (C5)

since P (X) is nothing but the pressure [Eq. (5) holds for a
curved spacetime as well]. Then, we can invert the relation
above to find

μ = P −1(P̄ ) + m�, (C6)

which is precisely of the form (C4), since P −1(P̄ ) is the
chemical potential we would have at pressure P̄ if � were
zero. In the next appendix, we will see that in fact the
replacement μ → μ − m� is also the correct prescription
to couple pointlike particles such as phonons and rotons to
gravity.

APPENDIX D: EFFECTIVE ACTION
FROM THE COSET CONSTRUCTION

We will now give an alternative derivation of the effective
action for a pointlike object moving in a superfluid. Our
discussion will be entirely based on symmetry considerations
and rely on the coset construction [44,45] for spontaneously
broken space-time symmetries [46,47]. In what follows we will
assume familiarity with this technique. If necessary, we refer
the reader to Sec. 2 of [48] for a concise review.

The symmetry group of a nonrelativistic (s-wave16) super-
fluid is simply the Galilei group. Its generators satisfy the
well-known commutation relations [49]

[Ji,Jj ] = iεijkJ
k, [Ji,Kj ] = iεijkK

k, [Ji,Pj ] = iεijkP
k,

[Ki,Pj ] = −iδijM, [Ki,H0] = −iPi . (D1)

The algebra above contains an additional central charge, M ,
compared to the Poincaré algebra. This is just the total mass,
which for nonrelativistic systems is a conserved quantity.
For systems made of a single-particle species, M is simply
proportional to the particle number Q, i.e., M = mQ, with
m the mass of the particle.17A superfluid state spontaneously

16For p-wave superfluids one needs to consider the spin as well,
which, for nonrelativistic systems with negligible spin-orbit cou-
plings, can be treated as an internal symmetry.

17Note that if we trade M for Q in the algebra, the mass m can
always be removed by rescaling appropriately the generators Ki and
Pi . Since our derivation of the action for the Goldstone modes will
solely depend on the symmetry algebra and the breaking pattern, this
is another manifestation of the fact that one does not need to know
the mass of the elementary constituents (helium atoms, in our case)
to describe their collective excitations (phonons).

134516-17



ALBERTO NICOLIS AND RICCARDO PENCO PHYSICAL REVIEW B 97, 134516 (2018)

breaks some of the Galilei symmetries in a way that can be
summarized as follows [5]:

unbroken =
⎧⎨
⎩

H ≡ H0 − μQ,
�P ,
�J ,

broken =
{
Q,
�K.

(D2)

Boosts are broken because the superfluid admits a preferred
reference frame—the one in which it is at rest—and so is Q

(this is the field theory analog of Bose-Einstein condensation)
[5]. On the other hand, the ground state is still homogeneous
and isotropic, which is why �P and �J are unbroken, and it
is an eigenstate of the combination H0 − μQ—the effective
Hamiltonian at finite chemical potential—which therefore is
also unbroken.

Using the coset construction, one can derive the effective
action (4) for a superfluid solely from the Galilei algebra (D1)
and the symmetry-breaking pattern (D2). Let us review very
briefly how this works in this simpler setting before turning
our attention to the more involved pointlike particle case. A
more pedagogical derivation of what follows can be found in
[5]. Our starting point is the coset parametrization

� = e−itH+i �x· �P ei �η(t,�x)· �Keiπ(t,�x)Q, (D3)

out of which one can build the Maurer-Cartan form:

�−1∂μ� = i

{
−δ0

μH + (
δi
μ + δ0

μηi
)
Pi + ∂μηiKi

+
(

∂μπ − δi
μmηi − δ0

μ

m

2
η2

)
Q

}
, (D4)

which can be easily obtained by repeated use of the commu-
tation relations (D1). The fields π and �η are the Goldstone
modes associated with the breaking of Q and �K , respectively,
and their “covariant derivatives” can be extracted [5] from the
right-hand side of (D4):

∇μπ = δ0
μ

(
π̇ + m

2
η2 − ηi∂iπ

)
+ δi

μ(∂iπ − mηi), (D5)

∇μ�η = ∂μ�η. (D6)

It is well known that s-wave superfluids at T = 0 have only
one Goldstone mode—the superfluid phonon. In fact, the
Goldstones �η can be eliminated from the effective theory in
a way that is consistent with all the symmetries by imposing
a so-called inverse Higgs constraint [50]. In our case, this
amounts to setting to zero the spatial covariant derivative of
π and solving for �η:

∇iπ = ∂iπ − mηi ≡ 0 −→ ηi = ∂iπ

m
. (D7)

Then, the only quantity that remains with at most one derivative
per field is

∇tπ = π̇ + m

2
η2 − ηi∂iπ = ∂tπ − (∇π )2

2m
, (D8)

which up to an inconsequential factor of m is precisely the
combination that appears in Eq. (4).

In the Newtonian limit, the coupling with gravity is ob-
tained by replacing ∂μ → ∂μ − iδ0

μ�M in the definition of the

Maurer-Cartan form [48,51]. This replacement has the only
effect of changing the covariant derivative of π to

∇μπ = δ0
μ

(
π̇ + m

2
η2 − ηi∂iπ − m�

)
+ δi

μ(∂iπ − mηi).

(D9)

Thus, the inverse Higgs constraint remains the same as in
Eq. (D7), and after expressing ∇tπ solely in terms of π we
recover the combination in parentheses on the right-hand side
of (C2).

Let us now turn our attention to the case of a pointlike
object moving in the superfluid with some constant velocity
�v0 = v0x̂3, and let us determine how the action can depend on
perturbations of its trajectory. We take this as a starting point,
rather than the case of an object at rest, because it is more
general: for instance, phonons can never be at rest. The object
in question will break additional symmetries compared to the
ones already broken by the medium. In fact, the overall system
is no longer homogeneous, since we can think of the object as
some sort of impurity, nor isotropic, since the motion of the
object defines a preferred direction. The only symmetries that
remain unbroken are therefore

H ′ ≡ H − v0P3, J3. (D10)

All other symmetries are spontaneously broken, and thus the
coset parametrization is now more involved and reads18

�(t) = e−itH ′
eiδ�x(t)· �P ei �η(t,�x(t))· �Keiπ(t,�x(t))Qeiθa (t)Ja , (D11)

with Ja = (J1,J2).19 Here, δ�x(t) should be thought of as
fluctuations in the position of the object around the background
solution �x0(t) = �v0t . Similarly, θa(t) should be interpreted as
fluctuations of the direction of the particle’s trajectory. From
this perspective, the θ ’s are in some sense redundant, and in
fact we will be able eliminate them by imposing more inverse
Higgs constraints. Notice also that bulk fields such as π and �η
must evaluated at the instantaneous position of the object, that
is, �x(t) = �v0t + δ�x(t). The Maurer-Cartan form including the
coupling with gravity is now

�−1

[
d

dt
− i�(t,�x(t))M

]
�, (D12)

and the relevant covariant derivatives are

∇t x
i = (ẋj + ηj )Rj

i(θa) − v0δ
i
3, (D13)

∇tπ = π̇ − m

2
η2 − m� + �̇x · (∇π − m�η), (D14)

18The actions for relativistic and nonrelativistic pointlike particles
in vacuum were derived using the coset construction in [48,52] and
[53], respectively.

19Notice that our system will in general feature more than one
symmetry-breaking scale. In fact, Q and �K (D2) are broken by the
medium at length scales of the order of the interatomic distance a; �P
and J a are instead broken by the object at a length scale of the order
of its size R, which for phonons and rotons is determined by the de
Broglie wavelength, 1/p.
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with Rij = (eiθaJa )ij . These covariant derivatives have only a
time component because the only unbroken translations are
those generated by H ′.

Using the solution to the bulk inverse Higgs constraint (D7),
we see immediately that ∇tπ reduces to the combination of
bulk fields π and � that appears on the right-hand side of
Eq. (C2). Moreover, as long as v0 �= 0, we can also impose the
inverse Higgs constraints

∇t x
a = (ẋj + ηj )Rj

a ≡ 0, (D15)

and solve them to eliminate the Goldstones θa . The easiest
way to achieve this is to realize that, thanks to the properties
of rotation matrices, we can regard Rj

1,Rj
2, and Rj

3 as three
orthonormal vectors. From this viewpoint, the inverse Higgs
constraint (D15) implies that (ẋj + ηj ) ∝ Rj

3, and requiring
that Rj

3Rj3 = 1 we find

∇t x
3 = |�̇x + ∇π/m| − v0. (D16)

Since the superfluid velocity in these units is �u = −∇π/m, we
thus see that the low-energy effective action for a point particle
moving in a superfluid is

Spp =
∫

dtf (π̇ − (∇π )2/2m − m�,| �̇x − �u|), (D17)

in complete agreement with the more heuristic arguments given
in Sec. II.

We should point out that the quantity (D16) admits a
well-defined expansion in powers of the Goldstones δ�x and π

only because we are expanding around a nontrivial background
�̇x = �v0. Conversely, the constraint (D15) does not admit a local
solution for θa when v0 = 0. This statement is equivalent to
the observation made in Sec. II that the variable p̂ cannot be
integrated out for rotons with zero velocity.

To conclude, notice that there is a subtlety similar to the one
discussed around Eq. (9). Like in that case, we could add to
the point-particle action a term of the form

−
∫

dt Mg�, (D18)

which is in fact the correct coupling to Newtonian gravity for a
particle in empty space, Mg being its gravitational mass. This
term is invariant under the Newtonian gauge transformations
� → � + constant only up to total derivatives, which is why
it is not contemplated by the structure (D17). However, from
general relativity we know that Mg must be the same as the Mi

appearing in (9)—both terms come from the nonrelativistic
limit of −Mi

∫
dt

√
gμν ẋμẋν . And so, following exactly the

same manipulations as in (10), the sum of (9) and (D18) can
be completely reabsorbed into the structure (D17).
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