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Recent superconducting gap classifications based on space group symmetry have revealed nontrivial gap
structures that were not shown by point group symmetry. First, we review a comprehensive classification of
symmetry-protected line nodes within the range of centrosymmetric space groups. Next, we show an additional
constraint; line nodes peculiar to nonsymmorphic systems appear only for primitive or orthorhombic base-centered
Bravais lattice. Then, we list useful classification tables of 59 primitive or orthorhombic base-centered space
groups for the superconducting gap structures. Furthermore, our gap classification reveals the jz-dependent point
nodes (gap opening) appearing on a three- or sixfold axis, which means that the presence (absence) of point
nodes depends on the Bloch-state angular momentum jz. We suggest that this unusual gap structure is realized
in a heavy-fermion superconductor UPt3, using a group-theoretical analysis and a numerical calculation. The
calculation demonstrates that a Bloch phase contributes to jz as effective orbital angular momentum by site
permutation. We also discuss superconducting gap structures in MoS2, SrPtAs, UBe13, and PrOs4Sb12.
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I. INTRODUCTION

Classification of a superconducting gap is one of the central
subjects in the research field of unconventional superconduc-
tivity. The momentum dependence of the superconducting gap
is closely related to the symmetry of superconductivity and the
pairing mechanism. Since the superconducting gap structure
can be identified by various experiments [1,2], combined
studies of the superconducting gap by theory and experiment
may clarify the characteristics of superconductivity. Most of
the previous studies have been based on the classification of
an order parameter by the crystal point group [3–5], which
was summarized by Sigrist and Ueda (called the Sigrist-Ueda
method in this paper) [6]. However, their classification may
not provide a precise result of the superconducting gap.

The results of the Sigrist-Ueda method may not be precise
because of the following two reasons. First, the order param-
eter obtained by the method does not appropriately indicate
the superconducting gap structure. Second, the space group
symmetry is not taken into account in the method. Since a
space group is given by the combination of a point group and
a translation group, it provides us with more information than
the point group. The difficulties of the Sigrist-Ueda method
are resolved by directly classifying the superconducting gap
on the basis of the space group symmetry. Indeed, several
studies have shown that the space group symmetry ensures
the unconventional gap structures beyond the results of the
Sigrist-Ueda method [7–20].

In 1985, Blount showed that no symmetry-protected line
node exists in odd-parity superconductors [21]. The Sigrist-
Ueda method is consistent with Blount’s theorem. After that,
however, some studies showed a counterexample, namely a line
node in nonsymmorphic systems, and indeed suggested a line
node protected by a nonsymmorphic space group symmetry
in UPt3 [8,13–17]. At present, it is known that Blount’s
theorem holds only in symmorphic crystals. The essence is
that the nonsymmorphic symmetry causes the difference in the

group-theoretical representation of gap functions between the
basal planes (BPs) and the zone faces (ZFs) in the Brillouin
zone (BZ). Although the Sigrist-Ueda method appropriately
implies the gap functions on the BPs, it may fail to show those
on the ZFs. Indeed, such unconventional gap structures on the
ZFs have recently been revealed in various superconductors,
not only UPt3 [8,13–17] but also UCoGe [18], UPd2Al3

[18,19], and Sr2IrO4 [20].
Regarding point nodes, on the other hand, Weyl nodes

in superconductors, namely point nodes protected by a non-
trivial topological number, have been intensively investigated
[15,22–31]. However, there are only a few and less known
results about point nodes connected with crystal symmetry
[7,9–12].

In this paper, we classify unconventional line nodes and
point nodes beyond the results of the Sigrist-Ueda method
using the group-theoretical analysis of the superconducting
gap. First, we review the results of symmetry-protected line
nodes [8,13–20], clarifying the condition for the existence
of line nodes protected by nonsymmorphic symmetry. Next
we show our original and useful results; nonsymmorphic-
symmetry-protected line nodes appear only on the ZF of
a primitive or orthorhombic base-centered Bravais lattice.
We classify all space groups under the additional constraint.
Second, we consider the gap structures on high-symmetry
n-fold (n = 2, 3, 4, and 6) axes in the BZ, and we elucidate
the symmetry-protected point nodes. Surprisingly, the analysis
shows the existence of point nodes depending on the Bloch-
state angular momentum jz, and we suggest such jz-dependent
point nodes in UPt3, MoS2, SrPtAs, UBe13, and PrOs4Sb12.

This paper is constructed as follows. We introduce the
method of superconducting gap classification based on space
group symmetry in Sec. II. In Sec. III, we show that the
condition for unconventional nonsymmorphic line nodes is
twofold screw symmetry and/or antiferromagnetic (AFM)
order with a translation vector along the twofold axis. Then,
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we classify 59 space groups for the superconducting gap
structures. Next, we show jz-dependent point nodes on three-
and sixfold axes (not on two- and fourfold axes) in Sec. IV.
Furthermore, we discuss the presence or absence of such point
nodes in hexagonal superconductors UPt3, MoS2, and SrPtAs,
and in cubic superconductors UBe13 and PrOs4Sb12. Finally, a
brief summary and discussion are given in Sec. V.

II. CLASSIFICATION THEORY
OF SUPERCONDUCTING GAP

Let us briefly introduce the superconducting gap classifica-
tion based on the space group symmetry for background knowl-
edge of the following sections. First, we focus on a magnetic
space group M , and we restrict M to the high-symmetry k point
in the BZ. Then, we define γ k(m) as a small representation of
symmetry operations m ∈ Mk, where Mk ⊂ M is the little
group leaving k invariant modulo a reciprocal-lattice vector. γ k

represents the Bloch state with the crystal momentum k. In the
superconducting state, zero center-of-mass momentum Cooper
pairs have to be formed between degenerate states present at
k and −k in the same band when we adopt the weak-coupling
BCS theory. Then, the two states should be connected by some
symmetry operations, such as spacial inversion, except for an
accidentally degenerate case. As a result, the representation of
Cooper pair wave functions P k can be constructed from the
representations of the Bloch state γ k.

Next, we calculate the representation of the Cooper pair
wave functions P k. Let us consider the space group operation
d = {pd |ad} ∈ M , where pd satisfies pd k ≡ −k modulo a
reciprocal-lattice vector. Note that the notation {p|a} is a
conventional Seitz space group symbol with a point-group
operation p and a translation a. The operation d connects
two states of the paired electrons. Although the choice of d

is not unique, the magnetic space group of Cooper pair wave
functions M̃k = Mk + dMk is independent of the choice
of d. Therefore, we fix d to a spatial inversion {I |0} in the
following discussion. Taking into account the antisymmetry of
the Cooper pairs and the degeneracy of the two states, we can
regard P k as an antisymmetrized Kronecker square [32,33],
with zero total momentum, of the induced representation
γ k↑M̃k. This is obtained in a systematic way by using the
double coset decomposition and the corresponding Mackey-
Bradley theorem [32–34],

χ [P k(m)] = χ [γ k(m)]χ [γ k(ImI )], (1a)

χ [P k(Im)] = −χ [γ k(ImIm)], (1b)

where m ∈ Mk, and χ are characters of the representation. A
proof of the Mackey-Bradley theorem in the context of Cooper
pair wave functions is shown in Appendix A.

Finally, we reduce P k into irreducible representations (IRs)
of the original crystal point group. The gap functions should be
zero, and thus the gap nodes appear if the corresponding IRs
do not exist in the results of reductions [7,9,35]. Otherwise,
the superconducting gap will open in general. Therefore, the
representation of Cooper pair wave functions P k tells us the
presence or absence of superconducting gap nodes.

Now we comment on the validity of the above method.
Our method of gap classification does not take into account
spontaneous symmetry breaking (SSB) in the superconducting
state, because the method assumes that all symmetry operations
of the normal Bloch state Mk remain in the magnetic space
group of Cooper pair wave functions M̃k = Mk + IMk.
Thus, the method is valid for all the superconducting states
in a one-dimensional representation. However, an application
to chiral superconducting states, which spontaneously breaks
time-reversal symmetry, is not straightforward. Later, we
discuss implications for this case. On the other hand, we can
treat ferromagnetic superconductors, in which time-reversal
symmetry is originally broken in the normal state and Mk

does not contain the time-reversal symmetry.

III. COMPLETE CLASSIFICATION
OF SYMMETRY-PROTECTED LINE NODES

In this section, we review the classification results of
symmetry-protected line nodes on mirror- or glide-invariant
planes [8,13–20], clarifying the condition for the presence or
absence of line nodes protected by nonsymmorphic symmetry.
Furthermore, we show an additional constraint: line nodes
(gap opening) peculiar to nonsymmorphic systems appear only
on the ZF for primitive or orthorhombic base-centered space
groups. We provide classification tables (Table II) of 59 such
space groups, which may allow nontrivial superconducting gap
structures by nonsymmorphic symmetry.

First, we show constraints on crystal symmetry of the
system where the formalism in Sec. II is applicable. Since
this method requires the symmetry operation connecting k and
−k, the system must be invariant under the spatial inversion
I . The symmetry-protected line node may appear on the high-
symmetry k planes when a Fermi surface crosses the plane
and the gap function vanishes there. Thus, we need to consider
k planes as high-symmetry k points in order to discuss line
nodes. Only an identity operation and a mirror reflection (or
a glide reflection) are allowed as elements of the unitary little
group for the general point on the high-symmetry k planes.

For the above reasons, we assume that the symmetry of
the system contains point group C2h, which is generated by a
spatial inversion and a mirror reflection. In other words, the
space group of the system G has a subgroup H ⊂ G, which is
C2h within the point-group symmetry. Taking translations into
account, H is classified as follows:

H =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{E|0}T + {I |0}T + {C2⊥|0}T + {σ⊥|0}T (RM) Rotation + Mirror,

{E|0}T + {I |0}T + {C2⊥|τ ‖}T + {σ⊥|τ ‖}T (RG) Rotation + Glide,

{E|0}T + {I |0}T + {C2⊥|τ⊥}T + {σ⊥|τ⊥}T (SM) Screw + Mirror,

{E|0}T + {I |0}T + {C2⊥|τ ‖ + τ⊥}T + {σ⊥|τ ‖ + τ⊥}T (SG) Screw + Glide.

(2)
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FIG. 1. (a) The coordinate r⊥ along the twofold axis, and the other
coordinates r‖ perpendicular to the twofold axis. (b) An example of
the AFM1 case. The red arrows illustrate magnetic moments on a
square lattice, and the dashed line indicates a magnetic unit cell.

The translation group T defines a Bravais lattice, and τ i

are nonprimitive translation vectors. E denotes an identity
operation, C2⊥ is a π -rotation around the r⊥ axis, and σ⊥ is a
mirror reflection about the plane perpendicular to the r⊥ axis.
Note that the direction of the twofold axis is represented by a
symbol ⊥, while the other directions orthogonal to the twofold
axis are represented by a symbol ‖ [Fig. 1(a)]. In Eq. (2), the
(RM) space group is symmorphic, and the other (RG), (SM),
and (SG) space groups are nonsymmorphic.

Next, we discuss the magnetic (antiunitary) symmetry of
the system. When the system is ferromagnetic (FM), all the
time-reversal operation is forbidden. On the other hand, in the
paramagnetic (PM) or AFM state, the system is invariant under
the antiunitary operation θ̃ :

θ̃ =

⎧⎪⎨⎪⎩
{θ |0} (PM),
{θ |τ ‖} (AFM1),
{θ |τ⊥} (AFM2),
{θ |τ ‖ + τ⊥} (AFM3),

(3)

where θ is the pure time-reversal operation. The pure time-
reversal operation is allowed in the (PM) state, while the system
is invariant under the successive operations of time-reversal
and nonprimitive translation in the (AFM1)–(AFM3) states.
For example, a magnetic structure of the (AFM1) state is
shown in Fig. 1(b): although magnetic moments (red arrows)
flip under the time-reversal operation, the magnetic structure
recovers after a half-translation τ ‖ = r̂‖/2.

By adding the antiunitary operators (3) to the unitary space
group (2), we can construct the magnetic space group M = H

(FM) or M = H + θ̃H (PM or AFM). Based on the magnetic

space group, the gap classification introduced in Sec. II is
applied to high-symmetry, namely mirror- or glide-invariant
planes in the BZ: the BP at k⊥ = 0 and the ZF at k⊥ = π . The
obtained results are summarized in Table I. In this table, the
representations of superconducting gap functions are classified
by the IRs of point group C2h.

The classification of a superconducting gap on BPs is
consistent with the Sigrist-Ueda method. On the other hand,
the representations allowed on the ZF may differ from those
on the BP. Then, the line nodes (or gap opening) protected by
nonsymmorphic symmetry appear on the ZF. Such a situation
is realized when the space group is (SM) or (SG), and/or
the pseudo-time-reversal symmetry is (AFM2) or (AFM3).
In other words, when the system preserves the symmetry
operation(s) including nonprimitive translation τ⊥ perpendic-
ular to the mirror plane, the symmetry ensures nontrivial gap
structures beyond the Sigrist-Ueda method.

Results consistent with Table I have been recently shown by
Micklitz and Norman [19]. Using a Clifford algebra technique,
they also confirmed that the line nodes by nonsymmorphic
symmetry are protected by a Z topological number. A further
discussion about the topological stability of the line nodes and
resulting surface states, namely Majorana flat bands, is given
in another publication [37].

In the above discussion, we have reviewed the gap classifica-
tion of line nodes on mirror- or glide-invariant planes. Here we
reconsider constraints on the crystal symmetry of the system.
Space groups containing C2h symmetry are divided into four
types: primitive, orthorhombic base-centered, body-centered,
and face-centered space groups. All types of space groups have
one or more mirror-invariant BP (k⊥ = 0) in the BZ. On the
other hand, corresponding mirror-invariant ZFs (k⊥ = π ) exist
only for primitive or orthorhombic base-centered space groups.
Although some body-centered or face-centered space groups
also have mirror-invariant ZFs, all of them are k⊥ = 2π planes,
where the gap classification gives the same result as that on BPs
(k⊥ = 0 planes). Examples of mirror-invariant BPs and ZFs in
the BZ of a primitive or orthorhombic base-centered Bravais
lattice are illustrated in Figs. 2(a)–2(d).

As shown in Table I, unconventional line nodes (gap
opening) protected by nonsymmorphic symmetry appear
on k⊥ = π planes. Therefore, we conclude that nontrivial
nonsymmorphic-symmetry-protected line nodes may appear
not for a body-centered or face-centered Bravais lattice, but
for a primitive or orthorhombic base-centered Bravais lattice.
This additional constraint simplifies the classification of space
groups with respect to the superconducting gap structure.

TABLE I. Classification of the superconducting gap on the high-symmetry k plane. H and θ̃ specify the space group by Eqs. (2) and (3).
The representations of Cooper pairs allowed on the high-symmetry k planes (BP and ZF) are shown. Materials realizing the space groups are
also shown.

H θ̃ BP (k⊥ = 0) ZF (k⊥ = π ) Material

(RM), (RG) N/A Au Au

(SM), (SG) N/A Au Bu UCoGe (FM) [18], URhGe [18]
(RM), (RG) (PM), (AFM1) Ag + 2Au + Bu Ag + 2Au + Bu

(RM), (RG) (AFM2), (AFM3) Ag + 2Au + Bu Bg + 3Au Sr2IrO4 (vertical) [20], UPt3 (AFM) [19]
(SM), (SG) (PM), (AFM1) Ag + 2Au + Bu Ag + 3Bu UPt3 (PM) [8,13–17], UCoGe (PM) [18], CrAs [19]
(SM), (SG) (AFM2), (AFM3) Ag + 2Au + Bu Bg + Au + 2Bu UPd2Al3 [18,19,36], UNi2Al3 [19], Sr2IrO4 (horizontal) [20]
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FIG. 2. Mirror-invariant BPs and ZFs in the first BZ for (a) monoclinic primitive, (b) orthorhombic base-centered, (c) orthorhombic
primitive/tetragonal primitive/cubic primitive, and (d) hexagonal primitive Bravais lattice. The blue and red planes represent BPs and ZFs,
respectively.

For the above reason, we classify here only primitive
and orthorhombic base-centered space groups containing C2h

symmetry, which may allow nontrivial gap structures by
nonsymmorphic symmetry. High-symmetry BPs and ZFs [red
planes in Figs. 2(a)–2(d)] are classified into (RM), (RG),
(SM), or (SG) of Eq. (2). The results are summarized in
Tables II(a)–II(e). Combining Tables I and II, we may elucidate
the superconducting gap structure on the BPs and ZFs. Since
the symmetry-protected line nodes can appear only on these
mirror-invariant k planes, the group-theoretical classification
of line nodes is completed.

Finally, space groups of the candidate materials for non-
symmorphic line nodes (gap opening) are illustrated in the
following:

(i) PM UPt3 [8,13–17]:

G = P 63/mmc [Table II(d)],

θ̃ = {θ |0};
(ii) PM UCoGe [18]:

G = Pnma [Table II(b)],

θ̃ = {θ |0};
(iii) FM UCoGe [18]:

G = P 21/c [Table II(a)];

(iv) AFM UPd2Al3 [18,19,36]:

G = P 21/m [Table II(a)],

θ̃ = {θ |τ⊥};

(v) AFM Sr2IrO4 [20]:

G = Pcca [Table II(b)],

θ̃ = {θ |τ ‖ + τ⊥}.

IV. jz-DEPENDENT SYMMETRY-PROTECTED
POINT NODES

In Sec. III, the condition for nontrivial line nodes beyond
the Sigrist-Ueda method has been elucidated by using the gap
classification on high-symmetry k planes. In this section, we
show nontrivial symmetry-protected point nodes using the gap
classification on high-symmetry k lines, namely the n-fold axis
(n = 2, 3, 4, and 6). In the following part, nonsymmorphic
symmetry does not play any important role,1 and thus we
consider symmorphic space groups and the PM state for
simplicity.

The little group on an n-fold axis Mk
n is given by

Mk
n =

n−1∑
m=0

{Cn|0}mT + {θI |0}
n−1∑
m=0

{Cn|0}mT , (4)

where Cn represents the n-fold rotation. The small repre-
sentations of Mk

n are obtained by the double-valued IR of

1The results in Table IV are not changed even when the system has
nonprimitive translations parallel to the n-fold axis, because the phase
factor arising from the translations is canceled during calculation of
the Mackey-Bradley theorem.
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TABLE II. Classification of (a) monoclinic, (b) orthorhombic, (c) tetragonal, (d) hexagonal, and (e) cubic space groups. The table for
orthorhombic space groups shows primitive and base-centered Bravais lattices, while the other tables show the primitive Bravais lattice. The
first and second columns show the number and the name of space groups, respectively. The following column(s) represent the results of
classification based on Eq. (2) when we fix the direction of mirror-invariant BP and ZF [see also Figs. 2(a)–2(d)].

(a) (b) (c)

No. Short ⊥= y No. Short ⊥= x ⊥= y ⊥= z No. Short ⊥= z ⊥= x,y

10 P 2/m (RM) 47 Pmmm (RM) (RM) (RM) 83 P 4/m (RM) N/A
11 P 21/m (SM) 48 Pnnn (RG) (RG) (RG) 84 P 42/m (RM) N/A
13 P 2/c (RG) 49 Pccm (RG) (RG) (RM) 85 P 4/n (RG) N/A
14 P 21/c (SG) 50 Pban (RG) (RG) (RG) 86 P 42/n (RG) N/A

51 Pmma (SM) (RM) (RG) 123 P 4/mmm (RM) (RM)
52 Pnna (RG) (SG) (RG) 124 P 4/mcc (RM) (RG)
53 Pmna (RM) (RG) (SG) 125 P 4/nbm (RG) (RG)
54 Pcca (SG) (RG) (RG) 126 P 4/nnc (RG) (RG)
55 Pbam (SG) (SG) (RM) 127 P 4/mbm (RM) (SG)
56 Pccn (SG) (SG) (RG) 128 P 4/mnc (RM) (SG)
57 Pbcm (RG) (SG) (SM) 129 P 4/nmm (RG) (SM)
58 Pnnm (SG) (SG) (RM) 130 P 4/ncc (RG) (SG)
59 Pmmn (SM) (SM) (RG) 131 P 42/mmc (RM) (RM)
60 Pbcn (SG) (RG) (SG) 132 P 42/mcm (RM) (RG)
61 Pbca (SG) (SG) (SG) 133 P 42/nbc (RG) (RG)
62 Pnma (SG) (SM) (SG) 134 P 42/nnm (RG) (RG)
63 Cmcm N/A N/A (SM) 135 P 42/mbc (RM) (SG)
64 Cmca N/A N/A (SG) 136 P 42/mnm (RM) (SG)
65 Cmmm N/A N/A (RM) 137 P 42/nmc (RG) (SM)
66 Cccm N/A N/A (RM) 138 P 42/ncm (RG) (SG)
67 Cmma N/A N/A (RG)
68 Ccca N/A N/A (RG)

(d) (e)

No. Short ⊥= z ⊥= [1−10],[120],[210] No. Short ⊥= x,y,z

175 P 6/m (RM) N/A 200 Pm3̄ (RM)
176 P 63/m (SM) N/A 201 Pn3̄ (RG)
191 P 6/mmm (RM) (RM) 205 Pa3̄ (SG)
192 P 6/mcc (RM) (RG) 221 Pm3̄m (RM)
193 P 63/mcm (SM) (RM) 222 Pn3̄n (RG)
194 P 63/mmc (SM) (RG) 223 Pm3̄n (RM)

224 Pn3̄m (RG)

corresponding point groups (little cogroups) Cn = Mk
n/T

[Tables III(a)–III(e)]. Note that each IR in Table III is composed

TABLE III. The double-valued IRs of cyclic point groups
[32,38,39].

(a) twofold axis (b) threefold axis

C2 E C2 C3 E C3 C2
3

E1/2 2 0 E1/2 2 1 −1
2B3/2 2 −2 2

(c) fourfold axis (d) sixfold axis

C4 E C4 C3
4 C2

4 C6 E C6 C5
6 C3 C2

3 C2

E1/2 2
√

2 −√
2 0 E1/2 2

√
3 −√

3 1 −1 0
E3/2 2 −√

2
√

2 0 E5/2 2 −√
3

√
3 1 −1 0

E3/2 2 0 0 −2 2 0

of two one-dimensional representations, which are degenerate
due to the successive operations of time-reversal and spatial
inversion {θI |0}. The subscripts 1/2, 3/2, and 5/2 correspond
to the total angular momentum of the Bloch state jz = ±1/2,
±3/2, and ±5/2, respectively [38,39].

From the small representation corresponding to the Bloch
wave function, we can calculate P k, the representation of the
Cooper pair wave function, using the Mackey-Bradley theorem
[Eq. (1)]. Since inversion operation I commutes with any
symmetry operation in the case of the symmorphic system,
Eq. (1) is simplified,

χ [P k(m)] = χ [γ k(m)]2, (5a)

χ [P k(Im)] = −χ [γ k(m2)]. (5b)

Characters of P k obtained by calculating Eq. (5) are
summarized in Tables IV(a)–IV(d).
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TABLE IV. Characters of representations of Cooper pair wave
functions on n-fold axis.

(a) twofold axis (b) threefold axis

C2h E C2 I σh S6 E C3,C
2
3 I IC3,IC2

3

P k 4 0 −2 2 P k
1 4 1 −2 1

P k
2 4 4 −2 −2

(c) fourfold axis

C4h E C4,C
3
4 C2

4 I IC4,IC3
4 σh

P k 4 2 0 −2 0 2

(d) sixfold axis

C6h E C6,C
5
6 C3,C

2
3 C2 I IC3,IC2

3 IC6,IC5
6 σh

P k
1 4 3 1 0 −2 1 −1 2

P k
2 4 0 4 0 −2 −2 2 2

From Table IV, we reduce the representation P k into IRs
of point group M̃k

n/T = Cn + ICn:
(i) Twofold axis (M̃k

n/T = C2h),

P k = Ag + Au + 2Bu (γ k = E1/2); (6)

(ii) threefold axis (M̃k
n/T = S6),

P k
1 = Ag + Au + Eu (γ k = E1/2), (7a)

P k
2 = Ag + 3Au (γ k = 2B3/2); (7b)

(iii) fourfold axis (M̃k
n/T = C4h),

P k = Ag + Au + Eu (γ k = E1/2,E3/2); (8)

(iv) sixfold axis (M̃k
n/T = C6h),

P k
1 = Ag + Au + E1u (γ k = E1/2,E5/2), (9a)

P k
2 = Ag + Au + 2Bu (γ k = E3/2). (9b)

In the twofold and fourfold symmetric cases, the representa-
tion of the Cooper pair wave function is unique irrespective of
the normal Bloch state γ k. On the other hand, in the threefold
and sixfold symmetric cases, two nonequivalent representa-
tions of the Cooper pair emerge depending on the Bloch-state
angular momentum jz. For example, on the threefold axis,
the Eu order parameter is allowed (forbidden) in the case of
the E1/2 (2B3/2) Bloch state. This means that the Eu super-
conducting gap opens in the energy band of the jz = ±1/2
state, while point nodes appear for jz = ±3/2. Therefore, the
presence or absence of point nodes is jz-dependent when the
system has threefold or sixfold rotational symmetry. Such a
jz-dependent gap structure is not obtained by the Sigrist-Ueda
method. Thus, the gap structure beyond the Sigrist-Ueda theory
may be obtained from Eqs. (7a), (7b), (9a), and (9b). In the
following subsections, we suggest a material realization of this
unusual gap structures in UPt3, and we discuss other candidate
superconductors.

A. UPt3 (space group: P63/mmc)

Superconductivity in UPt3 has been investigated intensively
after the discovery of superconductivity in 1980s [40]. Multiple

FIG. 3. Multiple superconducting phases of UPt3 in the magnetic
field-temperature plane [45,46]. The shaded region shows the Weyl
superconducting phase [15,23].

superconducting phases illustrated in Fig. 3 [41–44] unam-
biguously exhibit exotic Cooper pairing, which is probably
categorized into the two-dimensional (2D) IR of point group
D6h [6]. After several theoretical proposals examined by ex-
periments for more than three decades, the E2u representation
has been regarded as the most reasonable symmetry of a
superconducting order parameter [45,46]. In particular, the
multiple superconducting phases in the temperature–magnetic-
field plane are naturally reproduced by assuming a weak
symmetry-breaking term of hexagonal symmetry [45]. Fur-
thermore, a phase-sensitive measurement [47] and the observa-
tion of spontaneous time-reversal symmetry breaking [48,49]
in the low-temperature and low-magnetic-field B phase, which
was predicted in the E2u state, support the E2u symmetry of
superconductivity.

The crystal structure of UPt3 is illustrated in Fig. 4. The
symmetry of the crystal is represented by nonsymmorphic
space group P 63/mmc,2 which is based on the primitive
hexagonal Bravais lattice. In this space group, the BZ takes
the form of Fig. 5. This BZ has a threefold rotation axis on the
K-H line as well as a sixfold rotation axis on the �-A line.

Quantum oscillation measurements combined with band-
structure calculations [16,46,51–54] have shown a pair of

2Symmetry breaking by a weak crystal distortion has been reported
[50], although its reliability is under debate. Here we assume a high-
symmetry space group P 63/mmc.

FIG. 4. Crystal structure of UPt3. Uranium ions form an AB

stacked triangular lattice. 2D vectors, ei and r i , are shown by arrows.
The black solid diamond shows the unit cell.
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FIG. 5. The first BZ of a primitive hexagonal lattice. The red lines
show three- and sixfold rotation symmetric axes.

Fermi surfaces (FSs) centered at the A point (A-FSs), three
FSs at the � point (�-FSs), and two FSs at the K point
(K-FSs) in UPt3. Although previous studies have clarified
gap structures on the A-FSs and �-FSs [7–9,13–16,23], those
on the K-FSs have not been theoretically studied. From the
results of classification theory given in this section, however,
it would be interesting to examine the gap structure on the
K-FSs, since they cross the K-H line. Indeed, we show the
intriguing jz-dependent point nodes on the K-H line.

1. Gap classification

Now we apply the classification theory introduced in Sec. II
to the space group of UPt3. In the space group P 63/mmc, the
BZ has a sixfold axis �-A, and threefold axes K-H and K ′-H ′
(see Fig. 5). On the �-A line, the little group has C6v symmetry,
which results in three small representations γ k = E1/2, E3/2,
and E5/2. In the superconducting state, we obtain two different
representations of the Cooper pair wave function:

P k
1 = A1g + A1u + E1u (γ k = E1/2,E5/2), (10a)

P k
2 = A1g + A1u + B1u + B2u (γ k = E3/2), (10b)

which have been decomposed into IRs of point group D6h =
C6v + IC6v . The same result has been suggested by Yarzhem-
sky [7,9]. From the discussion in this section, UPt3 is con-
sidered to possess the E2u superconducting order parameter.
According to Eqs. (10a) and (10b), the E2u representation is
not allowed for any small representations γ k = E1/2, E3/2,
and E5/2. Therefore, point nodes appear on the �-A line
irrespective of the property of the normal Bloch state. We can
obtain the same conclusion with the Sigrist-Ueda method.

On the other hand, the gap structure on the K-H (K ′-H ′)
line is jz-dependent. The little group has C3v symmetry,
which results in two small representations γ k = E1/2 and E3/2.
Corresponding to these two Bloch states, the Cooper pair wave
function has two different representations:

P k
1 = A1g + A1u + Eu (γ k = E1/2), (11a)

P k
2 = A1g + 2A1u + A2u (γ k = E3/2), (11b)

which have been decomposed into IRs of point group D3d =
C3v + IC3v . Then, P k can be induced to the point group
D6h with the help of the Frobenius reciprocity theorem [32].
The induced representations P k↑D6h are summarized in the
following equations:

P k
1 ↑D6h = A1g + B2g + A1u + B2u + E1u + E2u, (12a)

P k
2 ↑D6h = A1g + B2g + 2A1u + A2u + B1u + 2B2u. (12b)

From Eqs. (12a) and (12b), the E2u superconducting gap
opens for γ k = E1/2, while point nodes appear for γ k =
E3/2. Thus, the gap structure indeed depends on the angular
momentum of Bloch states. In this case, the classification by
the Sigrist-Ueda method breaks down since it has taken into
account only the pseudospin degree of freedom s = 1/2. In
the following, we demonstrate the nontrivial jz-dependent gap
structure by analyzing a microscopic model.

2. Model and normal Bloch state

Here we introduce the microscopic model of UPt3, and
we clarify the band structure on the K-H line. First, we
introduce the Bogoliubov–de Gennes (BdG) Hamiltonian for
a two-sublattice model [15,23],

HBdG = 1

2

∑
k

C†
k

(
Ĥn(k) �̂(k)
�̂(k)† −Ĥn(−k)T

)
Ck (13)

with

C†
k = (c†ka↑,c

†
ka↓,c

†
kb↑,c

†
kb↓,c−ka↑,c−ka↓,c−kb↑,c−kb↓), (14)

where k, m = a,b, and s = ↑,↓ are the index of momentum,
sublattice, and spin, respectively. The BdG Hamiltonian matrix
is described by the normal-state Hamiltonian,

Ĥn(k) =
(

ξ (k)s0 + αg(k) · s a(k)s0

a(k)∗s0 ξ (k)s0 − αg(k) · s

)
, (15)

and the order-parameter part �̂(k) = [�(k)]ms,m′s ′ . Here si

represents the Pauli matrix in spin space. Taking into account
the crystal structure of UPt3 illustrated in Fig. 4, we adopt an
intrasublattice kinetic energy,

ξ (k) = 2t
∑

i=1,2,3

cos k‖ · ei + 2tz cos kz − μ, (16)

and an intersublattice hopping term,

a(k) = 2t ′ cos
kz

2

∑
i=1,2,3

eik‖·r i , (17)

with k‖ = (kx,ky). The basis translation vectors in two dimen-

sions are e1 = (1,0), e2 = (− 1
2 ,

√
3

2 ), and e3 = (− 1
2 ,−

√
3

2 ). The
interlayer neighboring vectors projected onto the x-y plane are
given by r1 = ( 1

2 , 1
2
√

3
), r2 = (− 1

2 , 1
2
√

3
), and r3 = (0,− 1√

3
).

These 2D vectors are illustrated in Fig. 4.
Although the crystal point group symmetry is centrosym-

metric, D6h, the local point group symmetry at uranium
ions is D3h lacking inversion symmetry. Then, Kane-Mele
antisymmetric spin-orbit coupling (ASOC) [55] with a g vector
[56],

g(k) = ẑ
∑

i=1,2,3

sin k‖ · ei , (18)
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FIG. 6. Schematic band structures on the K-H and K ′-H ′ lines
in (a) the α > 0 case and (b) the α < 0 case. The wave function of
Bloch states crossing the Fermi level is shown in the red frame. The
wave function of the upper band is shown above the band.

is allowed by symmetry. The coupling constant is staggered
between the two sublattices so as to preserve the global D6h

point group symmetry [55,57,58].
To identify the Bloch state, we calculate the normal energy

bands on the K-H line from the normal part Hamiltonian
[Eq. (15)]. Although the band originally has fourfold degen-
eracy arising from the two sublattices and two spin degree of
freedom, this splits into twofold + twofold degenerate bands
due to the effect of the ASOC term. The band structures are
schematically shown in Figs. 6(a) and 6(b). When the coupling
constant of the ASOC term α is positive, |a,↑〉 and |b,↓〉 states
cross the Fermi level on the K-H line, while |b,↑〉 and |a,↓〉
states cross on the K ′-H ′ line [Fig. 6(a)]. On the other hand,
the spin state on the Fermi level changes as shown in Fig. 6(b)
when the α is negative. Note that the pure sublattice-based
representations construct the basis of energy bands, since the
intersublattice hopping term Eq. (17) vanishes on the K-H and
K ′-H ′ lines. This vanishing has been proved by the symmetry
analysis [59,60].

We have investigated the energy band structures of the
normal state in the above discussion. To identify superconduct-
ing gap structures, therefore, we should solve the following
question: Which representation does the band crossing the

FIG. 7. The phase factor eik·r on sites for the K-point Bloch state.
The sublattices a and b obtain different phase values by threefold
rotation.

Fermi level belong to, E1/2 or E3/2? The difference between
these two representations is the total angular momentum jz

(= ±1/2 or ±3/2) of the Bloch state. In the next subsection, we
show that jz contains an effective orbital angular momentum
arising from the permutation of sites, as well as the pure orbital
angular momentum and the spin angular momentum.

3. Effective orbital angular momentum

Here we investigate the total angular momentum jz of the
Bloch state, and we show that jz includes an effective orbital
angular momentum λz arising from a Bloch phase of each site,
in addition to the pure orbital and spin angular momentum.
Furthermore, we clarify that jz of the Bloch states crossing the
Fermi level depends on the sign of the ASOC α.

First, recalling the quantum mechanics, jz should contains
the orbital angular momentum lz and the spin angular momen-
tum sz. In our two-sublattice single-orbital model [Eq. (15)],
the orbital degree of freedom is neglected, and then lz =
0. Since electrons are spin-1/2 fermions, the spin angular
momentum is sz = ±1/2. Therefore, we might consider that
jz = lz + sz = ±1/2 in this model. However, this is not right,
as we show below.

To correctly calculate jz, we have to take into account the
effective orbital angular momentum λz due to the permutation
of sites. The Bloch state has a phase factor (plane-wave
part) eik·r depending on the site [59,60], which is illustrated
in Fig. 7 for the K-point Bloch state [k = (4π/3,0,0)]. By
operating threefold rotation on the K-point Bloch state, the
a sublattice obtains the phase value e+i2π/3 (red arrows)
while the b sublattice gets e−i2π/3 (blue arrows). These phase
factors, which correspond to eiλzθ (θ = 2π/3), indicate that
the sublattices a and b possess an effective orbital angular
momentum λz = +1 and −1, respectively. The Bloch state at
the K ′ point has a complex conjugate phase factor to that on the
K point, which results in λz = −1 (+1) for the a (b) sublattice.
For a more general argument, the effective orbital angular
momentum can be calculated by analyzing the space-group
transformation of the Bloch state (see Appendix B).

Using the above discussion, we calculate the total angular
momentum of the Bloch state by jz = lz + sz + λz. For exam-
ple, in the |a,↑〉 state on the K-H line [see Fig. 6(a)], lz = 0,
sz = +1/2, λz = +1, so that we obtain jz = +3/2. The total
angular momenta of all states are summarized in Table V. From
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TABLE V. The total angular momentum of the Bloch state.

K-H line K ′-H ′ line

lz sz λz jz lz sz λz jz

|a,↑〉 0 +1/2 +1 +3/2 0 +1/2 −1 −1/2
|a,↓〉 0 −1/2 +1 +1/2 0 −1/2 −1 −3/2
|b,↑〉 0 +1/2 −1 −1/2 0 +1/2 +1 +3/2
|b,↓〉 0 −1/2 −1 −3/2 0 −1/2 +1 +1/2

Figs. 6(a) and 6(b), and Table V, we identify the representations
of the Bloch states crossing the Fermi level as follows.

(i) α > 0: E3/2 representation, because

|a,↑〉 = ∣∣jz = + 3
2

〉
, |b,↓〉 = ∣∣jz = − 3

2

〉
on the K-H line, and

|b,↑〉 = ∣∣jz = + 3
2

〉
, |a,↓〉 = ∣∣jz = − 3

2

〉
on the K ′-H ′ line.

(ii) α < 0: E1/2 representation, because

|a,↓〉 = ∣∣jz = + 1
2

〉
, |b,↑〉 = ∣∣jz = − 1

2

〉
on the K-H line, and

|b,↓〉 = ∣∣jz = + 1
2

〉
, |a,↑〉 = ∣∣jz = − 1

2

〉
on the K ′-H ′ line.

Assuming the E2u superconducting order parameter, there-
fore, the gap classification theory indicates that point nodes
emerge on the K-H (K ′-H ′) line when α > 0, while the
gap opens otherwise [see Eqs. (12a) and (12b)]. In the next
subsection, we demonstrate such unusual gap structures by a
numerical analysis of the microscopic model.

4. Gap structures depending on Bloch-state angular momentum

Now we demonstrate unconventional jz-dependent gap
structures using the numerical calculation of the microscopic
model. To investigate the superconducting gap structures, we
consider the two-component order parameters in the E2u IR of
point group D6h:

�̂(k) = η1�̂
E2u

1 + η2�̂
E2u

2 . (19)

The two-component order parameters are parametrized as

(η1,η2) = �(1,iη)/
√

1 + η2 (20)

with a real variable η. The basis functions �̂
E2u

1 and �̂
E2u

2
are admixtures of some harmonics. Adopting the neighboring
Cooper pairs in the crystal lattice of uranium ions, we obtain
the basis functions

�̂
E2u

1 = [
δ1

{
p(intra)

x (k)sx − p(intra)
y (k)sy

}
σ0

+ δ2
{
p(inter)

x (k)sx − p(inter)
y (k)sy

}
σ+/2

+ δ2
{
p(inter)

x (k)∗sx − p(inter)
y (k)∗sy

}
σ−/2

+ f(x2−y2)z(k)szσx − dyz(k)szσy

]
isy, (21)

�̂
E2u

2 = [
δ1

{
p(intra)

y (k)sx + p(intra)
x (k)sy

}
σ0

+ δ2
{
p(inter)

y (k)sx + p(inter)
x (k)sy

}
σ+/2

+ δ2
{
p(inter)

y (k)∗sx + p(inter)
x (k)∗sy

}
σ−/2

+ fxyz(k)szσx − dxz(k)szσy

]
isy, (22)

which are composed of the intrasublattice p-wave, intersub-
lattice p-wave, and intersublattice (d + f )-wave components
given by

p(intra)
x (k) =

∑
i

ex
i sin k‖ · ei , (23)

p(intra)
y (k) =

∑
i

e
y

i sin k‖ · ei , (24)

p(inter)
x (k) = −i

√
3 cos

kz

2

∑
i

rx
i eik‖·r i , (25)

p(inter)
y (k) = −i

√
3 cos

kz

2

∑
i

r
y

i eik‖·r i , (26)

dxz(k) = −
√

3 sin
kz

2
Im

∑
i

rx
i eik‖·r i , (27)

dyz(k) = −
√

3 sin
kz

2
Im

∑
i

r
y

i eik‖·r i , (28)

fxyz(k) = −
√

3 sin
kz

2
Re

∑
i

rx
i eik‖·r i , (29)

f(x2−y2)z(k) = −
√

3 sin
kz

2
Re

∑
i

r
y

i eik‖·r i . (30)

Pauli matrices in the spin and sublattice space are denoted by si

and σi , respectively. σ+ and σ− are defined by σ± = σx ± iσy .
A similar model was introduced to investigate the topo-

logical superconductivity in UPt3 [15,23], and it has recently
been studied to show the polar Kerr effect [61] and the odd-
frequency Cooper pairs [62]. In these previous studies, the
intersublattice p-wave component was neglected. Here we take
into account the intersublattice p-wave component and show
that it actually plays an essential role for the jz-dependent
point node, because the other components vanish on the K-H
line. Here we assume that the (d + f )-wave component is
dominant among all the order parameters since the purely
f -wave state reproduces the multiple superconducting phase
diagram illustrated in Fig. 3 [41–43,45,46]. On the other hand,
an admixture of p-wave components allowed by symmetry
changes the gap structure. Thus, we take into account small
intra- and intersublattice p-wave components with 0 < |δ1| 

1 and 0 < |δ2| 
 1, respectively.

Now we briefly review the multiple superconducting phases
illustrated in Fig. 3 [41–43,45,46]. The A, B, and C phases are
characterized by the ratio of two-component order parameters
η = η2/iη1 summarized in Table VI. A pure imaginary ratio
of η1 and η2 in the B phase implies the chiral superconducting
state, which maximally gains the condensation energy. A
recent theoretical study based on our two-sublattice model
[61] has shown the polar Kerr effect consistent with the

134512-9



SHUNTARO SUMITA AND YOUICHI YANASE PHYSICAL REVIEW B 97, 134512 (2018)

TABLE VI. Range of the parameter η in the A, B, and C phases
of UPt3.

A phase |η| = ∞
B phase 0 � |η| � ∞
C phase |η| = 0

experiment [49]. Due to the p-wave components, the B phase
is a nonunitary state. It has been considered that the A and C

phases are stabilized by weak symmetry breaking of hexagonal
structure, possibly induced by weak antiferromagnetic order
[45,46,63,64]. We assume here that the A phase is the �2 state
(η = ∞) while the C phase is the �1 state (η = 0), and we
assume non-negative η � 0 without loss of generality.

Analyzing the BdG Hamiltonian Eq. (13) including the two-
component order parameters Eqs. (19)–(22), we investigate the
superconducting gap structures on the K-H line. Figures 8(a)
and 8(b) represent the calculated quasiparticle energy disper-
sion in the A phase, which shows that point nodes emerge in
the positive α case while the gap opens in the negative α case.
Qualitatively the same results are obtained in the C phase.
All the results are consistent with the gap classification theory
based on the space group (Sec. IV A 1). Thus, it is confirmed
that the gap structures depending on the Bloch-state angular
momentum jz are realized on the K-FSs of UPt3.

Here we discuss the effects of SSB in the superconducting
phase. As mentioned at the end of Sec. II, our method of gap
classification does not take into account SSB of the ordered
state. Therefore, the results of gap classification [Eqs. (12a)
and (12b)] cannot be applied to the SSB phase in a straight-
forward way. The two-dimensional E2u state discussed above
corresponds to the case. Thus, we comment on two types of
SSB in the superconducting phase: crystal symmetry breaking
and time-reversal symmetry breaking. First, in the η �= 1 case,
the superconducting order parameter spontaneously breaks
threefold crystal rotation symmetry. However, the effects of
such SSB due to the superconducting order parameter are
considered negligibly small in the weak-coupling region,
�/EF 
 1. Thus, even though a point node on the K-H line

FIG. 8. The quasiparticle energy dispersion on the K-H line in
(a) the α = 0.2 > 0 case and (b) the α = −0.2 < 0 case. We as-
sume the superconducting phase preserving time-reversal symmetry,
namely A phase (η = ∞) or C phase (η = 0). The other parameters
(t,tz,t ′,μ,�,δ1,δ2) = (1,−1,0.4,−5.2,0.5,0.04,0.2) are assumed so
that the K-FSs of UPt3 are reproduced.

is gapped by threefold rotation symmetry breaking, the gap
should be rather small. Therefore, the jz-dependent point nodes
or gap opening should be experimentally distinguishable,
irrespective of the presence or absence of the SSB.

Second, we discuss SSB of time-reversal symmetry in the B

phase. Since the B phase is nonunitary, the twofold-degenerate
energy band splits by spontaneous time-reversal symmetry
breaking in the superconducting phase. For η = 1, indeed,
the order parameters Eqs. (19)–(22) produce point nodes on
the K-H line even when the Bloch state belongs to the E1/2

representation. Although those point nodes are not protected
by the crystal symmetry, they are topologically protected (Weyl
node) [65]. Unless the parameter takes the special value η = 1,
our group-theoretical classification is also consistent with the
gap structure in the B phase.

In this subsection, we have revealed the jz-dependent
point nodes or gap opening corresponding to the sign of the
ASOC term in the effective model Eq. (13). The remaining
question is which representation is realized in UPt3. According
to our first-principles band-structure calculation, the Bloch
state on the K-H line belongs to the E1/2 representation
[65]. Combining this first-principles calculation and the gap
classification theory, we conclude that the superconducting gap
opens on the K-H line in UPt3 except for the topologically
protected point nodes emerging in the B phase.

B. MoS2 and SrPtAs (space group: P63/mmc)

Now we discuss gap structures in hexagonal superconduc-
tors (i) MoS2 and (ii) SrPtAs. These compounds have the
same space group symmetry as UPt3. First, we introduce the
backgrounds of these materials below.

(i) MoS2 is a member of the group-VI transition-metal
dichalcogenides MX2 (M = Mo,W; X = S,Se,Te). Super-
conductivity of MoS2 has been observed in the ion-gated
atomically thin 2D system [56,66–69], and in the bulk interca-
lated system [70,71]. In these electron-doped systems, Mo dz2

orbitals contribute to the spin-split lowest conduction bands,
which form FSs around the K point [72]. However, the FSs do
not cross the K-H line, because the lowest conduction bands
are almost dispersionless along this line due to the absence of
the nearest interlayer hopping [59]. On the other hand, dx2−y2 ±
idxy orbitals of Mo ions contribute to the spin-split top valence
bands [72], which have sizable dispersion on the K-H line in
the 2H stacking structure [59]. Thus, these top valence bands
may form FSs crossing the K-H line in a hole-doped MoS2.

(ii) SrPtAs is a pnictide superconductor with a hexagonal
lattice rather than the square lattice in iron pnictides [73].
First-principles studies using the local density approximation
show 2D FSs enclosing the �-A line, a 2D FS enclosing the
K-H line, and a 3D FS crossing the K-H line [74–76]. A muon
spin-rotation/relaxation measurement suggests time-reversal
symmetry breaking and a nodeless pairing gap [77]. However,
recent 195Pt-nuclear magnetic resonance (NMR) and 75As-
nuclear quadrupole resonance (NQR) measurements support
a spin-singlet s-wave superconducting state with an isotropic
gap [78]. Since these experimental results look incompatible,
the pairing symmetry of SrPtAs is still under debate.

In these materials characterized by the hexagonal space
group P 63/mmc, the superconducting gap on the K-H line
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TABLE VII. Gap structure on the K-H line in bulk MoS2 where
the pairing symmetry belongs to an A1 or E representation of C3v .
“PS” in the first and second columns represents pairing symmetry.

PS in C3v PS in D6h Bloch state Gap structure

A1 A1g E1/2,E3/2 Gap
B2g E1/2,E3/2 Gap
A2u E1/2 Point node

E3/2 Gap
B1u E1/2 Point node

E3/2 Gap

E E1g E1/2,E3/2 Point node
E2g E1/2,E3/2 Point node
E1u E1/2 Gap

E3/2 Point node
E2u E1/2 Gap

E3/2 Point node

is classified by Eqs. (12a) and (12b). The result of the gap
classification in each material is discussed below.

(i) Although the symmetry of superconductivity in MoS2

has not been determined, a recent theoretical study [79]
suggests the conventional BCS state (A1g) in the paramagnetic
regime and the pair-density-wave (PDW) state (B2u) under
the external magnetic field. Since both Eqs. (12a) and (12b)
contain A1g and B2u representations, the superconducting
gap opens on the K-H line irrespective of the Bloch-state
angular momentum. The A1g symmetry is supported by recent
first-principles calculations, which take into account electron-
phonon interactions [80–82]. On the other hand, topological
superconductivity in electron-doped [83] and hole-doped [84]
monolayer MoS2 has been theoretically proposed, where the
pairing symmetry is classified into A1 or E representation
of the point group C3v . Assuming that the pairing symmetry
in bulk MoS2 is the same as that in monolayer MoS2, these
representations are induced to D6h as

A1↑D6h = A1g + B2g + A2u + B1u, (31)

E↑D6h = E1g + E2g + E1u + E2u. (32)

Therefore, the presence or absence of point nodes on the K-H
line depends on the choice of the basis function of the A1

or E representation, which is summarized in Table VII. The
superconducting gap structure depends on the effective angular
momentum jz when the pairing symmetry is A2u, B1u, E1u,
or E2u.

(ii) In SrPtAs, on the other hand, the E2g state with a chiral
d-wave pairing [28] and the B1u state with an f -wave pairing
[85–88] have been proposed besides the fully gapped A1g order
parameter suggested by the NMR measurement [78]. Since
E2g representation is not allowed in both Eqs. (12a) and (12b),
the chiral d-wave state hosts point nodes on the K-H line,
which is incompatible with the nodeless gap structure. The
B1u state is consistent with the nodeless gap structure if the
Bloch state on the K-H line belongs to E3/2, although this
one-dimensional representation is incompatible with broken
time-reversal symmetry. The E1u and E2u superconducting

FIG. 9. The first BZ of (a) a face-centered-cubic lattice and (b)
a body-centered-cubic lattice. The red lines show threefold rotation
symmetric axes.

states for the E1/2 Bloch state are consistent with both nodeless
gap and broken time-reversal symmetry. However, these odd-
parity superconducting states are incompatible with NMR
Knight shift measurement, which indicates the decrease of spin
susceptibility below Tc [78].

We have elucidated the superconducting gap structures on
the three- or sixfold axes of the hexagonal materials. On the
other hand, cubic systems also have threefold axes as illustrated
in Fig. 9. In the following part, we investigate the existence of
jz-dependent point nodes in the cubic superconductors, UBe13

and PrOs4Sb12.

C. UBe13 (space group: Fm3̄c)

Here we discuss the gap structures in a cubic heavy-fermion
superconductor UBe13. Although superconductivity in UBe13

was discovered in 1983 [89], the nature and the symmetry
of superconductivity are still under debate. A point-nodal
p-wave [90] and line-nodal [91] superconductivity have been
proposed, while recent angle-resolved heat-capacity measure-
ments have suggested a fully opened superconducting gap [92].
Furthermore, another mystery about UBe13 is the emergence
of a second phase transition in the superconducting state when
a small amount of U atoms are replaced by Th [93,94]; μSR
[95] and thermal-expansion [96] experiments have reported the
existence of four superconducting phases.

The space group of UBe13 is face-centered-cubic Fm3̄c,
where the BZ has a threefold rotation axis �-L [see Fig. 9(a)].
Although first-principles calculations show only a tiny FS
crossing the �-L line [97,98], such a FS structure has not
been confirmed by experiments. Thus, we carry out the gap
classification on the �-L line, assuming the existence of FSs
in the [111] direction. The little group on the �-L line has C3v

symmetry, which results in the two distinct representations
of the Cooper pair wave function given by Eqs. (11a) and
(11b), corresponding to two small representations γ k = E1/2

and E3/2. Inducing P k to the original crystal point group Oh,
we obtain the induced representation P k↑Oh summarized in
the following equations:

P k
1 ↑Oh = A1g+T2g+A1u+Eu+T1u+2T2u (γ k = E1/2),

(33a)

P k
2 ↑Oh = A1g + T2g + 2A1u + A2u + T1u + 2T2u

(γ k = E3/2). (33b)
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For UBe13, the Eu state [99,100] and the accidental A1u +
A2u mixed state [99] have been proposed, consistent with the
double transition in U1−xThxBe13. In the former Eu state,
jz-dependent point nodes emerge: the superconducting gap
opens for γ k = E1/2, while point nodes appear for γ k = E3/2

[see Eqs. (33a) and (33b)]. Previous studies based on the Eu

scenario simply assumed the E1/2 Bloch state and obtained the
full gap superconducting state in the time-reversal symmetric
A and C phases [99]. Their results are not valid when the FS
crossing the �-L line is formed by the E3/2 Bloch state. In the
accidentally mixed state, on the other hand, the A1u component
makes the gap open irrespective of the angular momentum of
the Bloch state. The A2u component gives rise to the gap only
for the E3/2 Bloch state. In both Eu and A1u + A2u scenarios,
it is necessary to identify the angular momentum of Bloch
states in order to relate the symmetry and gap structure of
superconductivity. The experimental data should be carefully
interpreted by taking into account this fact.

D. PrOs4Sb12 (space group: Im3̄)

Next, we consider the gap structures in PrOs4Sb12.
PrOs4Sb12 is a heavy-fermion superconductor with the
filled skutterudite structure RT 4X12 (R = rare earth or U;
T = Fe,Ru,Os; X = P,As,Sb). Many studies have reported
the manifestation of unconventional superconductivity in
PrOs4Sb12 [101,102]. For example, multiple superconducting
phases have been suggested by specific-heat [103,104] and
thermal transport [105] measurements. However, the supercon-
ducting pairing symmetry in PrOs4Sb12 remains unclear even
now: a point-nodal superconductivity has been suggested by
some NQR [106], penetration depth [107], and specific-heat
[103,104] studies, while other thermal conductivity [108],
μSR [109], and NQR [110] measurements have proposed a
fully gapped Fermi surface. Furthermore, several experiments
have observed time-reversal symmetry breaking in the low-
temperature and low-magnetic-field superconducting phase
(B phase) [111,112].

Here we carry out a group-theoretical analysis for the gap
structure of PrOs4Sb12. PrOs4Sb12 has a body-centered-cubic
space group Im3̄, where the BZ has threefold rotation axes�-P
and P -H [see Fig. 9(b)]. The FS topology of PrOs4Sb12 has
been confirmed by the combination of dHvA experiment and
first-principles calculation [113]. The determined FS consists
of three parts, two of which cross the �-P line and the other
does the P -H line. Therefore, the gap structure on these lines is
worth considering. The little group on the �-P and P -H lines
has C3 symmetry, which results in two small representations
γ k = E1/2 and 2B3/2, given by Table III(b). Corresponding
to these two Bloch states, the Cooper pair wave function has
two nonequivalent representations as shown in Eqs. (7a) and
(7b). Thus, the induced representation P k↑Th is obtained in
the following equations:

P k
1 ↑Th = Ag + Tg + Au + Eu + 3Tu (γ k = E1/2), (34a)

P k
2 ↑Th = Ag + Tg + 3Au + 3Tu (γ k = 2B3/2). (34b)

Theoretical studies have suggested various possibilities of
the pairing symmetry in PrOs4Sb12 [114–119]. For example,
the three-dimensional Tg and Tu states [114], the mixed Ag +

Eg state with an (s + g)-wave pairing [115], and that with
an (s + id)-wave pairing [117] have been proposed. In these
cases, the superconducting gap opens on the �-P and P -H
lines irrespective of the angular momentum of the Bloch state.
However, the jz-dependent point nodes may emerge if the order
parameter belongs to the Eu representation [see Eqs. (34a) and
(34b)].

V. SUMMARY AND DISCUSSION

In this paper, we investigated the unconventional super-
conducting gap structures beyond the results of the Sigrist-
Ueda method [6]. The group-theoretical classification of a gap
function enables us to deal with nonsymmorphic space group
symmetry and representations of Bloch wave functions, which
are neglected in the Sigrist-Ueda method for classification of an
order parameter based on the point group. Using this method,
the nontrivial gap structures have been elucidated as follows.

When the system has symmetry including nonprimitive
translation parallel to a twofold axis, the Cooper pair wave
functions on the BP and the ZF, which are perpendicu-
lar to the twofold axis, have different representations as a
consequence of the nonsymmorphic symmetry. In this case,
therefore, line nodes (or a gap opening) protected by nonsym-
morphic symmetry may emerge on the BZ boundary. Indeed,
such nontrivial gap structures have been suggested in real
materials: UPt3 [8,13–17], UCoGe [18], UPd2Al3 [18,19,36],
and Sr2IrO4 [20]. We classified the gap structure of all the
centrosymmetric space groups. From the list of space groups,
we may understand the symmetry-protected line node for each
crystal, magnetic, and superconducting symmetries.

Furthermore, we clarified the existence of jz-dependent
point nodes (gap opening) on the three- or sixfold axis in
the BZ. The classification of a gap function by Sigrist and
Ueda breaks down on these high-symmetry axes because
the representations of Cooper pairs depend on the angular
momentum of the Bloch wave function jz. Then, the relation
between the point nodes and the symmetry of Cooper pairs
depends on jz. We proposed such a jz-dependent point node in
a heavy-fermion superconductor UPt3 by the group-theoretical
analysis and the model calculation. In UPt3, the angular
momentum jz of Bloch wave functions on the K-H line
depends on the sign of the ASOC term, since jz contains
the effective orbital angular momentum λz arising from the
permutation of sites. As a result, the sign of ASOC determines
whether point nodes emerge on the K-H line or not. This is
a rare case in which physical properties depend on the sign
of the ASOC term. Based on the results of classification, we
also discussed the gap structure and pairing symmetry in MoS2,
SrPtAs, UBe13, and PrOs4Sb12. Since the space groups of these
superconductors contain three- or sixfold rotation symmetry,
the gap structure depends on jz. Thus, we need to appropriately
take into account the Bloch wave function for interpretations
of experimental data. Some unconventional superconducting
states proposed for these compounds were discussed in light
of precise classification theory.

Recently, as represented by j = 3/2 fermions in half-
Heusler superconductors, the angular momentum of electrons
in condensed matter (i.e., multipole degrees of freedom) is
attracting much attention [120–132]. Our study sheds light on a
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new aspect of angular momentum physics in superconductors.
jz-dependent point nodes may emerge especially in odd-parity
hexagonal or cubic superconductors.
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APPENDIX A: PROOF OF THE MACKEY-BRADLEY
THEOREM IN THE CONTEXT OF THE COOPER PAIR

WAVE FUNCTION

We prove here the Mackey-Bradley theorem [32–34] de-
scribed by Eq. (1) by considering the symmetry transformation
of the Cooper pair wave function. First, we introduce a creation
operator of a Bloch state in a band-based representation
denoted by c

†
�α(k), where � and α are the IR of the little group

Mk and its basis, respectively. This operator is transformed as

mc
†
�α(k)m−1 =

∑
α′

c
†
�α′ (k)γ k,�

α′α (m) (A1)

by a space group operation m ∈ Mk, where γ k,� is the
representation matrix of the small representation �. Then, we
define the Cooper pair wave function

��
αβ(k) = c

†
�α(k) · Ic

†
�β (k)I, (A2)

which is assumed to form a pair between two Bloch states
belonging to the same IR �. Using Eq. (A1), the Cooper pair
wave function is transformed by m ∈ Mk as follows:

m��
αβ(k)m−1

= mc
†
�α(k)m−1 · mIc

†
�β (k)Im−1

= mc
†
�α(k)m−1 · I (ImI )c†�β(k)(ImI )−1I

=
∑
α′

c
†
�α′ (k)γ k,�

α′α (m) · I

⎧⎨⎩∑
β ′

c
†
�β ′ (k)γ k,�

β ′β (ImI )

⎫⎬⎭I

=
∑
α′β ′

{c†�α′ (k) · Ic
†
�β ′ (k)I }γ k,�

α′α (m)γ k,�
β ′β (ImI )

=
∑
α′β ′

��
α′β ′ (k)γ k,�

α′α (m)γ k,�
β ′β (ImI ). (A3)

On the other hand, ��
αβ(k) is transformed by Im ∈ IMk as

Im��
αβ(k)m−1I

=
∑
α′β ′

I {c†�α′ (k) · Ic
†
�β ′ (k)I }Iγ

k,�
α′α (m)γ k,�

β ′β (ImI )

=
∑
α′β ′

{Ic
†
�α′ (k)I · c

†
�β ′ (k)}γ k,�

α′α (m)γ k,�
β ′β (ImI )

= −
∑
α′β ′

{c†�β ′(k) · Ic
†
�α′ (k)I }γ k,�

α′α (m)γ k,�
β ′β (ImI )

= −
∑
α′β ′

{c†�α′ (k) · Ic
†
�β ′ (k)I }γ k,�

β ′α (m)γ k,�
α′β (ImI )

= −
∑
α′β ′

��
α′β ′ (k)γ k,�

β ′α (m)γ k,�
α′β (ImI ), (A4)

where we use the anticommutation relation of fermions.
From the above calculations, we obtain the representation

of the Cooper pair wave function P k,�:

P
k,�
αβ,α′β ′(m) = γ

k,�
α′α (m)γ k,�

β ′β (ImI ), (A5a)

P
k,�
αβ,α′β ′(Im) = −γ

k,�
β ′α (m)γ k,�

α′β (ImI ). (A5b)

Therefore, the character of P k,� is given by

χ [P k,�(m)] =
∑
αβ

γ k,�
αα (m)γ k,�

ββ (ImI )

= χ [γ k,�(m)]χ [γ k,�(ImI )], (A6a)

χ [P k,�(Im)] = −
∑
αβ

γ
k,�
βα (m)γ k,�

αβ (ImI )

= −χ [γ k,�(mImI )]. (A6b)

These equations are the Mackey-Bradley theorem described
in Eqs. (1a) and (1b).

APPENDIX B: EFFECTIVE ORBITAL ANGULAR
MOMENTUM DUE TO SITE PERMUTATION

In Sec. IV A 3, we introduced the effective orbital angular
momentum λz due to the permutation of uranium sites. Here,
we provide a general formulation for this angular momentum
considering the transformation of the Bloch state wave func-
tion. First, we introduce a creation operator of a Bloch state
in a sublattice-based representation denoted by c

†
mζ (k), where

m and ζ = lz + sz are the indices of the sublattice and angular
momentum, respectively. Fourier transformation of the Bloch
state is defined as

c
†
mζ (k) =

∑
R

e−ik·Rc
†
ζ (R + rm), (B1)

where R represents the position for the unit cell (lattice vector)
and rm is the relative position of the m sublattice in a unit cell.
Using this equation, the creation operator is transformed by a
space group operation g = {p|a} as

gc
†
mζ (k)g−1

=
∑

R

e−ik·Rgc
†
ζ (R + rm)g−1

=
∑

R

e−ik·R ∑
ζ ′

c
†
ζ ′[p(R + rm) + a]D(j̃ )

ζ ′ζ (p).
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Defining R′ + rpm ≡ p(R + rm) + a, we have

=
∑

R′
e−ik·[p−1(R′+rpm−a−prm)]

×
∑
ζ ′

c
†
ζ ′ (R′ + rpm)D(j̃ )

ζ ′ζ (p)

= eipk·a ∑
ζ ′

(∑
R′

e−ipk·R′
c
†
ζ ′ (R′ + rpm)

)

× e−ipk·(rpm−prm)D
(j̃ )
ζ ′ζ (p)

= eipk·a ∑
ζ ′

c
†
pm,ζ ′ (pk)e−ipk·(rpm−prm)D

(j̃ )
ζ ′ζ (p)

= eipk·a ∑
m′

∑
ζ ′

c
†
m′ζ ′(pk)D(perm)

m′m (p,k)D(j̃ )
ζ ′ζ (p), (B2)

where D(j̃ )(p) is a representation matrix of p in j̃ = l + s

space. From Eq. (B2), we define a representation matrix
indicating the permutation of sites as

D
(perm)
m′m (p,k) = e−ipk·(rpm−prm)δm′,pm. (B3)

The phase factor in this matrix corresponds to the effective or-
bital angular momentum λz. For example, a threefold rotation
in UPt3 is represented by

D(perm)(C3,k) =
( a b

a e+i2π/3 0
b 0 e−i2π/3

)
(B4)

on the K point k = (4π/3,0,0). This phase factor gives the
effective angular momentum λz = ±1 as we demonstrated in
Sec. IV A 3.
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