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The problem of quantum turbulence in a channel with an inhomogeneous counterflow of superfluid turbulent
helium is studied. The counterflow velocity V x

ns(y) along the channel is supposed to have a parabolic profile in the
transverse direction y. Such statement corresponds to the recent numerical simulation by Khomenko et al. [Phys.
Rev. B 91, 180504 (2015)]. The authors reported about a sophisticated behavior of the vortex-line density (VLD)
L(r,t), different from L ∝ V x

ns(y)2, which follows from the straightforward application of the conventional Vinen
theory. It is clear that Vinen theory should be refined by taking into account transverse effects, and the way it ought
to be done is the subject of active discussion in the literature. In this work, we discuss several possible mechanisms
of the transverse flux of VLD L(r,t) which should be incorporated in the standard Vinen equation to describe
adequately the inhomogeneous quantum turbulence. It is shown that the most effective among these mechanisms
is the one that is related to the phase-slippage phenomenon. The use of this flux in the modernized Vinen equation
corrects the situation with an unusual distribution of the vortex-line density, and satisfactorily describes the
behavior L(r,t) both in stationary and nonstationary situations. The general problem of the phenomenological
Vinen theory in the case of nonuniform and nonstationary quantum turbulence is thoroughly discussed.
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I. INTRODUCTION

The question of evolution of the vortex-line density (VLD)
L(r,t) of the vortex tangle (VT) is the key issue in the
macroscopic theory of quantum turbulence (QT). Although the
VLD is a rough characteristic of the QT, it is responsible for
many (mainly hydrodynamic) phenomena in superfluids and
the knowledge of its exact dynamics is very important for an
adequate interpretation of various experiments.

Long ago, Vinen [1] suggested that the rate of change
of VLD ∂L(t)/∂t can be described in terms of only the
quantity L(t) itself (and also other, external parameters, such
as the counterflow velocity Vns and the temperature). He
called this statement as a self-preservation assumption. The
corresponding balance equation for the quantity L(r,t), the
so-called Vinen equation (VE), reads as

∂L
∂t

= αV |Vns | L3/2 − βV L2. (1)

Here, αV and βV are the parameters of the theory, αV is close
to the mutual friction coefficient α, and βV is of the order
of the quantum of circulation κ . Throughout its long history,
the Vinen equation has undergone various improvements and
modifications (see, e.g., [2–6]) although at present the form (1)
is mainly used.

One of the serious problems is the application of the
Vinen theory to complicated situations, in particular to inho-
mogeneous flows (for recent papers see, e.g., [7–12]). Each
of the works cited above has their own peculiarities: their
quantitative data differ from each other. However, the principal
qualitative result, common for all of these papers, is that
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the transverse distribution of the vortex-line density L(r,t)
is strikingly different from the dependence L =γ 2V x

ns(y)2

(here, γ = αV /βV ), which follows from the straightforward
application of the conventional Vinen theory.

Thus, Khomenko et al. [7] found in numerical simulations
that the VLD field is concentrated near the side walls. Quite
similar behavior was obtained in the numerical work by Yui
et al. [9] [see Fig. 4(a) of this paper]. In a paper by Galantucci
et al. [12], the authors numerically studied the two-dimensional
counterflow of helium II. They also obtained an unusual
transverseL(y) distribution of the total vortex density, depicted
in the middle image of Fig. 4 of paper [12]. The same
observation had been made in the paper by Baggaley et al. [8]
(see Fig. 3 of this paper). In addition, the authors of all cited
works received the tail-flattened profile of the normal velocity,
which was recently detected employing a technique, based
on laser-induced fluorescence of metastable helium molecules
(see paper by Marakov et al. [13]). Analyzing the obtained
results, the authors of the paper [7] proposed that the first term
on the right-hand side of the Vinen equation (the so-called
production term) has the structure ∝|Vns |3L1/2, a combination
that has never been discussed before. This conclusion was the
subject of a polemics between the authors of the article [7] and
the author of this paper (see [14,15]).

The goal of my paper is to explain qualitatively this
unusual behavior of the VLD profile L(y). For quantitative
consideration and comparison, I have chosen as a reference
point the paper by Khomenko et al. [7]. It should be borne in
mind that due to the phenomenological character of the Vinen
theory and the large number of factors affecting the final result,
the term “quantitative consideration” implies “quantitative
consideration on the order of quantity.”

In short, the results of work [7] can be formulated as
follows. In a rectangular channel 2 × 0.05 cm wide, a parabolic
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FIG. 1. Prescribed parabolic normal velocity profile Vn (dashed-
dotted line), the resulting counterflow profile Vns (dotted line) and
the resulting profile of L(y) (solid line) in dimensionless unites, T =
1.6 K. Note that Vns does not vanish on the boundary. That is, a
consequence of that the resulting Vs accumulates contribution from
vortices and is not equal to −ρnVn/ρs . However, from comparison
between Vn and Vns it is seen that superfluid velocity is small, mainly
because the normal density is much smaller than the superfluid densiy
ρn � ρs at T = 1.6 K (from the paper by Khomenko et al. [7]).

counterflow V x
ns(y) = V0[1 − (y/0.05)2] is applied in the x di-

rection. The periodic conditions were assumed in all directions.
The resulting distributions of the dimensional VLD, the normal
and counterflow velocities L(y), Vn(y), Vns(y) are presented
in Fig. 1.

If one applies straightforwardly the well-known relation
L = γ 2V x

ns(y)2 ≈ 2 × 104 V x
ns(y)2 (here γ = αV /βV ), which

immediately arises from Eq. (1), then the dimensionless L
should be about 2 × 10−2 V x

ns(y)2, which essentially exceeds
the value obtained in Ref. [7]. Another striking feature is
that the profile L(y) is radically different from the quadratic
velocity profile L ∝ (V x

ns(y))2.
In this paper, we develop an approach explaining this

unusual (from the point of view of the naive use of the Vinen
theory) behavior of the VLD L(y). In the inhomogeneous
situation, the Vinen equation should be corrected to include the
transverse spatial effects. In particular, we offer to incorporate
into classic Vinen theory an additional space flux J(r,t) of the
VLD, which redistributes the quantity L(y) in the y direction.
It is clear that a transverse gradient of the flux ∂Jy(y,t)/∂y
should be added into the balance equation (1).

In classical Vinen theory, the counterflow velocity Vns is
considered as an external unchanged parameter. Of course, in
the reality, one should take into account the back reaction of
the vortex lines on the normal fluid, that, strictly speaking, can
modify the quantity Vns . That problem was properly discussed
in Ref. [3] . Recently, the back influence was considered in
many researches, in particular, in the paper by Galantucci et al.
[12], mentioned above. However, in this paper we consider the
model situation, stated by Vinen in his pioneering work, where
the relative velocity was introduced as a constant external
parameter. In addition, in the work by Khomenko et al. [7]
(with which I compared my results) the velocity of normal
component was also fixed, and the back reaction of the vortex
lines on the normal fluid was omitted.

In Sec. II we discuss several mechanisms of these possible
fluxes, derive mathematical expressions, and compare contri-

butions from them. In Sec. III we present numerical solutions
for stationary and nonstationary cases and compare the results
with the numerical data of paper [7]. In Sec. IV we discuss
the problem of nonuniform and unsteady quantum turbulence
and the Vinen phenomenological theory. The Conclusion is
devoted to a discussion of the results and probable generaliza-
tions of the presented approach.

II. TRANSVERSE FLUX OF THE VORTEX-LINE DENSITY

Let us describe various ideas on the transverse vortex-line
density flux J(r,t) in inhomogeneous flows/counterflows of
superfluid helium. As it was mentioned above, the first remark
in this respect had been made by Vinen himself in the context of
the possible influence of the channel width [1]. Unfortunately,
no advanced theory had been supplemented. It is clear that
the most general expression for the flux of quantity L is
J(r,t) = LVL, where VL is the macroscopic local velocity
of the vortex tangle (see explanations in papers [3,16,17]).
However, unless we do not have a general expression for VL

as a function (functional) of quantity L, we can not ascertain
a closure procedure, i.e., obtain a description of the vortex
tangle dynamics in terms of the VLD itself. This procedure is
not uniquely defined and admits different approaches.

Thus, in the cited paper [7], the authors proceeded from
the following microscopic expression for the transverse flux
Jmicro:

Jmicro = 1

�

∫
|Vns(y)|s′

zdξ = α

�

∫
|Vns(y)|s′

zdξ. (2)

Here, the integration is performed over the whole vortex-line
configuration, so it should be understood as an integration
along each vortex loop constituting the vortex tangle and
summation over all loops, i.e.,

∫
dξ →

∑
j

∫ Lj

0
dξj .

The quantity � is the total volume, α is the mutual friction
coefficient. The authors of work [7] calculated the quantity (2)
in numerical simulation and concluded that the macroscopic
expression for the transverse flux JKh,

JKh(r,t) = α

2κ
Cflux

∂V2
ns

∂y
, (3)

best corresponds to the microscopic flux (2). The quantity Cflux

is a constant, determined from numerical simulations.
Another mechanism, frequently discussed in the problems

of nonuniform flow, is related to the diffusion flux [17,18]. That
mechanism is not connected with mutual friction, and realized
by the drift of vortex loops (see, e.g., [19–21]). The transverse
diffusion flux can be written as follows:

Jdif (r,t) = D
∂2L
∂y2

. (4)

The value the diffusion coefficient is of the order of quan-
tum of circulation κ . In paper [18], D ≈ 0.1 × 10−3 cm2/s,
whereas in paper [21] this quantity is estimated as D ≈
2 × 10−3 cm2/s. The latter value stemmed from the model of
flying polarized loops. In the counterflowing case, however, the
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polarization is mainly directed along Vns , therefore, the smaller
value or the diffusion constant in the transverse direction is
more truthful.

The next contribution, which we consider here, is related to
the so-called phase-slippage phenomenon. This phenomenon
implies appearance of additional chemical potential ∇μ and,
accordingly, the mutual friction with the crossing by the
vortices of the main flow. This effect is especially important for
identifying the quantization of vortices (see, e.g., [22]). We will
use the corresponding technique to describe the transverse flux
of VLD Jy(y,t). To find an analytical expression for Jy(y,t),
consider the following equation (see [23–25]):

A =
∫

[ṡ(ξ ) × s′(ξ )]dξ. (5)

The right-hand side of (5) is a net area, swept out by the
motion of the line elements. Therefore, the x component of
vector A is simply the rate of phase slippage (without the
factor κ) caused by the transverse motion of the vortex lines
(see [25]). It is important, however, that the sign of the x

component of the vector A does not depend on the direction
of motion of vortex-line segments (either in the positive or in
the negative directions along axis y). It makes no difference
in the calculation of the phase slippage and, accordingly, the
additional drop in the chemical potential ∇μ, but it is essential
for our purposes to determine flux Jps(y,t) of the VLD L to
the side wall. To overcome this problem, we assume that all
the vortex filaments are closed loops, so the averaged fluxes
in both directions are equal. Therefore, the required transverse
flux Jps(y,t) of the VLD L is just half of the x component of
the vector A. Taking velocity of elements ṡ(ξ ) in the form of
the local induction approximation (see, e.g., [2]), we arrive at
the following expression:

Jps(r,t) = 1

2

∫
({αs′ × [Vns − β(s′ × s′′)]} × s′(ξ ))dξ.

(6)

Here, the combination ṡi = β(s′ × s′′) is the self-induced
velocity of the line elements in the the local induction approx-
imation.

To move further, we have to introduce the closure procedure
and to express the right-hand side of Eq. (6) via quantities L
and Vns . It corresponds to the self-preservation assumption
expressed by Vinen that the macroscopic dynamics of the
vortex tangle depends only on the VLD L(t). The other,
more subtle, characteristics of the vortex structure, different
from L, must adjust to it. In particular, the first contribution,
containing the external counterflow velocity, can be written
as αI‖L|Vns |, where I‖ is the structure parameter of the vortex
tangle, introduced by Schwarz [2]. The last term in Eq. (6) with
the self-induced velocity can be expressed as αβL(IlL1/2).
where Il is another structure parameter. Usually, at this point
the substitution L1/2 = γ |Vns | is used, and both contributions
are reduced to a combination

Jps,1(r,t) = 1
2α(I‖ − γβIl)L|Vns |. (7)

Being multiplied by ρsκ , this expression (up to a factor
1
2 ) coincides with the formula for mutual friction. This is not
surprising because it is well known from the vortex dynamics

that a vortex crossing the channel transfers the momentum
to the main flow (see [26]). Therefore, the final expression
should be proportional to Vns and the whole scheme becomes
self-consistent. But, this above consideration concerns only
homogeneous or near-homogeneous cases. In the highly in-
homogeneous situation, which we are interested in here, the
simple relations such as L1/2 = γ |Vns | do not work and the
question of determining the transverse flux remains open. A
very similar problem of using the structure parameters of the
vortex tangle also arises for nonstationary situations (see a
related discussion in the review [3]). This problem is very
intriguing, and we decided to explore yet another version of
the closure procedure, which leads to the following formula
for the transverse flux:

Jps,2(y,t) = αI‖L|Vns | − αβIlL3/2. (8)

Thus, we have obtained two forms for the transverse flux asso-
ciated with the phase-slippage mechanism. They are identical
in case of a uniform flow, when L1/2 = γ |Vns |, however, in
inhomogeneous situations they differ and can result in different
results.

Our further goal is to analyze the results on the nonuni-
form quantum turbulence obtained in the numerical work by
Khomenko et al. [7], basing on supposition of the transverse
flux of VLD L(y).

Let us discuss all of the transverse fluxes, expressed by the
equations (3), (4), (7), and (8). The first, proposed in the paper
[7], was discussed in details in the paper [14] (Sec. IV). Briefly,
it does not include the VLD L(y) itself, which is very unusual.
This results in that the master equation (9) for the profileL(y) is
simply an algebraic (not a differential) equation. The solution
of this equation gives the quantityL(y), which is very different
from the one observed in Ref. [7]. Further, I do not consider
this term.

Using the conditions of numerical modeling [7] and tak-
ing that |Vns | ∼ 1 cm/s, L ∼ 104 1/cm2, α ∼ 0.1, ∂/∂y ∼
1/0.05, I‖ ∼ 0.3,D ∼ 0.1 × 10−3 we conclude that the phase-
slippage terms are estimated to be about 10 000.01/cm2 s,
whereas the diffusion term is estimated as about 400.01/cm2 s.
Thus, formally, the diffusion contribution can be neglected.
Here, however, there appears the problem of a small term with
the highest derivative in the nonlinear differential equation.
This is a complex numerical problem, which is beyond the
scope of this paper. The impact of the diffusion flux was studied
in a recent work by Saluto et al. [10]. The authors observed
that the influence of vortex diffusion is focused on local values
of L(y) in the region with large gradients, rather than on the
form of the spatial distribution VLD.

Thus, the diffusion term (4) is small for our particular
problem, although, being a second-order derivative, it would
be essential for other situations. In this paper, I omit this term.

III. SOLUTIONS

Thus, we introduced and discussed several mechanisms for
the transverse flux of VLD and concluded that the most effec-
tive of them is associated with the phase-slippage mechanism.
A microscopic equation for this flux is given by Eq. (6), its
macroscopic closure variants are given by the formulas (7)
and (8). Our goal now is to incorporate these terms into the
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FIG. 2. Profiles of VLD L(y) obtained in numerical solution of
Eq. (9) without the term ∂L/∂t with the different expressions for
transverse flux (7) (dashed line) and (8) (dotted-dashed line). We
also inserted the curve satisfying the standard Vinen relation L(y) =
γ 2|Vns |2. Additionally, for quantitative comparison with Fig. 1, we
plotted (in italics) on the vertical axis the values corresponding to
dimensionless variables L(y), used in the paper by Khomenko et al.
[7] .

Vinen equation (1),

∂L
∂t

+ ∂Jps(y,t)

∂y
= αV |Vns | L3/2 − βV L2, (9)

and to study its solutions under the conditions that are identical
to those studied in the work by Khomenko et al. [7]. Namely,
we have selected the temperature of system, the geometry and
size of the of the channel, and parabolic counterflow velocity
Vns(y) coinciding with the ones accepted in their work. We
study two cases: a stationary situation and a completely
unsteady problem.

A. Stationary case: Profile of VLD L( y)

In Fig. 2 we displayed profiles of the VLD L(y), obtained
through the numerical solution of Eq. (9) without the term
∂L/∂t . These two curves correspond to different expressions
for transverse fluxes (7) and (8), which, in turn, correspond
to different alternative variants of the structure parameter (see
Sec. II). We have chosen the system temperatureT = 1.6 K, the
channel size 2 × 0.05 cm, the parabolic counterflow velocity
Vns(y) = 1.19 × [1 − (y/0.05)2] cm/s, coinciding with the
conditions adopted in the work [7]. Additionally, only half of
the channel width is considered, namely, 0 � y � 0.05 cm.
The boundary condition L(y = 0) = 10001/cm2 had been
taken from the result of paper [7] and from the solution of the

fully nonstationary problem (see further). It is noteworthy that
they are very close to each other. Additionally, for quantitative
comparison with Fig. 1, we plotted (in italics) on the vertical
axis the values corresponding to dimensionless variables L(y),
used in paper by Khomenko et al. [7].

The most important (albeit expected) result is that the VLD
profile does not really satisfy the standard Vinen relation
L(y) = γ 2|Vns |2, which is shown with use of a solid curve.
On the contrary, the vortex tangle is concentrated in the region
closer to the side wall (but not directly on the wall). This
behavior can be understood qualitatively from the following
considerations. The structure of fluxes expressed by the formu-
las (7) and (8) is that their maximal values are at the central parts
(y = 0) of the channel (due to the large value of the counterflow
velocity Vns) and the VLD L is intensively removed from
this region. On the contrary, because of the vanishing of the
counterflow velocity Vns on the side walls (y = 0.05), the
flux is almost extinguished, and L does not penetrate into this
region. Clearly, to support a stationary solution in the regions
where L(y) 	= γ 2|Vns |2, either the production or the decay
(second) term on the right-hand side of Eq. (9) should prevail.

As for the quantitative data such as the maximum value of
VLD L(y), width of the curve, the value on the side wall, they
agree with the result of the paper [7] in limits of 20%–30%.
This can be considered as a satisfactory agreement, taking into
account that the whole approach was based on the conventional
(uniform) Vinen theory, with numerical parameters proposed
by Vinen [1] and Schwarz [2].

One more important result concerns the fundamental ques-
tion of the use of the Schwarz’s relations for the structure
parameters of the inhomogeneous quantum turbulence. It is
easy to see that both solutions of Eq. ( 9) with the transverse
fluxes expressed by Eqs. (7) and (8) are very close. This fact
confirms the widespread view that the Vinen equation based
on Feynman’s scenario is a fairly robust construction.

B. Nonstationary case: Development of quantum turbulence
in the inhomogeneous counterflow

The rather elegant results are obtained when solving the
full equation (9), with the term ∂L/∂t . This procedure faces
the standard problem of initial conditions, typical for the Vinen
theory. Equation (9) is a balance relation between the growth
and the disappearance of vortex lines. The mechanism of
spontaneous appearance of vortices in the helium flow has not
been built into this equation.

At present, there are various theories of the initial appear-
ance of vortex filament, which can be divided into two groups.
The first group offers the different mechanisms (tunneling,
fluctuation growth, etc.) of initial generation of vortices.
Another group is based on the idea that in helium permanently
exists a background of remnant vortices. From the point of
view of the phenomenological theory, the former group can
be taken into account by introducing the initiating term into
the Vinen equation. In turn, the latter group should lead to
some initial value of VLD [L(t = 0) = Lback] in the Vinen
equation. The better agreement between experimental data on
the propagation of intense heat pulses (generating vortices and
interacting with these “own” vortices) and the corresponding
numerical solution, was obtained when assuming the existence
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FIG. 3. The spatiotemporal behavior of VLD L(t,y) with the
obtained in numerical solution of Eq. (9) with the expression (7) for
transverse flux. The upper and lower pictures correspond to different
values for the level of the remnant vorticity Lback. Namely, in the
upper graphics the quantity Lback was equal to 1000 1/cm2, whereas
for lower image Lback was equal to 100 1/cm2.

of an initial level of VLD Lback, whereas the introduction
of the initiating term led to an unsatisfactory correlation
with the experimental observations. Thus, it may be surmised
that this is an argument in favor of the theory of remnant
vortices. The according activity was described in the review
paper [3]; the level of the remnant vorticity Lback used in the
according numerical simulation is estimated approximately as
102–103 1/cm2. This values agrees with qualitative estimation,
made in the paper by Awschalom and Schwarz [27]. This
estimation says that the density of remnant vortices Lback is
of the order Lback � 2 ln(d/a0)/d2, where d = 0.1 cm is size
of a container and a0 is the core radius.

The spatiotemporal behavior of VLD L(y,t) obtained in
the numerical solution of Eq. (9) with the nonstationary term
∂L/∂t is shown in Fig. 3. The upper and lower images
correspond to the different values for the level of the remnant
vorticity Lback. We again have chosen all conditions of work
[7].

It is a very remarkable fact that the choice of initial level is
not very crucial for long time behavior, rather it is responsible
for the time of formation of a vortex tangle. This fact was
well known for the homogenous vortex tangle, but, to our
knowledge, there was no confirmation in the nonuniform
situation.

On a time slices tsat of about 2 s for larger value of Lback

and of about 3 s for the smaller one, when the saturation
and crossover to the steady-state regime occurs, the solutions
L(y,t = tsat) are consistent with the stationary solutions, found
above, as it should be for regular (not singular) solution
of differential equations. Additionally, the obtained pictures
demonstrate how the according scenario develops in time.

IV. NONUNIFORM QUANTUM TURBULENCE AND THE
VINEN PHENOMENOLOGICAL THEORY

In Sec. II, we described the problems of the closure
procedure for the microscopic equation for the flux (6) and
questions of the choice of the form for the structure parameters.
Bearing in mind that to compare various possibilities we have
chosen two variants, leading to different expressions (7) and
(8). In this regard, it seems appropriate to return to the basics
of Vinen’s phenomenological theory as applied to the complex
nonstationary and inhomogeneous situations.

The main idea of the Vinen approach was the assumption
of self-preservation, i.e., the suggestion that the macroscopic
vortex dynamics can be described in terms of the quantity L(t)
only. Selecting a set of variables to describe the macroscopic
dynamics of statistical systems is, in general, a difficult and
delicate step. For instance, the usual gas dynamics variables,
such as density, momentum, and energy (per unit volume)
are just the first moments of the distribution function of the
Boltzmann’s kinetic theory. Higher moments relax to approach
equilibrium much faster than do the first listed variables. This
circumstance allows one to truncate an infinite hierarchy of
the moment equations and obtain a closed description using
the listed quantities.

Unfortunately, in the case of quantum turbulence, the
assumption of self-preservation is not motivated, the restriction
to the only variable L(t) is not justified, and, in general, the
Vinen equation is not valid. Indeed, let us consider a very
simple counterexample. Assume that the velocity Vns(s,t)
changes instantly to the opposite. Since the Vinen-type equa-
tion includes the absolute value of relative velocity |Vns(s,t)|
magnitude, then formally the system remains unaffected by the
change. This is wrong, of course. The structure of the VT, mean
curvature, anisotropy, and polarization parameters will become
reorganized. That implies the violation of the self-preservation
assumption, and dynamics of the VLD L(t) depends on other,
more subtle, characteristics of the vortex structure, different
from L(t).

To clarify the situation, let us consider a way of derivation of
VE from the dynamics of vortex filaments in the local induction
approximation (see, e.g. [28]). It will suffice for illustration
purposes. Integrating an equation for the change of the length
of line element over ξ inside a volume �, Schwarz concluded
that in the counterflowing helium II the quantityL(t) obeys the
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equation (see [2])

∂L
∂t

= αVns

�

∫
〈s′ × s′′〉 dξ − αβ

�

∫
〈|s′′|2〉 dξ. (10)

The quantity L(t) is related to the first derivative s′ of the
function s(ξ ) since L(t) ∝ ∫ |s′|dξ . The rate of change of L(t)
includes quantities involving the higher-order derivative s′′,
namely, 〈s′ × s′′〉 and 〈|s′′|2〉. In a steady state, these higher-
order quantities are directly expressed via the VLD L as
〈s′ × s′′〉 ∝ IlL1/2 and 〈|s′′|2〉 ∝ c2

2(T )L. Here, the Il,c2(T )
are temperature-dependent parameters introduced by Schwarz
[2]. But, in the nonstationary situation, s′′ is a new independent
variable, and one needs a new independent equation for it
and for other quantities, related to curvature of line. This new
equation, in turn, will involve higher derivatives s′′′, sIV , and so
on. This infinite hierarchy can be truncated if, for some reasons,
the higher-order derivatives relax faster than the low-order
derivatives, and take their “equilibrium” values (with respect
to the moments of low order).

Strictly speaking, there are no theoretical grounds for
assuming that the relaxation of higher moments is faster than
that of the quantity L(t). Thus, in general, no equation of
the type ∂L(t)/∂t = F(L) exists! At the same time, in some
(unclear) conditions, and with the use of additional arguments
(see [1]), the required equation can be written. The attempt
was successful as this theory explained a large number of
hydrodynamic experiments, including the main experiment by
Gorter and Mellink [29] (see, for details, the review [30]). It
concerned, however, only stationary or near-stationary situa-
tions. In a strongly unsteady case, the region of applicability
of this equation is unclear (see the above counterexample with
a sudden inversion of the counterflow velocity).

Meanwhile, it seems intuitively plausible that for slow
changes (both in space and time) the assumption of self-
preservation is valid. That was the starting point in the construc-
tion of the so-called hydrodynamics of superfluid turbulence
(HST), which was the unification of the Vinen equation and the
classical two-fluid hydrodynamics (see, e.g., [16,31,32]). The
HST equations have been applied to study a large number of
hydrodynamic and thermal problems, including heat transfer
and boiling in He II (see, e.g., [33–37]). The numerical and
analytic results were in very good agreement with numerous
experimental data. This fact pointed out that the Vinen equation
is robust and is, in general, quite suitable for the unsteady
hydrodynamic problems.

It follows from the results of this work that the situation
with inhomogeneous flow is quite similar. This is confirmed by
the curves depicted on the upper and lower images in Figs. 2

and 3. In these images we display the results obtained from
solutions of the Vinen equation (9) with different expressions
(7) and (8) for the transverse flux. The qualitative similarity and
closeness of the quantitative solutions indicates again that the
Vinen equation is rather insensitive to a particular choice of the
transverse flux and is robust to study various inhomogeneous
situations.

V. CONCLUSION

We conclude by saying that the study of the inhomogeneous
flow/counterflow of superfluids in the channel on the basis of
the Vinen equation (1) requires the introduction of additional
terms describing the transverse flux of the VLD L towards the
side walls. The analysis demonstrated that the most efficient
mechanism is related to the phase-slippage mechanism. The
corresponding solutions of the Vinen equation with the addi-
tional term in both stationary and nonstationary cases agree
with observations obtained earlier in numerical simulations.
They showed that the VLD L(y,t), as a function of y, is
concentrated in the domain near the side walls. The reason
for this behavior is the special structure of the transverse flux.
This construction forces the vortex filaments to escape from
the central part, at the same time it does not allow them to touch
the walls.

One of our results, important for the macroscopic theory
of quantum turbulence, concerns the structure functions of
the vortex tangle, such as the parameters of anisotropy and
polarization. Just like in the unsteady situation, the use of
such parameters in the usual form, introduced by Schwarz, can
only be done approximately and with reservations. This fact
confirms the widespread view that the Vinen equation can be
used to explore the rough, engineering problems (although the
corresponding studies may require some fitting parameters),
but it is not suitable for the description of the fine structure
of the vortex tangle. At the same time, the Vinen-Feynman
phenomenological theory is an excellent illustration of how
the rough macroscopic approach allowed us to clarify fine and
complicated phenomena of the statistical physics of stringlike
objects.
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