
PHYSICAL REVIEW B 97, 134505 (2018)
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The pressure effect up to 24.0 kbar on superconducting and normal-state properties of β-Bi2Pd single crystal
(Tc ≈ 4.98 K at ambient pressure) has been investigated by measurements of the electrical resistivity. In addition,
we have performed the heat capacity measurements in the temperature range 0.7–300 K at ambient pressure.
The recent calculations of electronic density of states, electron-phonon interaction spectral function, and phonon
density of states of β-Bi2Pd [Zheng and Margine, Phys. Rev. B 95, 014512 (2017)], are used to fit the resistivity
and the heat capacity data. In the superconducting state we have focused on the influence of pressure on the
superconducting transition temperature Tc and upper critical field Hc2 and a negative effect with dTc/dp =
–0.025 K/kbar and dHc2/dp = –8 mT/kbar is found. A simplified Bloch-Grüneisen model was used to analyze
the pressure effect on the temperature dependence of the normal-state resistivity. The obtained results point to a
decrease of the electron-phonon coupling parameter λ and to a shift of phonon frequencies to higher values with
pressure. Moreover, the temperature dependence of the normal-state resistivity follows a T 2 dependence above
Tc up to about 25 K. Together with the enhanced value of Sommerfeld coefficient γ = 13.23 mJ mol−1 K−2 these
results point to a certain role of the electron-electron interaction in the superconducting pairing mechanism in
β-Bi2Pd.
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I. INTRODUCTION

Application of pressure (p) is an effective method for con-
trolling physical properties of condensed matter. Especially,
in case of superconducting materials, the study of pressure
influence on superconducting parameters can shed light on
coupling mechanism of Cooper pairs [1,2]. Recently, the
compound β-Bi2Pd has attracted interest due to controversial
results about the origin of superconductivity, where there
are some indications on a multigap superconductivity [3],
topologically protected surface states [4,5,6], as well as a
standard conventional superconductivity in this system [7,8,9].
Therefore, we decided to study the influence of high pressure
on superconducting parameters of β-Bi2Pd, and perform ad-
ditional measurements of its normal-state properties. To our
knowledge there is a single experimental study of the pressure
effect (measured up to 16.63 kbar) on the superconducting
transition temperature of β-Bi2Pd [10].

The rest of the paper is organized as follows. Section II deals
with the preparation of single crystals and experimental details.
In Sec. III A we present the results of the magnetotransport
experiments in the superconducting state under high pressure
up to 24.0 kbar. As a result, the pressure dependence of

*gabriel.pristas@saske.sk

the superconducting transition temperature Tc and the upper
critical fields Hc2 have been obtained, both showing a de-
crease. Angular dependence of the upper critical field brings
evidence that surface superconductivity is at play for the
field orientation close to parallel to the basal plane of the
crystal. In Sec. III B we present resistivity measurements in
the normal state between 5 and 300 K and up to 24.0 kbar.
The resistivity data at ambient pressure can be fitted by the
Bloch-Grüneisen formula based on the theoretically predicted
electron-phonon interaction spectral function α2F (ω) [9], but
also by its simplified version with a single-phonon mode.
The latter model applied on the normal-state resistivity at in-
creasing pressure provides evidence that the dominant phonon
frequency is shifted higher and the electron-phonon coupling
constant is decreasing upon increasing pressure causing a lower
Tc. The fits by the Bloch-Grüneisen model are affected by T 2

dependence of resistivity at low temperatures up to about 25 K,
similarly as in Nb3Sn [11]. Evolution of this T 2 dependence
of the resistivity under pressure we present in Sec. III C. In the
last paragraph of Sec. III D we present experimental data of
the heat capacity at ambient pressure, which we compare with
the calculations based on the theoretically predicted phonon
density of states (PHDOS) [9]. The obtained Sommerfeld
coefficient is significantly smaller than that from experiment.
This together with the T 2 dependence of the resistivity in-
dicates that beside the electron-phonon coupling, also an
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electron-electron interaction may play a role in the supercon-
ductivity of β-Bi2Pd. Finally, in Sec. IV. we summarize our
results.

II. EXPERIMENT

The single crystals of β-Bi2Pd have been grown
using melt-growth technique from high-purity Bi (Alfa Aesar
99.99%) and Pd (Alfa Aesar 99.95%) sealed at 140 mbar of
He gas in quartz ampoules. The details of sample preparation
can be found in Ref. [12].

All the measurements have been realized in the Centre of
Low Temperature Physics, Košice. The high-pressure magne-
totransport experiments have been performed in a piston cylin-
der pressure cell. Pressure was applied at room temperature
and the Daphne oil 7373 was used as pressure transmitting
medium. For determination of applied pressure we used the
absolute value of the resistivity of Pb at room temperature
[13] and value of superconducting transition temperature Tc

at low temperatures, respectively. The pressure change on
cooling is estimated to be less than 2 kbar. The temperature and
magnetic field dependences of the resistance between 1.6 and
300 K were measured using 4 He cryostat with superconducting
magnet and variable temperature insert (Oxford Instruments).
The electrical resistivity was measured by a standard four-
probe technique using lock-in amplifiers by Stanford Research.

FIG. 1. (a) Photo and schematic drawing of assembled feed-
through with two samples of β-Bi2Pd and Pb as manometer. (b)
Pressure dependences of the superconducting transition for β-Bi2Pd.

Low-temperature measurement of the heat capacity from 0.7–7
K have been performed using ac calorimetry. More details
about the ac calorimetry measurements can be found in
Ref. [7]. Measurement of the heat capacity in the temperature
range 2–300 K has been performed using the standard relax-
ation technique on the Physical Property Measurement System
(PPMS) by Quantum Design.

III. RESULTS AND DISCUSSION

A. Magnetotransport experiments in superconducting
state under high pressure

The pressure effect on superconducting and normal-state
properties of β-Bi2Pd (Tc ≈ 4.98 K at ambient pressure) has
been investigated by measurements of the electrical resistivity
on two pieces of samples cut out from the same thin sheet
of single crystal. The two samples were positioned such that
one of them had ab planes aligned parallel to applied magnetic
field H, while the other was perpendicular to this direction [see
Fig. 1(a)]. This configuration allowed us to measure the upper
critical field in both directions, Hc2

ab and Hc2
c, simultaneously.

As it will be shown later, during closing of the pressure cell
the sample for measurement of Hc2

ab was misaligned from
a perfect parallel position and therefore we will denote the
observed critical field as Hc2

ab∗.
Figure 1(b) shows the superconducting transitions of

β-Bi2Pd sample in zero magnetic field under various pressures.
The width of superconducting transition is about 80 mK at all
pressures. The fact that the width of the transition remains the
same upon increasing pressure points to highly homogeneous
hydrostatic pressure in our piston cylinder pressure cell. In
order to compare our results with the work by Zhao et al. [10],
we analyzed their data in the same way as in our case, i.e.,
a value of Tc is defined as the temperature corresponding to
the midpoint of the resistivity transition and the width of the
transition is defined as temperature range between 90% and
10% of resistivity value in normal state.

FIG. 2. Pressure dependence of superconducting transition tem-
perature Tc for β-Bi2Pd up to 24.0 kbar (solid squares) and corre-
sponding linear fit (blue line). For comparison we show also data
from Zhao et al. [10] (open circles).
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FIG. 3. Superconducting transitions in different magnetic fields
for β-Bi2Pd at 24.0 kbar in two configurations: (a) magnetic field in
the c direction (Hc2

c), and (b) magnetic field close to parallel to the
ab plane (Hc2

ab∗).

Figure 2 shows comparison of the pressure dependence of Tc

for our β-Bi2Pd sample and the sample measured in Ref. [10].
One can see that values of Tc are in good agreement with
each other. In our case we have at least three times narrower
transitions, which points to better quality of our sample. This
is also obvious from a comparison of absolute values of the
resistivity, where just above Tc in the case of Zhao etal. ρ is
about 48 μ�cm and in our case it is about 22 μ�cm. The
slightly enhanced value of Tc for sample in work by Zhao
et al. can be explained by the increased number of lattice
defects, as it was shown, for example, in tin [14]. The resistivity
measurements up to 24.0 kbar have shown a negative effect
of pressure on Tc with a slope of dTc/dp = –0.025 K/kbar,
which is in good agreement with the work by Zhao et al.,
where dTc/dp = –0.028 K/kbar (measured up to 16.63 kbar)
was found. Decrease of Tc with pressure can be understood in
the framework of suppressing the electron-phonon interaction
and the shift of phonon frequencies in β-Bi2Pd to higher
energy. The superconducting transitions at different magnetic
fields for β-Bi2Pd at maximum pressure of 24.0 kbar, in two
above-mentioned configurations, H||ab and H ‖ c, are shown
in Fig. 3.

FIG. 4. Temperature dependences of the upper critical field (Hc2
c)

at different pressures for β-Bi2Pd (solid circles). Lines represent
WHH fits. For comparison we show also measurements of Hc2

c (from
resistivity) at the sample from the same ingot as our sample, measured
in Ref. [7] down to 0.4 K (crosses). Inset: Linear decrease of Hc2

c(0)
with increasing pressure.

The upper critical fields have been determined from the
magnetoresistive superconducting transitions at the steepest
slope, around 50% of the normal-state resistance (T , H ).
Figures 4 and 5 show the resulting temperature dependences
of Hc2

c(T ) and Hc2
ab∗(T ) at various pressures (circles and

squares, respectively). These graphs reveal a systematic de-
crease of the zero-field transition temperature Tc as well
as of the zero-temperature value of Hc2

c(0) and Hc2
ab∗(0)

with increasing pressure. Hc2(0) values were extrapolated
using the Werthamer-Helfand-Hohenberg (WHH) [15] fits

FIG. 5. Temperature dependences of the critical field (Hc2
ab∗)

at different pressures for β-Bi2Pd (solid squares). Lines represent
WHH fits. For comparison we also show the thermodynamic (×)
and the resistive (+) measurements of Hc2

ab from Ref. [7] down to
0.4 K. Dashed line represents the supposed third critical field Hc3(T )
obtained as 1.695 product of the thermodynamically determined Hc2

ab

(p = 1 bar).
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(see lines in Figs. 4 and 5). Hc2
c(0) values are displayed in

the inset of the Fig. 4 showing a linear decrease with the
slope dHc2

c/dp = –8 mT/kbar. At low temperatures below
∼2 K, the experimental data of Hc2

c slightly deviate from
WHH fits. Such deviation in the resistivity measurements
was observed also in our previous work [7]. On the other
hand, the upper critical fields determined from the heat
capacity measurements were in good agreement with the
standard WHH model in whole temperature range [7]. Such
behavior of the resistively determined upper critical field was
observed also in system Bi2Se3 [16] and Bi4Te3 [17] with
characteristic layered crystal structure. In case of β-Bi2Pd,
cleaved surface of a single crystal is expected to be composed
by Bi atoms due to the weakest bond between adjacent Bi
layers [6], which could lead to topologically trivial and/or
nontrivial surface states [6]. Indeed, the resistive measurements
are sensitive to properties of the surface thus existence of
such surface states could influence determination of critical
fields.

The deviation of the resistively determined Hc2 from WHH
fit is even more pronounced if the field is oriented parallel
to the ab planes. Moreover, the values at ambient pressure
significantly exceed those determined thermodynamically. In
Fig. 5, our recent results (squares) are supplemented by Hc2

ab

determined from the heat capacity (symbols ×), as well as
from the resistivity (symbols +) measurements as presented
in our previous study [7]. There, we have shown that the
resistive Hc2

ab data were very close to the supposed third
critical field or surface critical field Hc3(T ) [18] calculated
from the thermodynamic upper critical field as 1.695 × Hc2

ab.
This supposed third critical field is included in Fig. 5 as
well, represented by the dashed line. The configuration of
the four probes in our resistivity measurements at H ‖ ab is
favorable to detect Hc3 too. However, one can see that our
data at ambient pressure (black squares) lie at slightly lower
values of magnetic field for corresponding temperature (due to
small misalignment of the sample from being perfectly along
H||ab). To elaborate further the surface superconductivity we
have performed an angular-dependent measurement of the
critical magnetic field using horizontal rotator in PPMS (at
ambient pressure). Figure 6 shows a cusplike behavior of
the critical field taken at 2 K. Such a cusp is characteristic
of the surface superconductivity and can be fitted by the
formula [19]:

[
Hc(θ )

Hab
c3

sin θ

(
1 + 1 − cos θ

2 tan θ

)]2

+ Hc(θ )

Hc
c2

cos θ = 1. (1)

Comparing maximum value of the critical field measured
at H||ab (angle 90° in Fig. 6) and observed value of Hc2

ab∗ at
temperature 2 K (Fig. 5), we estimated that in the pressure
cell there was about 5° misalignment from perfect parallel
orientation of magnetic field to ab direction. During the
increase of applied pressure this misalignment can be changed
and therefore we can only qualitatively conclude that with
pressure Hc2

ab∗(0) and related Hc3(0) have a tendency to
decrease.

FIG. 6. Angular dependence of the upper critical field measured
at fixed temperature 2 K and fit of surface superconductivity formula
(black curve). Inset shows several transitions for different angles.

B. Magnetotransport experiments in normal state
under high pressure

In this section we will focus on the normal state of the
β-Bi2Pd, namely, the temperature dependence of the resistivity
above Tc up to room temperature. From these measurements
we obtain information about the pressure effect on the char-
acteristic phonon spectrum and the electron-phonon coupling
parameter λ.

For typical three-dimensional metals where the electrons
are scattered only by phonons, the temperature dependence
of resistivity in the normal state can be described by the
Bloch-Grüneisen theory. The temperature dependence of elec-
trical resistivity changes from ρ ∼ T for the high-temperature
regime to ρ ∼ T 5 at low temperatures below characteristic
Debye temperature. Using isotropic Eliashberg spectral func-
tion α2F (ω) from Ref. [9], we can calculate the temperature
dependence of the resistivity via formula:

ρBG(T ) = ρ0 + 4πm

ne2

∫ ωmax

0
α2F (ω)

xex

(ex − 1)2 dω, (2)

where ρ0 is residual resistivity, m is electron mass, n is density
of electrons, e is electron charge, α2F (ω) is electron-phonon
transport coupling function and x = ω/T , where ω stands for
the frequency. We have checked that there is no significant
difference in results taking α2F (ω) from Ref. [9] with or
without spin-orbit coupling (SOC). For the sake of simplicity,
we will thus in the following refer only to α2F (ω) calculated
with SOC included. The calculated curve using experimental
value of ρ0 = 21.78 μ�cm is shown in Fig. 7 by the red curve.
One can see that the curve is not describing experimental results
satisfactorily. It was already mentioned in Refs. [3] and [10]
that in case of β-Bi2Pd, the temperature dependence of resis-
tivity has several features, which are not compatible with the
Bloch-Grüneisen model. Namely it exhibits a minor downturn
around 50 K and a hump below about 150 K. This hump or
negative curvature in the resistivity at high temperatures can
be fitted by introducing the empirical parallel-resistor model
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FIG. 7. Temperature dependence of resistivity for β-Bi2Pd at
ambient pressure (circles). Red curve represents calculated depen-
dence of resistivity using Bloch-Grüneisen formula [Eq. (2)]. Blue
curve is the fit of experimental data using empirical parallel-resistor
model [Eq. (3)]. Inset shows Eliashberg spectral function α2F (ω) with
spin-orbit coupling from Ref. [9].

[20,21] with general formula:

1

ρ(T )
= 1

ρ0 + ρBG

+ 1

ρmax
, (3)

where ρ0 is residual resistivity and ρmax is some limiting value.
Tendency to resistivity saturation is found for many transition-
metal compounds and it was shown that by introducing the
empirical parallel resistor we can describe experimental ob-
servation satisfactorily [20,21]. For explanation of saturation
resistivity origin, we have to treat electrons quantum mechani-
cally and not semiclassically as it is in case of Bloch-Grüneisen
theory [21]. For our purpose we will take to account ρmax in
order to fit our experimental data, however, we will not study a
mechanism of resistivity saturation. In Fig. 7 we show a fit (blue
curve) of experimental data using the parallel-resistor model.
The best fit with parameters of ρ0 = 24.8 μ�cm and ρmax =
234 μ�cm corresponds with the data in a large-temperature
interval, but deviates below 50 K in agreement with the
observations of Imai et al. [3]. This deviation suggests that the
electrical resistivity in β-Bi2Pd cannot be explained as being
only due to scattering of the conduction electrons by phonons,
but at temperatures below about 50 K some other scattering
mechanism plays an important role.

Figure 8 shows the temperature dependences of electrical
resistivity under various pressures. Increasing pressure is
suppressing the value of electrical resistivity in the whole
temperature range. The discontinuity between the ambient
pressure data and the data at higher pressures probably comes
from strains during the initial pressurization (note similar
discontinuity in the normal-state resistivity value in Fig. 1).
Unfortunately, after releasing pressure, the contacts to the
sample were broken, therefore we were not able to reproduce
the measurement at ambient conditions after pressure treatment
with the same contact configuration.

In order to qualitatively estimate the effect of pressure on
the phonon spectrum and on the electron-phonon coupling

FIG. 8. Temperature dependences of electrical resistivity under
various pressures (points). Black lines correspond to fits of data using
parallel resistor model with simplified Bloch-Grüneisen formula
using a single phonon mode.

constant λ from the temperature dependence of the resistivity
at various pressures, we replaced the Eliashberg function
in the Bloch-Grüneisen formula by a single Einstein-like
phonon mode. Such an approach was successfully used to
analyze the resistivity data in YB6 [2,22]. In our case, this
prominent phonon contribution comes from the low-energy
phonon modes up to 8 meV. Regarding calculations of Zheng
and Margine [9] the largest fraction (60%) of the total electron-
phonon coupling comes from these modes. Moreover, the im-
portance of these phonon modes is confirmed also in Sec. III D
where the lattice contribution to the heat capacity is studied in
detail. Within this approximation, the formula reads:

ρBG(T ) = 2π

ε0�2
p

λTE

xex

(ex − 1)2 , (4)

where �p ≡ (ne2/ε0m
∗)1/2 is the unscreened plasma fre-

quency, λ is electron-phonon coupling parameter, and x =
TE/T , where TE is Einstein temperature of the characteristic
phonon mode.

In the first step we fitted our data of ρ(T ) at ambient pressure
by this simplified Bloch-Grüneisen formula with λ = 0.97, as
predicted by the theory [9]. Comparing Figs. 7 and 8 shows that
the fit with the single Einstein-like phonon mode is of the same
quality as that with α2F (ω), justifying this simplification for
further analysis. In order to minimize the fitting parameters,
we fixed the value of ρmax = 234 μ�cm resulting from the
fit at ambient pressure. The resulting parameters of fits at
different pressures are summarized in Table I. With increasing
pressure the electron-phonon coupling parameterλ is gradually
suppressed, while at the same time TE increases, pointing to
shift of the characteristic phonon modes to higher frequencies.

If we consider that β-Bi2Pd is a standard BCS supercon-
ductor [7,8,9], then we can use the McMillan formula [23] for
estimation of Tc. This formula connects the value of Tc with
the electron-phonon coupling constant λ, the logarithmically
averaged phonon frequency ωln, and the screened Coulomb
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TABLE I. Parameters obtained from fits of temperature dependence of electrical resistivity under various pressures, where ρ0 is residual
resistivity, λ is electron-phonon coupling constant, and TE is characteristic temperature of Einstein-like phonon mode. Tc

cal is calculated
temperature of transition to superconducting state using Eq. (5) (with TE instead of ωln), Tc

exp is temperature of transition to superconducting
state observed in experiment. ξ is coherence length calculated from the upper critical field.

Pressure [kbar] ρ0 [μ�cm] λ TE [K] Tc
cal [K] Tc

exp [K] ξ (0) [nm]

0.001 24.23 0.970 74.65 4.96 4.98 23.4
6.8 23.23 0.850 77.68 4.10 4.81 25.1
10.6 22.79 0.829 78.22 3.93 4.72 25.9
13.3 22.47 0.809 79.40 3.80 4.62 26.4
21.4 21.85 0.777 80.07 3.53 4.47 27.9
24.0 21.74 0.766 81.34 3.48 4.36 28.9

repulsion parameter μ∗ :

T cal
c = ωln

1.2
exp

[
− 1.04(1 + λ)

λ(1 − 0.62μ∗) − μ∗

]
, (5)

Using Eq. (5), where we replace ωln by TE, taking μ∗ = 0.1
and values of λ from Table I, we calculated evolution of
the transition temperature Tc

cal with pressure. For ambient
pressure we arrived to the value of Tc

cal = 4.96 K, which is in
striking agreement with experimentally observed valueTc

exp =
4.98 K. Upon increasing pressure the calculated Tc decreases;
however, the decrease is much faster than what is observed
experimentally. This discrepancy is another indication for not
purely electron-phonon coupling of Cooper pairs in β-Bi2Pd.

In addition, we present in Table I the pressure dependence
of coherence length ξ calculated using equation:

ξ =
√


0

2πHc
c2

, (6)

where 
0 is magnetic flux quantum and Hc2
c is the value from

magnetotransport data extrapolated to zero temperature using
WHH fits (see Sec. III A). The value of coherence length at
ambient pressure (23.4 nm) is in agreement with that obtained
from soft point-contact spectroscopy studies by Che et al. [8].
With increasing pressure the coherence length increases up to
28.9 nm at 24.0 kbar.

C. Evolution of T 2 resistivity under high pressure

As shown above, the resistivity data below 50 K cannot
be satisfactorily described by the Bloch-Grüneisen model
taking into account only scattering of conduction electrons on
phonons. This observation points to the fact that in β-Bi2Pd the
resistivity is governed not only by electron-phonon scattering,
but we have to include also another scattering processes.
T 2 dependence of resistivity indicates the electron-electron
interaction [27]. Although this feature was observed also
previously in Refs. [3] and [10], the authors did not discuss
its possible origin. Figure 9 shows temperature dependence of
resistivity as a function of T 2. The data from Tc up to ∼25 K
can be well described by the relation ρ(T ) = ρ0 + AT 2, where
ρ0 is the residual resistivity and A is the prefactor. ρ0 and A for
various pressures are shown in Fig. 10. Recently, Ren et al. [11]
observed very similar behavior of ρ(T ) in Nb3Sn. Their results
highlighted the importance of the electronic states at the Fermi
level and opened a question on the superconducting pairing in
this material. Similar behavior of resistivity has been observed

in other systems such as V3Si [24], strongly correlated material
KFe2As2, and other heavy fermion systems [25,26].

In order to emphasize the direct relation ofTc with electronic
states at the Fermi level, we plotted in Fig. 11 Tc as a function
of A0.5 taking into account that A ≈ [N (EF)]2 in the systems
with significant electron-electron scattering [27], where N (EF)
is electronic density of states at the Fermi level. As was
already mentioned above, we observed discontinuity between
the ambient pressure data and the data at higher pressures
(see Fig. 8), and therefore we are not taking into account
the initial point at p = 1 bar (rightmost point in Fig. 11).
Figure 11 shows linear behavior of Tc against A0.5, meaning
that dTc/dA0.5 α dTc/dN(EF) is not changing with pressure.
The mutual decrease of Tc and A with pressure points to a close
relationship between these quantities. This result is consistent
with the studies of Nb3Sn [11,28], which show that Tc is a
function of N (EF).

D. Heat capacity at ambient pressure

In the previous sections we presented the results of the
resistivity measurements, where surface plays an important
role and it is difficult to distinguish between bulk and surface
properties. On the other hand, heat-capacity measurement is

FIG. 9. Temperature dependences of resistivity in T 2 represen-
tation in temperature range just above Tc up to 600 K2(∼25 K), for
β-Bi2Pd under various pressures.
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FIG. 10. Pressure dependences of a quadratic term of the resis-
tivity A and residual resistivity ρ0.

sensitive to bulk properties and thus can provide a direct test
of the theoretical model of the system proposed by Zheng and
Margine [9]. Therefore, we have performed measurement of
the heat capacity by a relaxation technique in temperature range
from 300 K down to 2 K in μ0H = 0 T at ambient pressure.
The experiment has been performed on a thin rectangular
sample with the dimensions 3 × 3 mm2 × 15 μm (sample
mass 4.25 ± 0.05 mg), which ensured perfect thermal coupling
with the calorimeter. Furthermore, in combination with our
data from ac calorimetry [7], we extended the temperature
range of the measured heat capacity down to 700 mK.

Figure 12 shows temperature dependence of the heat capac-
ity, where we have combination of the normal-state data from
ac calorimetry (measured in magnetic field 1 T) and the data
from relaxation technique above Tc. The inset shows C/T vs.
T 2 at low temperatures, where for T < θD/10 [29] it should
be equal to

Ctotal(T ) = γ T + βT 3, (7)

FIG. 11. Plot of Tc vs A0.5 for β-Bi2Pd. Red line is linear fit of
the data neglecting point at p = 1 bar (see text).

FIG. 12. Temperature dependence of the total heat capacity in
normal state of β-Bi2Pd combining ac-calorimetry and relaxation
technique. Inset shows low-temperature zoom of the data (points)
in representation C/T vs T 2 and the linear fit (blue line).

where the first term is an electronic contribution with a
Sommerfeld coefficient γ and the second term is a low-
temperature lattice contribution. From the fit in the temperature
range from 0.7–3 K we obtain γ = 13.23 mJ mol−1 K−2 and
β = 2.37 mJ mol−1 K−4. The value of γ is in agreement
with previous works [8,12]. The Sommerfeld coefficient was
analyzed in accordance with [29]:

γ = 1
3π2k2

B(1 + λ)N (EF ), (8)

where kB is Boltzmann’s constant, λ is the electron-phonon
coupling constant, and N (EF ) is the electronic density of
states at the Fermi level (EDOS). Using calculated theo-
retical values [9] for density of states at the Fermi level
N (EF ) = 0.788 state/[spin/eV unit cell] and the electron-
phonon coupling strength λ = 0.97, we arrive to the value
of γ = 3.13 mJ mol−1 K−2. This is much lower than what
was observed experimentally and implies that the product of
(1 + λ)N (EF ) should be around three times larger than the
theoretical prediction by Zheng and Margine [9]. Together with
the T 2 dependence of the electrical resistivity these results
point to a certain role of the electron-electron interaction in
the superconducting pairing mechanism in β-Bi2Pd.

Regarding the lattice contribution to the heat capacity, for
low temperatures we can write:

β = 12

5
NAkBπ4�−3

D (0), (9)

where NA is Avogadro’s number and θD(0) is the initial Debye
temperature. From a fit of normal-state data in temperature
range 0.7–3 K we find θD(0) = 91 K.

The low-temperature T 3 regime of the lattice heat capacity
works up to about 3 K (9 K2, see inset in Fig. 12). The
value of the heat capacity at room temperature [Ctotal(300 K) =
77.4 J mol−1 K−1] is very close to the Dulong-Petit value
(Cv = 74.8 J mol−1 K−1), which points to the fact that at this
temperature almost all phonon modes are already excited.

For the lattice contribution to the heat capacity we assumed
that Cph = Ctotal-γ T , neglecting the anharmonic specific heat.
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FIG. 13. (a) Temperature dependence of a lattice contribution to
the heat capacity in normal state of β-Bi2Pd (circles), fit to a simple
Debye model (red curve) and calculated phonon contribution to the
heat capacity using theoretically predicted PHDOS [9] (black curve).
Inset shows PHDOS in case of Debye model (red curve) and PHDOS
calculated in Ref. [9] (black curve). (b) Emphasized low-temperature
part of the heat capacity and the two theoretical curves. Inset shows
standard Kadowaki-Woods plot for several heavy fermion systems
(open symbols, from Ref. [31] and references therein) and line
represents typical value of RKW = 10 μ�cm mol2 K2 J−2 for heavy
fermion systems. Value of RKW for β-Bi2Pd is shown by full symbol.

We analyzed Cph in a standard way by fitting the experimental
data using a simple Debye model [Eq. (10)], where PHDOS
is proportional to ω2 with cutoff Debye frequency ωD(θD =
h̄ωD/kB):

Cv(T ) = 3NrkB

(
T

�D

)3 ∫ �D/T

0

x4ex

[ex − 1]2 dx, (10)

where N is a number of oscillators, r is a number of atoms
in a molecule of the system (r = 3), and x = θD/T . The best
fit of the experimental data is for the Debye temperature θD =
145.68 K [red curve in Fig. 13(a)]. The Debye model describes
experimental data very well at low temperatures, however,
above about 5 K it starts to deviate from the experimental

observations [see Fig. 13(b)]. At 20 K the Debye model
underestimates the experiment by about 25%.

According to the model of Zheng and Margine [9] we can
calculate the contribution of lattice vibrations to the specific
heat by using their calculated PHDOS [F (ω)] by the following
equation [29]:

Cv(T ) = kB

∫ ωmax

0

(
h̄ω
kBT

)2
exp

(
h̄ω
kBT

)
[
exp

(
h̄ω
kBT

) − 1
]2 F (ω)dω. (11)

We considered the normalization condition for Eq. (11):∫ ωmax

0
F (ω)dω = 3Nr. (12)

Figure 13(a) shows the calculated phonon heat capacity
using Eq. (11) (black curve). In Fig. 13(b) we can see the
zoom of data below 35 K and calculated heat capacity using
PHDOS from [9] (black curve), which gives a much better
agreement with the experiment than a simple Debye model
(red curve). This can be attributed to the difference between
the calculated PHDOS and the Debye one as it is shown in the
inset of Fig. 13(a). Between 3 and 7 meV there are much more
states predicted by Zheng and Margine than in the Debye model
and this is obviously reflected in the calculated heat capacity.
However, with increasing temperature the difference between
the two models vanishes as is expected considering integral
function for calculation of the heat capacity. Slight deviation
from the experimental data is observed in the temperature
range from around 70–250 K, close to room temperature the
calculated curves again meet the experimental data. In fact, we
can conclude that predicted PHDOS by Zheng and Margine
describe experimental observation of lattice contribution to the
heat capacity very well underlying importance of low-energy
phonon modes.

According to the enhanced value of γ and pronounced
T 2 behavior in temperature dependence of electrical resis-
tivity in β-Bi2Pd, the Kadowaki-Woods ratio (RKW = A/γ 2)
[30,31] can be discussed. In case of β-Bi2Pd we have RKW =
22 μ� cm mol2 K2J−2. Despite the fact that γ for β-Bi2Pd
is from one to two orders of magnitude lower than that
of the heavy fermion systems, the RKW lies close to the
value typical for them [see inset in Fig. 13(b)]. Taking into
account the independence of RKW on pressure [32], we can
estimate the evolution of γ from the pressure dependence
of coefficient A (see Fig. 10). If we consider the linear
dependence of A dA/dp = –34.56 × 10−3 n� cm K−2/kbar
(neglecting point at p = 1 bar), than we have dγ /dp = –64 ×
10−3 mJ mol−1 K−2/kbar. This means that we can expect
decrease of effective mass of electrons with pressure. It will be
interesting to compare our estimation with experiment, where
the absolute value of the heat capacity can be measured under
pressure (see for example Ref. [33]).

IV. CONCLUSIONS

In conclusion, we have studied the magnetoresistive mea-
surements of single-crystal β-Bi2Pd samples (Tc ≈ 4.98 K at
ambient pressure) under pressure up to 24.0 kbar. The nega-
tive linear pressure effect on the transition temperature with
the slope dTc/dp = –0.025 K/kbar has been observed. The
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upper critical field Hc2
c(0) and the critical field Hc2

ab∗(0) are
decreasing with pressure as well. Experimental observations
were compared with calculated resistivity using the Bloch-
Grüneisen model taking into account theoretically predicted
α2F (ω) [9]. We have shown that electrical resistivity in
β-Bi2Pd cannot be explained as being only due to scattering
of conduction electrons by phonons, but at temperatures below
∼50 K other scattering mechanisms plays an important role.
Using a simplified Bloch-Grüneisen model for temperature
dependence of resistivity, where we replaced α2F (ω) by a
single characteristic Einstein phonon mode, we estimated the
decrease of the electron-phonon coupling constant λ with
pressure as well as increase of characteristic phonon energy. In
addition we have performed measurements of the heat capacity
from room temperature down to 0.7 K at ambient pressure.
Obtained experimental data were fitted using theoretically pre-
dicted electron and phonon density of states [9]. The calculated
lattice contribution to the heat capacity is in good agreement
with experimental observation, however, observed electronic
contribution (namely Sommerfeld coefficient) largely exceeds
theoretical expectations. The T 2 dependence of the normal-

state resistivity, together with the enhanced value of Sommer-
feld coefficient γ = 13.23 mJ mol−1 K−2 point to a certain role
of the electron-electron interaction in superconducting pairing
mechanism in β-Bi2Pd.
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