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Magnetic deflection experiments on isolated Co-doped Nb clusters demonstrate a strong size dependence of
magnetic properties, with large magnetic moments in certain cluster sizes and fully nonmagnetic behavior of
others. There are in principle two explanations for this behavior. Either the local moment at the Co site is absent
or it is screened by the delocalized electrons of the cluster, i.e., the Kondo effect. In order to reveal the physical
origin, first, we established the ground state geometry of the clusters by experimentally obtaining their vibrational
spectra and comparing them with a density functional theory study. Then, we performed an analysis based on the
Anderson impurity model. It appears that the nonmagnetic clusters are due to the absence of the local Co moment
and not due to the Kondo effect. In addition, the magnetic behavior of the clusters can be understood from an
inspection of their electronic structure. Here magnetism is favored when the effective hybridization around the
chemical potential is small, while the absence of magnetism is signaled by a large effective hybridization around
the chemical potential.
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I. INTRODUCTION

Electronic correlations constitute the basis of condensed
matter physics and are responsible for the enormous wealth
of phenomena found in solids, such as (high-Tc) supercon-
ductivity [1], charge and spin ordering [2] and fluctuations
[3], colossal magnetoresistance [4], metal-insulator transitions
[5], half-metallicity [6], the quantum Hall effect [7], and
heavy-fermion behavior [8]. Reducing the size, however, leads
to an extreme sensitivity of these properties to the atomic
arrangement, shape, and effects of the environment. The
understanding and control of these size-driven processes is
therefore crucial to maintain the pace of developments in
nanoscience.

In this miniaturization trend, the ultimate limit is repre-
sented by atomic clusters. Such clusters are particles composed
of a countable number of atoms, from the diatomic limit up to
some thousands or tens of thousands of atoms [9]. Quantum
confinement effects entirely govern the behavior of matter
in this size regime. The discretized electronic levels lead to
sudden changes of the cluster properties, for example when
changing the cluster size on an atom-by-atom basis. In the
semiconductor technology there is a long-standing interest in
systems with discrete energy spectra, such as quantum wells
[10] and quantum dots [11].

Obviously the consideration of doped or alloyed instead
of pure clusters offers an even broader playground for tech-
nological applications. However, doped clusters are also very
interesting from a fundamental point of view. For example,
it is well known that already for a single magnetic impurity
in a nonmagnetic metallic host interesting phenomena such
as Friedel oscillations [12] and the Kondo effect [13] can
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occur. How would such effects be present in clusters, or
would they be present at all? Furthermore, the case of a single
magnetic impurity embedded in a discrete host such as a cluster
offers a sensitive probe of studying the dependence of the
local magnetic moment on the details of the discrete energy
spectrum. This could lead to valuable insight in processes
reducing the local magnetic moment and/or Kondo screening
mechanisms. More precisely, the formation of the atomic
magnetic moment is trivially described by the Hund’s rules
in the case of an isolated atom, but this process is far from
trivial in the case of an atom embedded in an interacting host.

Recently, the magnetic moment of a single magnetic impu-
rity in a discrete host was investigated in the framework of the
Anderson impurity model [14]. One of the things found was
that the local moment grows with increasing host band gap
(HOMO-LUMO gap).

Using this relation, the experimentally observed magnetic
moments of Cr-doped Au clusters were successfully explained
[15]. This demonstrates in particular that the size of the
measured local moment follows the trend of the calculated
band gap of the host.

In this work we present a comprehensive study of the
mechanisms governing the formation of magnetic moments in
Co-doped Nb clusters. From magnetic deflection experiments
we make the interesting observation that some clusters are
strongly magnetic, while others are completely nonmagnetic,
in contrast with the Cr-Au case where all measured clusters
were found to be magnetic. There are two possibilities for
the absence of magnetism in the NbxCo clusters. Either there
is no local Co magnetic moment or it is screened by the
delocalized electrons of the cluster, i.e., the Kondo effect.
From the theoretical perspective, the difficulty in explaining
the observed magnetic behavior is in the treatment of the
electronic correlations. Since it is not clear from the begin-
ning whether correlations effects are weak, intermediate, or

2469-9950/2018/97(13)/134427(14) 134427-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.134427&domain=pdf&date_stamp=2018-04-26
https://doi.org/10.1103/PhysRevB.97.134427


A. DIAZ-BACHS et al. PHYSICAL REVIEW B 97, 134427 (2018)

strong, it is difficult to decide which theoretical approach
is suitable. One could expect correlations to be stronger in
small clusters than in their bulk counterparts due to a stronger
localization of the wave functions. On the other hand, for the
clusters fewer screening channels are present, which could
lead to an almost constant Coulomb interaction through-
out the cluster [16]. This would render correlation effects
unimportant.

Thus, the importance of correlation effects is not known
for NbxCo clusters a priori. To study this, first, we make
a comparison of experimental vibrational spectra with those
obtained from a density functional theory (DFT) study. This
serves two purposes. It provides the ground state geometry of
the clusters. Moreover, due to the dependence of the vibrational
spectrum on the magnetic moment, the performance of DFT in
predicting the magnetic moments can be investigated. Then, in
order to obtain a physical understanding of the experimentally
observed magnetic behavior, we perform an analysis based
on the Anderson impurity model. From this analysis it is
observed that the absence of a magnetic moment in the doped
clusters is due to an absence of the Co moment and not
the Kondo effect. In addition, the magnetic behavior of the
NbxCo clusters can be understood from an inspection of their
electronic structure. Magnetism is favored when the effective
hybridization around the chemical potential is small, while
the absence of magnetism is signaled by a large effective
hybridization around the chemical potential.

Both Co-doped and pure Nb clusters have already been
the topic of interest in earlier works. One of the most rele-
vant experimental works on pure Nb clusters is the electric
deflection experiment, which showed that cold clusters may
attain an anomalous component with very large electric dipole
moments [17]. Further, magnetic deflection experiments on
pure Nb clusters showed that at very low temperatures the
clusters with an odd number of atoms deflect due to a single
unpaired spin that is uncoupled from the cluster lattice [18,19].
Far-infrared absorption spectra of small neutral and cationic
Nb clusters combined with DFT calculations have revealed
their geometries [20]. Compared to pure Nb clusters, not
much is known of Co-doped clusters. Experimentally an
anion photoelectron spectroscopy study is performed, which
showed that the addition of the Co atom for small Nb clusters
induces bulklike behavior, i.e., closing of the band gap [21].
From the theoretical side a computational study based on
DFT addressed the geometric and magnetic properties finding
that Nb7Co has no net magnetic moment, which means that
the magnetic moment of 6 μB coming from the Co atom is
completely destroyed by interactions with the Nbx host [22].
The experimental confirmation of this is however completely
lacking, which is another reason for conducting a combined
experimental and theoretical study.

The rest of this paper is organized as follows. In Sec. II
we first present our magnetic deflection experiments. Then, in
Sec. III the experimental vibrational spectra are compared with
those obtained from density functional theory calculations.
Based on the ground state geometries obtained from this
comparison, we perform a discussion based on the Anderson
impurity model in Sec. IV to address the presence or absence
of magnetic moments in NbxCo clusters. Finally, in Sec. V we
present our conclusions.

II. MAGNETIC DEFLECTION EXPERIMENTS

A. Stern-Gerlach type of setup

The magnetic moments of the NbxCo clusters were ob-
tained by means of a Stern-Gerlach-like setup [23]. This
setup consists mainly of three parts: the source, the magnet,
and the position-sensitive time-of-flight mass spectrometer
(PSTOFMS). The source is of Milani–de Heer type [24]. The
clusters are produced in the source chamber by ablation of
a NbxCoy (x = 95%, y = 5%) rod due to a Nd:YAG laser
producing 532 nm light. More precisely, this laser is focused
on the rod, which is inside a cavity of a tuneable volume.
The cavity is connected to a pulsed valve, responsible for
introducing pulses of helium, which is the carrier gas; i.e.,
it is responsible for the transport of the clusters across the
setup. The cavity is also coupled to a nozzle. Due to a pressure
gradient across the nozzle, the clusters expand supersonically.
The actual creation and cooling of the clusters takes place
inside the cavity. In our setup the source can be cooled down
to 20 K due to a cold head. Once the cluster beam has left
the cavity, it crosses a conical skimmer of 1 mm width. After
the clusters are skimmed they reach a chopper, which has two
purposes: cluster selection and measurement of their velocity.
Then, after the chopper there are two slits to narrow the beam
in both the horizontal and vertical direction. After the slits, the
cluster beam reaches the magnet, i.e., a two-wire Rabi design
electromagnet [25]. The magnet produces an inhomogeneous
magnetic field that can reach a maximum strength of 2.4 T
and gradient of 650 T/m. The spins of the cluster are aligned
by the magnetic field, while the cluster is deflected due to
the gradient in the field. For the calibration of the magnet,
aluminium atoms were chosen, since they are easy to produce
and their magnetic properties are well known (μ = 1/3 μB ,
J = 1/2, mJ = ±1/2).

After the magnet the clusters have to travel 1 m before
they reach the PSTOFMS. In order to detect the clusters,
they are ionized by an excimer laser producing an ultraviolet
beam of 193 nm. The ionized clusters can then be directed
by the electric fields of the PSTOFMS plates towards the
micro channel plate (MCP) where they are detected. After
the detection of the cluster, its time-of-flight is known. This
time-of-flight linearly depends on the deflection of the cluster,
where the proportionality constant is obtained from another
calibration. For this calibration, a narrow slit is placed in
the path of the excimer beam. Then, by moving the slit,
the time-of-flight can be determined for each corresponding
slit position, i.e., the position where the clusters will be
ionized, describing the correlation between time-of-flight and
deflection. Since the determined proportionality constant is
known to scale as the square root of the mass, it is only
necessary to perform the calibration for one specific cluster
size.

From the measurement of the deflection x via the time-of-
flight, the mass m of the cluster, and its velocity v by means of
the chopper, the average magnetic moment is determined from

〈μ〉 = xmv2

KB
. (1)

Here B is the magnetic field strength and K is a constant that
depends on the setup. This constant includes the gradient of
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FIG. 1. The top three columns contain the different deflection
profiles observed for the Co-doped Nb clusters. (a) Single-sided
deflection profile for Nb3Co, which indicates a superparamagnetic
cluster. (b) Profile of Nb5Co showing no deflection, which corre-
sponds to a nonmagnetic cluster. (c) Two-sided deflection profile for
Nb10Co, which refers to an atomic-like cluster. The black, blue, and
red lines correspond to the situations without a magnetic field and with
a 1 T and a 2.4 T magnetic field. Further, the first row corresponds to
deflections measured at 25 K, the second row at 40 K, and the third
row at 70 K. For the x axis of all deflection profiles, the deflection
is converted to the averaged magnetic moment via Eq. (1). In the
bottom figure indicated with (d), the magnetic moment as a function
of cluster size is presented with n corresponding to the number of host
(Nb) atoms. Here the error bars are computed from the uncertainty in
the velocity of the cluster and the magnetic field.

the magnet, which is determined from the calibration by the
aluminium atoms.

During the measurements we observed three different de-
flection [or equivalently average magnetic moment via Eq. (1)]
profiles; see Figs. 1(a)–1(c). The method we used to obtain
the actual value of the deflection depends on the observed
deflection profile. In the case of a deflection profile centered at

zero [Fig. 1(b)] we used a Gaussian fit, where the position of
the peak of the Gaussian corresponds to the “deflection.” For
the double-sided deflection profile [Fig. 1(c)] three peaks can
be observed. Here the peak at 0 is due to the spin relaxation by
the coupling to the lattice, which can be in principle reduced
by increasing the carrier gas pressure [19]. Therefore, the
deflection should be determined from the peaks away from
zero. For this purpose we used three Gaussians to fit the profile,
where the deflection is determined from the peak position of
the Gaussians not located at zero. Finally, for single-sided
deflection [Fig. 1(a)] the profile is in general asymmetric,
which makes a fit by a Gaussian inappropriate. In this case we
take the position of the average of the peak as the deflection.

In Eq. (1), the quantity 〈μ〉 corresponds to the measured
average magnetic moment of the clusters. However, not for
all the three observed deflection profiles, this corresponds
to the actual magnetic moment of the cluster. While it does
for no deflection and double-sided deflection, it does not for
single-sided deflection. Obviously, no deflection corresponds
to a nonmagnetic cluster. Double-sided deflection corresponds
to atomic-like clusters, i.e., clusters where the magnetic mo-
ment can freely rotate. In contrast, single-sided deflection
corresponds to superparamagnetic clusters with the magnetic
moment coupled to the lattice. More precisely, due to the
anisotropy present in the cluster the magnetic moment is not
free to rotate, but points along the easy axis. Then, due to
the presence of a finite temperature, not all clusters have their
magnetic moment aligned with the magnetic field. Therefore,
the measured average magnetic moment needs to be related to
the actual magnetic moment of the cluster [26–28]. For isolated
clusters this is typically done by the Langevin-Debye function.
In the limit of a small magnetic field this leads to the following
relation:

M = 1

3

〈μ〉2B

kBT
, (2)

where M is the magnetic moment of the cluster, T the
temperature, and kB the Boltzmann constant. The temperature
of the cluster is difficult to obtain due to differences in its
rotational, vibrational, and translational temperatures. In this
work the nozzle temperature is taken. On the other hand the
translational temperature determined from the cluster’s speed
is roughly 15–20 K higher. This uncertainty is incorporated in
the error bars.

B. Results: Magnetic moments

The results of the Stern-Gerlach experiments performed
on the Co-doped Nb clusters at temperatures of 25 K (first
row), 40 K (second row), and 70 K (third row) are presented
in Fig. 1. Here Figs. 1(a), 1(b) and 1(c) correspond to the three
typical deflection profiles that were observed. The black, blue,
and red lines in the deflection profiles correspond respectively
to the situation without a magnetic field and with a 1 T and
2.4 T magnetic field. In Fig. 1(d) the measured magnetic
moments in μB are presented as a function of cluster size
with n corresponding to the number of host (Nb) atoms.
These magnetic moments are obtained by taking an average of
the magnetic moments observed for the different considered
temperatures and external magnetic fields.
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Figure 1(a) for Nb3Co shows a typical single-sided de-
flection profile indicating superparamagnetic behavior, which
upon an increase of temperature becomes an asymmetric
double-sided deflection. Other clusters showing a single-
sided deflection profile were Nb4Co, Nb6Co, Nb9Co, Nb11Co,
Nb12Co, and Nb13Co. Then, Fig. 1(b) for Nb5Co presents
the situation with no deflection, which corresponds to a
nonmagnetic cluster. The other clusters showing no deflection
were Nb7Co and all the even numbered clusters (i.e., with n

odd) studied with n > 15. The last observed deflection profile
is depicted in Fig. 1(c), where for Nb10Co an example of a
two-sided deflection is given, which refers to an atomic-like
cluster. This profile is characterized by 3 peaks, 2 peaks at
±1 μB , and an additional peak at 0 μB . Two-sided deflection
was also observed for all clusters containing an odd number of
atoms (i.e., with n even) and with n � 14.

From the magnetic moments as a function of cluster size
presented in Fig. 1(d) it seems that the clusters can be divided
into two regions. For clusters with n � 14 the magnetic to
nonmagnetic behavior appears to be exactly determined by
having an odd or even number of atoms in the cluster. An odd
number of atoms in the cluster corresponds to the situation of at
least one unpaired electron and thus at least a moment of 1 μB .
For an even number of atoms, all the electrons can be paired.
Note that the magnetic behavior of pure Nb clusters was indeed
explained in this way [18]. Then, there is the regime of clusters
with n < 14, where the magnetic behavior clearly cannot be
explained due the presence or absence of a single unpaired
electron. In this region strong fluctuations in the magnetic
moment can be observed by just adding or removing a single
Nb atom. For example, Nb4Co is strongly magnetic, while
Nb5Co is completely nonmagnetic. Then, again adding just
one Nb atom leads to Nb6Co which is again strongly magnetic.
On the other hand Nb7Co is again nonmagnetic.

It can also be observed that there is no cluster with a
magnetic moment larger than that of an isolated Co atom. An
isolated Co atom has 7 3d electrons leading to a total moment of
6 μB , where both the spin and orbital moment contribute 3 μB .
This indicates that either the Co atom is not very effective in
inducing magnetic moments in the Nbx host or a large part of
the Co moment is absent due to interactions with the Nbx host.
Based on an inspection of previous works the latter explanation
seems to be the most plausible. For example, in Ref. [22] it is
shown by means of a DFT study on NbxCo clusters that roughly
20%–50% of the total magnetic moment can come from the
Nb host. It should be mentioned that in this study only the spin
magnetic moment is considered. However, from for example
Refs. [29] and [30] it is well established for pure Co clusters
that the orbital contribution can be substantial, about 0.7 μB

per Co atom. A similar observation is made for Co clusters
deposited on Pt(111) [31]. Although being substantial, it is
still largely quenched with respect to the 3 μB of the isolated
atom. Besides the orbital moment of the Co atom, also its spin
moment is known to be reduced in NbxCo [22] and pure Co
clusters [29,30,32,33]. For the NbxCo clusters it is found to be
about 1–2 μB . Based on these observations we expect that the
spin moment of the NbxCo clusters can be attributed to both the
Nbx host and Co atom. On the other hand the orbital moment
is expected to come from the Co atom and to be quenched to
roughly 0.7 μB .

III. VIBRATIONAL SPECTRA: GEOMETRIC
AND MAGNETIC STRUCTURE

In this section we perform a comparison of experimental
vibrational spectra with those obtained from a DFT study. This
serves two purposes. First, due to the dependence of the vibra-
tional spectrum on the magnetic moment, the performance of
DFT in predicting the magnetic moments can be investigated.
Second, it provides the ground state geometry of the clusters.
These ground state geometries are required as an input in
Sec. IV to obtain a physical understanding of the observed
magnetic behavior in Sec. II.

A. Experimental details

In order to record the vibrational spectra we coupled our
cluster setup to the Free Electron Laser for Intra-Cavity
Experiments (FELICE) [34]. Below a brief description of the
experimental setup is given and for more details the reader
is referred to Refs. [35,36]. The clusters are produced in an
ablation-type cluster source in a growth channel filled by a
helium carrier gas prior to ablation of a NbxCoy (x = 95%,
y = 5%) rod by a Nd:YAG laser (532 nm). The temperature
of the extension tube, which is attached to the cluster source
for better cluster thermalization, is 77 K. After expansion in
the source chamber, the mixture of clusters and carrier gas is
skimmed. This results in the formation of a molecular beam
that is shaped by a slit with a width of 0.45 mm. The interaction
between the IR light and the molecular beam takes place
in the center of the extraction region of the RETOF mass
spectrometer with a 35◦ angle between the two beams. The
IR pulse energies inside the FELICE cavity range between 0.2
and 0.6 J over the IR scans. The IR pulse consists of a 9 μs
long train of micropulses with 1 ns time delay between them.
The clusters are ionized by a frequency-doubled dye laser with
a photon energy of 5.4 eV entering the extraction region at a
∼90◦ angle with respect to the cluster beam. The frequency of
the ionizing laser is chosen just below the ionization potential,
and in the absence of the IR laser, only a small ion yield is
observed for each mass. When the IR laser is resonant, the
number of neutrals that can be ionized is increased, leading to a
frequency-dependent gain upon ionization; all species formed
are accelerated into the RETOF flight tube by extraction plates
with static voltages. The experiment operates at twice the
FELICE frequency which allows us to record a signal with
[IIR+UV(ω)] and without (IUV) IR radiation in a shot-to-shot
manner. The experimental IR curves are presented in terms of
gain spectra [G(ω)] calculated as

G(ω) = IIR+UV(ω) − IUV

IUV
, (3)

at an IR frequency ω, and are for the IR pulse energy corrected.

B. Computational details

For the calculation of the vibrational spectra we employed
the DFT implementation of the Vienna ab initio simulation
package (VASP) [37]. The projector augmented wave (PAW)
method [38,39] in combination with the Perdew, Burke, and
Ernzerhof (PBE) functional is used [40]. For all cluster sizes we
searched for the lowest-energy geometries by using a genetic
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FIG. 2. Experimental [panel (a), squares] and calculated [(b)–
(d)] IR spectra of Nb3Co. The blue line is a three-point adjacent
average of the experimental data. The gray dashed line indicates
the IR power corrected spectrum. The calculated discrete vibrational
frequencies (orange vertical lines) are convoluted with a 15 cm−1

FWHM Gaussian line shape function (orange). For the geometries
green and gold are used for Nb and Co, respectively. The inset graph
shows the energy as a function of the magnetization for the different
magnetic states.

algorithm (GA) [41] in combination with DFT. The details
of the used method can be found in Ref. [42]. In addition,
we also considered conformations previously reported in the
literature (Nb3Co, Nb4Co, Nb5Co, Nb6Co, Nb7Co) [22] and
reoptimized the mentioned structures. For some clusters the
GA results were equal to those already found in the literature,
while for other clusters additional geometries lower in energy
were obtained (see Secs. III C 1–III C 6 for details). Further, for
the PAWs an energy cutoff of 4293 eV is used. All forces were
minimized below 10−3 eV/Å. In order to eliminate intercluster
interactions, the clusters were placed in a cubic periodic box
with 16 Å dimensions. For the calculations, a single k point
(�) is used.

C. Results: Geometric and magnetic structure

In the following, we will present experimental and cal-
culated spectra for the two or three lowest energy isomers.
The calculated geometries of the clusters are presented by
a stick model; i.e., the clusters are presented by connected
sticks. Here green corresponds to Nb and gold to Co. Further,
to facilitate the comparison of the experimental and calcu-
lated results, the experimental spectra are shown with black
squares accompanied by a three-point adjacent average (blue
line). The gray dashed line indicates the IR power corrected
experimental spectrum. The calculated harmonic vibrational
frequencies (vertical sticks) are convoluted with a 15 cm−1

FWHM Gaussian line shape function. All frequencies for the

FIG. 3. Experimental [panel (a)] and calculated [(b)–(c)] vibra-
tional spectra of Nb4Co. The insets show the energy as a function of
magnetization for each geometry.

structures presented in this work are unscaled and the energies
contain the zero-point vibrational energies (ZPVE). Finally,
the insets of the figures below show the energy as a function
of magnetization for the presented geometries with respect to
that of the ground state.

1. Nb3Co

For Nb3Co a trigonal pyramid is found with three different
magnetic states. Here the Nb-Nb and Nb-Co distances differ
slightly between the magnetic configurations.

In Figs. 2(b)–2(d) the corresponding geometries are shown.
The magnetic M = 2 μB (3,1)A geometry is lowest in energy,
with (3,1)B and (3,1)C 0.14 eV and 0.25 eV higher, respec-
tively. Note that geometry (3,1)A has been reported previously
also as the ground state in Ref. [22]. The symmetry point group
depends on the magnetization, with C3v for (3,1)A and Cs

for (3,1)B and (3,1)C. This difference in symmetry results in
significant differences in the vibrational spectra.

Figure 2 shows that the vibrational spectrum of (3,1)A with
modes at 224, 228, and 356 cm−1 provides the best match to
the experimental modes at 212 and 328 cm−1 and also explains
the doublet structure of the band at 212 cm−1. The vibrational
spectra of (3,1)B and (3,1)C contain vibrational modes in the
range 125–220 cm−1 where no clear experimental modes are
observed. Therefore, geometry (3,1)A in the M = 2 μB state
is assigned as the ground state of Nb3Co.

2. Nb4Co

In the experimental spectrum of Nb4Co presented in
Fig. 3(a), at least four modes can be distinguished, at 150, 230,
255, and 325 cm−1. The two geometries lowest in energy are
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FIG. 4. Experimental [panel (a)] and calculated [(b)–(d)] vibra-
tional spectra of Nb5Co.

shown in Figs. 3(b) and 3(c). Geometry (4,1)A with M = 3 μB

is the lowest in energy and has C3v point group symmetry.
Geometry (4,1)A consists of a trigonal bipyramid, where Nb
and Co are the axial atoms. In contrast, in geometry (4,1)B the
Co atom is part of the equatorial triangle. For geometry (4,1)B
the M = 1 μB state is the lowest in energy and is 0.18 eV
higher compared to the lowest of (4,1)A. Note that both (4,1)A
and (4,1)B are previously reported in Ref. [22], where (4,1)A
with M = 3 μB was also found to be the lowest in energy.
The vibrational spectrum of (4,1)A with M = 3 μB consists
of two large modes at 145 and 238 cm−1 and smaller modes
at 173, 278, and 342 cm−1, and matches the experimental
spectrum. The vibrational spectrum of (4,1)A with M = 3 μB

is the only spectrum with two major modes around 150 and
230 cm−1. Therefore, we tentatively assign geometry (4,1)A
with M = 3 μB to be the ground state of Nb4Co.

3. Nb5Co

In Figs. 4(b)–4(d) the three geometries found to be lowest in
energy for Nb5Co are presented. Geometry (5,1)A consists of
a dimer-capped rhombus with Cs point group symmetry for all
considered magnetic states and has been previously reported
in Ref. [22] to be the lowest in energy for the M = 4 μB state.
We also find geometry (5,1)A in the M = 4 μB state to be
the lowest in energy, although the M = 2 μB state is only
0.03 eV higher. Geometries (5,1)B and (5,1)C both consist
of a distorted Nb5 bipyramid with one of the faces of the
bipyramid capped by the Co atom. Geometries (5,1)B and
(5,1)C differ in the distance of the Co atom to the bipyramid.

Whereas for the (5,1)B geometry the M = 2 μB state is the
lowest in energy, the (5,1)C geometry has a nonmagnetic
ground state which is 0.37 eV higher in energy compared
to (5,1)A. The experimental spectrum of Nb5Co in Fig. 4(a)
shows three major bands at 170, 205, and 250 cm−1, where
the internal structure of the band at 205 cm−1 indicates at
least a second mode at 220 cm−1. A smaller vibrational
mode is present at 275 cm−1. If the calculated spectra of
Fig. 4(b)–4(d) are compared to that of Fig. 4(a), both (5,1)A
M = 4 μB and (5,1)C M = 0 μB can only partially explain the
experimental spectrum. Whereas (5,1)C M = 4 μB resembles
the experimental spectrum below 230 cm−1, the structure
around 250 cm−1 is not present in the calculated spectrum. Due
to the similar vibrational spectrum and the low difference in
energy between (5,1)A M = 2 μB and M = 4 μB , the former
cannot be excluded based on IR vibrational spectroscopy. The
vibrational spectrum of (5,1)C M = 0 μB agrees for the modes
above 250 cm−1, but deviates significantly in the relative
IR absorption intensities between modes compared to the
experimentally observed gain. Therefore, the IR gain spectrum
of Nb5Co might be due to the geometry (5,1)A with M = 2 μB

or M = 4 μB , or geometry(5,1)C M = 0 μB . However, due to
the finite temperature at which the experiment is performed,
the vibrational spectrum might also be due to a combination of
different geometries and magnetic states. On the other hand, the
magnetic deflection experiments (see Sec. II) were performed
at a lower temperature than the vibrational experiments and
strictly found Nb5Co to be nonmagnetic. Therefore, the (5,1)C
geometry corresponding to the M = 0 μB state is ascribed to
be the ground state.

4. Nb6Co

The two geometries that were found to be the lowest in
energy for Nb6Co are shown in Figs. 5(b) and 5(c). Here
geometry (6,1)A consists of a distorted pentagon with both
sides capped with a single Nb atom. Geometry (6,1)A in
the M = 3 μB state is obtained as the lowest in energy.
All magnetic states of the (6,1)A geometry have a C1 point
group symmetry. Geometry (6,1)B consists of two stacked
Nb3 triangles, where the top triangle is capped with a Co
atom. For this geometry the M = 1 μB state is the lowest in
energy and has a C3v point group symmetry. The experimental
IR spectrum of Nb6Co is shown in Fig. 5(a) and contains a
dominant mode at 270 cm−1 and two smaller modes at 200
and 220 cm−1. The vibrational spectrum of (6,1)B M = 1 μB

provides the best match to the experimental spectrum with
a single dominant mode at 256 cm−1 and several smaller
modes constituting two bands at 190 and 210 cm−1. In the
vibrational spectrum of (6,1)A the bands at 220 and 264 cm−1

have similar IR absorption intensities, which is in disagreement
with the experimentally observed relative difference between
these bands. All other geometries have significant vibrational
modes below 190 cm−1 where experimentally no modes are
observed. Therefore, the (6,1)B geometry with the M = 1 μB

state is assigned to the ground state of Nb6Co.

5. Nb7Co

The experimental spectrum of Nb7Co in Fig. 6(a) has
arguably the poorest signal-to-noise ratio of all spectra shown
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FIG. 5. Experimental [panel (a)] and calculated [(b)–(c)] vibra-
tional spectra of Nb6Co. The IR absorption intensity of (6,1)A M =
3 μB and M = 5 μB are enhanced by a factor of 5 and 2, respectively,
to increase visibility.

here. The spectrum shows one clear band centered around
260 cm−1, and some less pronounced structure at lower
frequencies. The three geometries lowest in energy are shown
in Figs. 6(b)–6(d). All geometries found have either one
symmetry plane or no symmetry at all. Geometry (7,1)A
consists of a distorted pentagonal Nb bipyramid, with one of
the faces capped by a Co atom.

The lowest energy spin state of geometry (7,1)A has a
magnetic moment of M = 0 μB , although the triplet structure
is only 0.06 eV higher in energy. Structure (7,1)A was also
previously reported as the lowest in energy [22]. A second
structure (7,1)B is formed by a Nb4Co square pyramid with a
Co apex; three more Nb atoms form a triangle parallel to the
pyramid base. Structure (7,1)C is essentially the same structure
as (7,1)B now with a full Nb pyramid, and the Co part of the
triangle. In contrast to structure (7,1)A, the magnetic ground
states of geometries (7,1)B and (7,1)C are magnetic, both with
M = 2 μB . Due to the low symmetry of all structures, their
vibrational spectra contain many vibrational modes. Structure
(7,1)C’s spectra all extend to higher frequency than those for
either (7,1)A and (7,1)B.

The single experimental band at 260 cm−1 can be ex-
plained by both (7,1)A M = 0 μB and (7,1)B. Both spectra
do not match the observed structure in the lower frequency
region particularly well. That being so, we cannot assign
the spectrum to one particular structure or magnetic state.
As will be discussed later, this lack of definite assignment
will not change the conclusions regarding the nature of the
magnetic structure observed in the Stern-Gerlach deflection
experiments.

d

FIG. 6. Experimental [panel (a)] and calculated [(b)–(d)] vibra-
tional spectra of Nb7Co.

6. Nb9Co

Figure 7(a) shows the IR gain spectrum of Nb9Co. Although
this figure is not very well resolved, at least bands at 205,
240, and 280 cm−1 can be identified. In Figs. 7(b)–7(d) the
three Nb9Co geometries that were found to be the lowest
in energy are presented. Here geometry (9,1)A consists of a
Nb4 rhombus stacked with a Nb5 pentagon capped by a Co
atom. Note that geometry (9,1)A is distorted such that only a
mirror plane symmetry remains. The geometry indicated by
(9,1)B consists of two stacked Nb4 squares, where the two
open faces are capped by a Nb and Co atom. The (9,1)C
geometry is best described (yet poorly) by a distorted hexagon
with a Nb in the center and a Co atom occupying a corner,
and capped by a Nb3 triangle. Here for the geometry (9,1)C
in the states M = 2 and M = 0 μB there is no symmetry,
while in the M = 4 μB state there is only a mirror plane.
For geometry (9,1)C the M = 2 μB state is found to be the
lowest in energy, while the M = 0 μB state is 0.12 eV higher in
energy. If the calculated vibrational spectra of Figs. 7(b)–7(d)
are compared to the experimental spectrum, geometry (9,1)C
with M = 2 and M = 0 provides the best match with dominant
bands around 205 and 285 cm−1 and an intermediate mode in
between. Therefore, the ground state of the Nb9Co cluster is
described by the (9,1)C geometry.
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FIG. 7. Experimental [panel (a)] and calculated [(b)–(d)] vibra-
tional spectra of Nb9Co.

D. Comparison with magnetic deflection results

It is interesting to compare the magnetic moments obtained
from the magnetic deflection experiments described in Sec. II
with those obtained above from an inspection of the vibrational
spectra. In Table I the second column contains the total
magnetic moments of the NbxCo clusters obtained from the
best match of the calculated DFT vibrational spectra compared
to experiment. For some clusters multiple magnetic moments
are given, because for them it was not clear which vibrational

TABLE I. Here the second column corresponds to the total
magnetic moments of the NbxCo clusters obtained from the best match
of the calculated DFT vibrational spectra with respect to experiment.
The third column contains the magnetic moments obtained from the
magnetic deflection experiments presented in Sec. II.

Cluster Mvib (μB ) Mexp (μB )

Nb3Co 2 4.1
Nb4Co 3 5.6
Nb5Co 0, 2, 4 0.0
Nb6Co 1 5.3
Nb7Co 0 0.0
Nb9Co 0, 2 2.4

spectrum matches the best with experiment. The third column
corresponds to the magnetic moments observed in the magnetic
deflection experiments [see Fig. 1(d)].

Except for Nb5Co it appears that the magnetic moments
predicted by the magnetic deflection experiments are sub-
stantially larger. Part of this difference is due to not taking
into account the orbital contribution to the magnetic moment
within the DFT calculations. However, even if we would have
considered them, it is well known that orbital moments can
be highly underestimated in DFT especially for clusters [29].
Based on the orbital moment observed in pure Co clusters and
Co clusters deposited on Pt(111) a value of about 0.7 μB is
roughly expected. This together with the observation made in
Ref. [22] that the Nb host contributes about 20%–50% to the
total magnetic moment of the NbxCo clusters means that the
spin contribution is underestimated within DFT.

Unfortunately, for Nb5Co and Nb9Co we cannot be conclu-
sive about the magnetic moment obtained from an inspection
of the vibrational spectra. For Nb5Co the zero magnetic
moment would be in agreement with the magnetic deflection
experiment, but this state is 0.37 eV higher in energy than
the calculated ground state. Note that for Nb6Co and Nb7Co
the best match of the calculated spectrum with experiment
was also for a state higher in energy than the ground state,
respectively 0.38 and 0.16 eV. On the other hand for Nb3Co and
Nb4Co the spectrum calculated for the ground state provided
the best match with experiment. For Nb9Co the state with a
magnetic moment of 2 μB would be the closest to the result
of the magnetic deflection experiment. Here the state with a
moment of 2 μB is 0.27 eV higher in energy than the ground
state.

IV. THEORETICAL INVESTIGATION BASED ON THE
ANDERSON IMPURITY MODEL

In this section the physical origin is explained of the
magnetic behavior obtained from the magnetic deflection
experiments presented in Sec. II. For example, it will be
understood why some clusters are strongly magnetic, while
others are nonmagnetic. For this purpose an analysis based
on the Anderson impurity is performed, where the ground
state geometries obtained in Sec. III are required as an
input.

A. Theoretical background

There are two possible explanations for some NbxCo
clusters being nonmagnetic. It can be nonmagnetic, because
interactions of the Co atom with the Nbx host destroy the local
moment at the Co site. More precisely, there is a competi-
tion between the Jahn-Teller distortion working against the
formation of a magnetic moment and the exchange interaction
between Nb and Co preferring the existence of a magnetic
moment. Another possibility is that the local moment at the
Co site is screened by the delocalized electrons in the cluster,
i.e., the Kondo effect. For both mechanisms it is crucial
to understand physically when a local moment is formed
on the Co site. In the case of a magnetic (transition-metal)
impurity resolved in a metallic nonmagnetic host this is well
established within the celebrated Anderson impurity model
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[13,43,44],

H =
∑
k,σ

εkσ c
†
kσ ckσ +

∑
σ

Edσ d†
σ dσ + Und↑nd↓

+
∑
k,σ

V (d†
σ ckσ + c

†
kσ dσ ). (4)

Here Edσ is the single-particle impurity energy level and
U is the on-site Coulomb repulsion between the impurity
states. Further, the dispersion of the noninteracting electronic
bath is given by εkσ . The coupling between the impurity
and bath states is described by V . Within this model the
formation of a local moment depends on a delicate interplay
between the on-site Coulomb interaction, the coupling strength
between the impurity and bath states, the position of the bare
impurity level (or equivalently the filling), and the positions
of the bath energy levels (the dispersion). Within the static
mean-field approximation the criterion for a local moment
to exist is U/� > π . Here 2� = πV 2ρ(EF ) is the effective
hybridization, i.e., broadening of the impurity Ed level, where
ρ(EF ) is the density of impurity states at the Fermi level. From
this criterion it is clear that a large on-site Coulomb interaction
and small coupling between the impurity and bath are favorable
for a local moment to exist.

It is well known that Kondo physics occurs for the model
described by Eq. (5) at half filling and in the limit where the
hybridization can be treated perturbatively. More precisely, it
can be shown that in this regime the virtual spin-flip scatterings
of the bath electrons against the local impurity moment are the
dominant processes occurring in the system. At low enough
temperatures, below the Kondo temperature, they start to
screen the local moment. For half filling and by treating the
hybridization perturbatively, the Kondo temperature TK can
be estimated via

TL = U

(
�

2U

)1/2

exp

[−π |Ed ||Ed + U |
2U�

]
, (5)

where the Kondo temperature is equal to TK = 0.041TL [13].
The Kondo effect for very small systems has been been the
subject of study already for several decades, e.g., for quantum
dots. Theoretically, the Kondo effect was predicted to take
place in quantum dots [45–47]. A few years later experiments
confirmed these predictions [48,49].

Although less studied within the Anderson impurity model,
the situation of a magnetic impurity resolved in a semi-
conductor or equivalently a bulk host with a band gap has
also been addressed [14,50]. It has been demonstrated that a
local magnetic moment on the impurity is stabilized by the
introduction of a band gap. In more detail a local moment
can be formed even when the criterion above is not satisfied.
Furthermore, the magnitude of the local moment increases with
increasing band gap.

In Ref. [14] the investigation of the Anderson impurity
model for an impurity in a gapped host is extended to the
situation of a finite-sized host. Interestingly, it was found that
on average the local moment grows with increasing band gap
(HOMO-LUMO gap). Here on average should be understood
as the local moment averaged over a number of random
configurations of the discrete host energy levels for a fixed
band gap. Further, it has been shown that in the regimes where

V � Eg or V 	 Eg , the magnitude of the local moment
merely depends on the size of the band gap (Eg) and not on
the exact positions of the discrete energy levels of the host.
Namely, for V � Eg the effect of the hybridization is small
no matter what the exact arrangement of the host energy levels
is, while for V 	 Eg the impurity level hybridizes with all host
levels anyway. However, for the regime in between, V ∼ Eg ,
the local moment strongly depends on the exact positions
of the host energy levels. In Ref. [15] these findings were
successfully used to interpret the experimentally observed
magnetic moments of AuxCr+ clusters. For example, the trend
of the Aux host band gap was found to exactly follow that of
the magnetic moment of the AuxCr+ clusters.

B. Computational details

In this work we perform for the NbxCo clusters an analysis
based on the Anderson impurity model. First, in the same
spirit as in Ref. [15] we will demonstrate and explain why this
does not work. Second, we show what extra has to be done in
order to obtain a successful understanding. For this purpose the
density functional theory (DFT) [51,52] is employed within the
full-potential linear muffin-tin orbital method [53]. The local
density approximation (LDA) exchange-correlation functional
is used in the formulation of Perdew and Wang [54]. For the
Nb atoms the main valence basis functions were 4d, 5s, and
5p states, while 4s and 4p states were treated as pseudocore
in a second energy set [53]. In the case of Co, the 3s and
3p states were treated as pseudocore, and the 3d, 4s, and 4p
states as the main valence states. In all calculations the valence
states were treated scalar-relativistically (without spin-orbit
coupling). Since the employed DFT code works in k space,
a supercell approach was used. A large unit cell of at least
14 Å dimensions was used in order to prevent the interaction
between clusters of different unit cells. In these calculations the
� point was the only k point considered. The geometry of the
clusters is obtained from the comparison of the experimental
and DFT vibrational spectra performed in Sec. III. More
precisely, the ground state geometries (3,1)A M = 3, (4,1)A
M = 3, (5,1)C M = 0, (6,1)B M = 1, (7,1)B M = 0, and
(9,1)B M = 2 are taken. Note that for Nb9Co the structure with
C4v symmetry is chosen. Namely for a magnetic cluster the
Jahn-Teller distortion should be counteracted by the exchange
interaction between Nb and Co.

The effective on-site Coulomb repulsion U between the
3d electrons of the Co impurity is obtained from DFT cal-
culations in conjunction with the random phase approxima-
tion (RPA) within the full-potential linearized augmented
plane wave (FLAPW) method [55]. All these calculations
are performed with the GGA functional as formulated by
Perdew, Burke, and Ernzerhof [40]. Here a large unit cell of
at least 12 Å dimensions is used and also only the � point
is considered. Further, the plane wave cutoff is 4.0 bohr−1.
The actual RPA calculations are performed with the SPEX
code, which uses the DFT calculations as an input [56].
The SPEX code uses the Wannier90 library to construct
the maximally localized Wannier functions [57,58]. For this
construction five 3d states and one 4s state are used for the Co
atom.
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TABLE II. The Co impurity energy level Ed , broadening of the
impurity level 2�, energy gap Eg (HOMO-LUMO gap) of the bare
Nbx host, and the effective on-site Coulomb interaction U between
the Co impurity 3d electrons within RPA for different NbxCo clusters.
The sixth column contains a rough estimate of the Kondo temperature
TK obtained from Eq. (5). For convenience also the experimentally
observed total magnetic moment in μB is presented in the last
column.

Cluster Ed (eV) � (eV) Eg (eV) U (eV) TK (K) M (μB )

Nb3Co −0.88 0.34 0.03 5.5 151 4.1
Nb4Co −0.97 0.35 1.04 5.0 133 5.6
Nb5Co −1.28 0.35 0.11 4.6 68 0.0
Nb6Co −1.16 0.34 0.002 4.3 81 5.3
Nb7Co −0.99 0.26 0.36 4.1 37 0.0
Nb9Co −1.42 0.33 0.02 3.8 55 2.4

C. Results: Anderson impurity model

Table II presents for each NbxCo cluster its characteristic
parameters related to the Anderson impurity model. The center
of gravity of the Co 3d projected density of states Ed and
its weighted standard deviation � are shown. Also are shown
the band gap (HOMO-LUMO gap) Eg of the bare Nbx host
for the geometry it has in the full NbxCo cluster and the
effective on-site Coulomb interaction U between the Co 3d
electrons. Although Eq. (5) is strictly speaking only valid for
an impurity in a nonmagnetic metallic host at half filling in the
limit of small hybridization, we employed it to obtain a rough
estimate of the Kondo temperature TK for the NbxCo clusters.
For convenience also the experimentally observed magnetic
moment [see Fig. 1(d)] is presented in the last column. As can
be observed, the impurity energy level Ed and its broadening
2� are more or less constant as a function of cluster size. On
the other hand, the band gap of the bare Nbx host strongly
fluctuates as a function of cluster size, while the effective
on-site Coulomb repulsion slowly decreases as a function of
cluster size.

As naively expected from Refs. [14,15], the magnitude of
the local Co moment should follow the trend of the band gap of
the isolated host as a function of cluster size. In other words a
small band gap is expected for the clusters with zero magnetic
moment, while a larger band gap is expected for the magnetic
clusters. It is clear that this expectation is not verified by the
results in Table II. For example, magnetic Nb3Co and Nb6Co
have a very small band gap compared with the nonmagnetic
Nb5Co and Nb7Co clusters.

It is also interesting to have an inspection of the crite-
rion for the existence of a local moment in the Anderson
impurity model. In the case of an impurity with degenerate
orbitals the criterion stated above is slightly modified into
(U + 4J )/� > π , where J is the Hund exchange coupling
between the impurity electrons. Even when the contribution
of J is neglected, it is clear from Table II that the criterion is
satisfied for all clusters. It was already known from Ref. [15]
that a magnetic impurity moment can occur even when the
criterion above is not satisfied. However, it appears that the
other way around is also possible; i.e., there is no magnetic
moment even when the criterion is satisfied.

Only considering the band gap of the bare host did not
provide an explanation for some NbxCo clusters being mag-
netic and others nonmagnetic. On the other hand for AuxCr+ it
perfectly predicted the magnetic moment as function of cluster
size. The reason is that the Aux host is inert; i.e., there is only
a small coupling between the Cr impurity states and Aux host
states. Therefore, Aux clusters can be considered to be in the
regime V � Eg , where the size of the local moment solely
depends on the band gap of the host and not on the exact
positions of its energy levels. This is also apparent from the
observation that for the AuxCr+ clusters the local moment of
the Cr impurity is barely reduced by the interactions with the
Aux host. Contrary to the NbxCo clusters the magnetic moment
strongly fluctuates as function of cluster size, which hints at the
direction that we are in, in the regime V ∼ Eg . Unfortunately,
this cannot be directly verified from the parameters presented in
Table II. Namely, � corresponds to the effective hybridization
in which both V and the density of states of the host are
involved. However, indirectly one could argue that the NbxCo
clusters are in the V ∼ Eg regime. From Ref. [14] it is known
that for V 	 Eg the impurity moment is almost completely
absent, while for V � Eg the moment should follow the size
of the band gap. Since neither of the two is in agreement with
the results of Table II, it is expected that the NbxCo clusters
are in the V ∼ Eg regime.

In the V ∼ Eg regime the exact positions of the host energy
levels are known to be important. It would be helpful to be a bit
more specific and to have a feeling for which host energy levels
are important. For example, intuitively one would expect only
host states within a range of about V around the Fermi level
(chemical potential) to be important.

In order to verify this expectation we investigated the
Anderson impurity model for an impurity with a single orbital
coupled to 6 spin-degenerate bath states. The impurity energy
level and on-site Coulomb repulsion were chosen such that
the single- and double-occupied isolated impurity states are
symmetric around the chemical potential, e.g., Ed = −1 and
U = 3. Further, a total occupation (impurity plus bath) of 7
electrons was considered. The Anderson impurity model was
solved exactly via exact diagonalization. Note that in Ref. [14]
a tight-binding approximation was employed.

In Table III the influence of different arrangements of 3
occupied and 3 unoccupied (occupied and unoccupied refer
to the bare bath situation) spin-degenerate host states on the
impurity magnetic moment is presented. For all calculations
V = 0.1 is taken. Columns 2 to 7 correspond to the positions
of the spin-degenerate occupied and unoccupied host states,
column 8 contains the band gap, and the last column the
magnetic moment on the impurity. From this table it is clear
that indeed only host states within a range of V are important
in terms of the magnitude of the impurity magnetic moment.
For example, a comparison of the first 5 calculations shows
this. Also a comparison of the calculations 3, 8, 9, and 10
clearly indicates this. Another (trivial) observation can be made
from calculations 4, 6, and 7. For these calculations the band
gap is the same and the only difference is in the positions of
the HOMO and LUMO levels with respect to the chemical
potential. It appears that these exact positions are unimportant
as long as the band gap is fixed. Finally, from calculations 3,
8, 9, and 10 it can also be concluded that not only the band gap
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TABLE III. The impurity magnetic moment (last column) for dif-
ferent arrangements of the occupied (columns 2 to 4) and unoccupied
(columns 5 to 7) spin-degenerate host states. The column with Eg

contains the band gap (HOMO-LUMO gap).

Eocc1 Eocc2 Eocc3 Eunocc1 Eunocc2 Eunocc3 Eg Mimp

1 −0.5 −0.5 −0.5 0.5 0.5 0.5 1.0 0.98
2 −0.3 −0.3 −0.3 0.3 0.3 0.3 0.6 0.97
3 −0.1 −0.1 −0.1 0.1 0.1 0.1 0.2 0.78
4 −0.05 −0.05 −0.05 0.05 0.05 0.05 0.1 0.22
5 0 0 0 0 0 0 0 0
6 −0.1 −0.1 −0.1 0 0 0 0.1 0.21
7 0 0 0 0.1 0.1 0.1 0.1 0.23
8 −0.5 −0.1 −0.1 0.1 0.1 0.5 0.2 0.89
9 −0.3 −0.1 −0.1 0.1 0.1 0.3 0.2 0.88
10 −0.2 −0.1 −0.1 0.1 0.1 0.2 0.2 0.86

itself but also the number of states (density of states) involved
is important.

Since the coupling strength V , the band gap, and host
density of states are important for the impurity magnetic
moment, it would be natural to study the hybridization function
corresponding to the Co 3d electrons. Namely, the imagi-
nary part of the hybridization function is proportional to the
coupling strength V squared and the host density of states.
Furthermore, in the regime V ∼ Eg the influence of the
coupling of the impurity with the host cannot be considered as
a (small) perturbation like in AuxCr+. This coupling is already
taken into account explicitly within the hybridization function.

For details on how the hybridization function projected
on the Co 3d states is obtained, the reader is referred to
Ref. [59]. In short the NbxCo cluster is first calculated self-
consistently within DFT. Then, from the obtained Kohn-Sham
eigenstates and energies, the corresponding Green’s function
is constructed. Next, this Green’s function is projected on
the 3d states. This projected Green’s function Gmm′ (E) and
the hybridization function of the Co 3d states �mm′ (E) are
related by

Gmm′ (E) = [E − εmm′ + μ − �mm′(ω)],

with �mm′ (E) =
∑

k

V ∗
kmVkm′

E − εk + μ
. (6)

Here, E is the energy, Vkm represents the coupling strength of
the impurity state m with bath (host) state k, εmm′ is obtained
from the local projection of the DFT Kohn-Sham Hamiltonian,
and εk corresponds to the energies of the bath states. From
the expression of the hybridization function in terms of the
coupling strengths and bath energy levels, it is clear that
different choices of them can lead to the same hybridization
function and thus the Anderson impurity problem. Therefore,
unless the Vkm matrix elements are computed directly, it is
hard to explicitly determine whether NbxCo corresponds to the
V ∼ Eg regime. However, this determination is not necessary
to understand the physical origin of the presence or absence of
magnetism in the NbxCo clusters.

From the discussions above we know that the HOMO-
LUMO gap, the density of states at the HOMO and LUMO
levels, the coupling V between the impurity and host states,

Nb3Co

Nb4Co

Nb5Co

Nb6Co

Nb7Co

Nb9Co

Energy (eV)  1-1

FIG. 8. The imaginary part of the hybridization function for the
Co 3d electrons for the different NbxCo clusters.

and the on-site Coulomb repulsion U are important for the
impurity magnetic moment. The first three are captured by
the (imaginary part of the) hybridization function. Therefore,
in Fig. 8 the imaginary part of the total [trace of �mm′(E)]
hybridization function for the Co 3d states is shown for the
different NbxCo clusters. From this figure an estimate can
be made of the coupling strength V . Assuming that the peak
of Nb3Co at −0.25 eV is due to the coupling with only one
bath state would require a V of about 0.37 eV. Therefore, the
hybridization function is only plotted roughly in this range
around the chemical potential (zero energy).

From the model calculations presented in Table III it is
expected that a small HOMO-LUMO gap and large hybridiza-
tion around the HOMO and LUMO levels is unfavorable
for a magnetic moment. A discussion solely based on the
hybridization functions of Fig. 8 is complicated by the fact that
the on-site Coulomb repulsion is not constant over the range
of clusters investigated. However, for two clusters differing
only by one Nb atom in size the difference in the on-site
Coulomb interaction is small. Therefore, in the following the
hybridization functions will be compared cluster for cluster.
From Fig. 8 it appears that Nb3Co has a much stronger
hybridization around the chemical potential (zero energy) than
Nb4Co. More precisely for Nb3Co there is a peak at about
−0.25 eV and 0.1 eV, while Nb4Co has a peak at about
−0.5 eV and a very tiny one at 0.05 eV. Since the gap
between the peaks is larger and the total height of the peaks is
smaller for Nb4Co, a larger magnetic moment is expected for
Nb4Co compared to Nb3Co. This is confirmed by the magnetic
deflection experiment (see last column of Table II and Fig. 1).

By going from magnetic Nb4Co to nonmagnetic Nb5Co, it
is clear that there is a huge increase of hybridization around
the chemical potential. Therefore, in addition to a smaller
on-site Coulomb interaction it is indeed expected that Nb5Co
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has a much smaller tendency to be magnetic than Nb4Co (and
Nb3Co). Then, by going from nonmagnetic Nb5Co to magnetic
Nb6Co, there is a huge decrease of hybridization around the
chemical potential. More precisely, there is a huge increase
from about 0.15 eV to 1.0 eV in the separation between the
first peak below and above the chemical potential. Thus, in
accordance with experiment Nb6Co is expected to have a larger
tendency to be magnetic than Nb5Co. Next, magnetic Nb6Co
and nonmagnetic Nb7Co will be compared. As expected the
hybridization around the chemical potential is larger for Nb7Co
than for Nb6Co. Interestingly, Nb7Co has a hybridization
around the chemical potential similar to that of Nb3Co. How-
ever, Nb3Co has an on-site Coulomb interaction which is 1.4
eV larger than for Nb7Co. Finally, nonmagnetic Nb7Co and
magnetic Nb9Co are compared. Although Nb9Co has a quite
large peak at about −0.15 eV, the difference between the first
peak below and above the chemical potential is much larger.
Therefore, the effective hybridization around the chemical
potential is as expected smaller for Nb9Co than for Nb7Co.
To conclude, for Nb3Co to Nb7Co and Nb9Co the effective
hybridization around the chemical potential is in agreement
with the experimentally observed magnetic behavior.

Above we performed an analysis based on the Anderson
impurity model in order to explain the experimentally observed
magnetic behavior. From an inspection of the hybridization
function and the on-site Coulomb repulsion a trend in agree-
ment with experiment could be predicted. However, based on
these observations it cannot be explained whether the local
Co moment is absent or Kondo screened. Therefore, we made
an estimate of the Kondo temperature for the clusters from
Eq. (5), which are presented in the sixth column of Table II.
In the case in which the nonmagnetic clusters occur due to
a complete Kondo screening, higher Kondo temperatures are
expected for the nonmagnetic clusters than for the magnetic
clusters. From Table II it can be observed that the results
are not in accordance with this expectation. For example, the
highest Kondo temperatures are observed for magnetic Nb3Co
and Nb4Co. Further, nonmagnetic Nb5Co and Nb7Co have a
smaller Kondo temperature than magnetic Nb6Co.

In addition we searched for signatures of the Kondo effect
in the NbxCo clusters from the experimental side. For this
purpose the temperature dependence of the magnetic deflection
experiments was investigated. In the case of the Kondo effect
it is expected that by approaching the Kondo temperature
from below the screening of the local Co moment is reduced.
An inspection of Table II shows that Nb5Co has a Kondo
temperature of 68 K and Nb7Co of 37 K. However, even for
temperatures up to 70 K both clusters still appeared to be
strictly nonmagnetic, see Fig. 1(b), where Nb5Co shows no
deflection at all at 70 K. These results indeed indicate that the
Kondo effect is not responsible for Nb5Co and Nb7Co to appear
nonmagnetic.

Finally, we would like to summarize the results and put
them in a broader perspective. It did not work to directly
correlate (in the spirit of Ref. [15]) the size of the HOMO-
LUMO gap with the observed magnetic behavior for the
NbxCo clusters. However, the effective hybridization strength
around the chemical potential does follow the observed mag-
netic behavior. More precisely, magnetism is favored when
the effective hybridization around the chemical potential is

small, while the absence of magnetism is signaled by a large
effective hybridization around the chemical potential. It should
be mentioned that all these observations are in accordance
with the general physical principles behind the Anderson
impurity model, i.e., the Anderson criterion [U/� > π , where
2� = πV 2ρ(EF ) is the effective hybridization]. The Anderson
criterion states that a small on-site Coulomb interaction U (at
the impurity site) and a large effective hybridization around the
chemical potential (EF for solids) are not favorable for a local
magnetic moment to form. We would like to emphasize that
this concerns general physical principles, which are not related
to a specific material. To continue our discussion, it appears
that for NbxCo clusters with x � 14 the effective hybridization
around the chemical potential has become so strong that no
local Co magnetic moment forms. The only mechanism that
leads to a magnetic moment for these clusters is the presence
of an unpaired electron.

V. CONCLUSION

In this work we performed magnetic deflection experiments
on Co-doped Nb clusters from which we made the interesting
observation that some clusters are strongly magnetic, while
others are nonmagnetic. Further, it appeared that the magnetic
behavior of the clusters could be divided into two regimes.
For NbxCo clusters with x � 14, the magnetic to nonmagnetic
behavior is exactly determined by having an odd or even
number of atoms in the cluster, i.e., having an unpaired electron
or not. Note that this behavior was also observed for pure Nb
clusters. Then, in the region x < 14 strong fluctuations in the
magnetic moment as function of cluster size are observed in
contradiction with the odd/even behavior described above.

There are in principle two possible explanations for some
clusters being nonmagnetic. Either the local moment at the Co
site is absent or it is screened by the delocalized electrons of
the cluster, i.e., the Kondo effect. In order to reveal the physical
origin, we conducted a combined theoretical and experimental
investigation.

First, we made a comparison of the experimental vibrational
spectra with those obtained from a DFT study. This served two
purposes. It provides the ground state geometry of the clusters.
Further, due to the dependence of the vibrational spectrum on
the magnetic moment, the performance of DFT in predicting
the magnetic moments can be investigated. We found that not
for all clusters it could be determined which calculated vibra-
tional spectrum has the best agreement with experiment. How-
ever, for those for which it could, two interesting observations
could be made. The best match with experiment not always
corresponds to the geometry and magnetic state found to be the
lowest in energy, ground state, in DFT. Further, we found that
the DFT magnetic moments were considerably smaller than
those obtained from the magnetic deflection experiments. This
is due to a neglect of the orbital moments in our DFT calcula-
tions and underestimation of the spin moments within DFT.

Second, with the obtained ground state structures as an input
we performed an analysis based on the Anderson impurity
model. It appears that the nonmagnetic clusters are due the ab-
sence of the local Co moment and not due to the Kondo effect.
In addition, the magnetic behavior of the NbxCo clusters can
be understood from an inspection of their electronic structure.
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Here magnetism is favored when the effective hybridization
around the chemical potential is small, while the absence of
magnetism is signaled by a large effective hybridization around
the chemical potential.

Thus, DFT cannot provide a quantitative description of the
magnetic moments in agreement with the deflection experi-
ments. However, DFT can be employed to obtain a qualita-
tive understanding of the experimentally observed magnetic
moments by using its results as an input for an analyses
based on the Anderson impurity model. In order to also
obtain theoretically a quantitative agreement with experiment
we argue that a proper consideration of correlation effects
is required. For example, for DFT in combination with the
dynamical mean-field theory it has recently been demonstrated

to give orbital and spin magnetic moments in good agreement
with experiment for pure Co clusters [29].
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