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Diagrammatic Monte Carlo study of Fröhlich polaron dispersion in two and three dimensions
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We present results for the solution of the large polaron Fröhlich Hamiltonian in 3 dimensions (3D) and 2
dimensions (2D) obtained via the diagrammatic Monte Carlo (DMC) method. Our implementation is based
on the approach by Mishchenko [A. S. Mishchenko et al., Phys. Rev. B 62, 6317 (2000)]. Polaron ground
state energies and effective polaron masses are successfully benchmarked with data obtained using Feynman’s
path integral formalism. By comparing 3D and 2D data, we verify the analytically exact scaling relations for
energies and effective masses from 3D → 2D, which provides a stringent test for the quality of DMC predictions.
The accuracy of our results is further proven by providing values for the exactly known coefficients in weak-
and strong-coupling expansions. Moreover, we compute polaron dispersion curves which are validated with
analytically known lower and upper limits in the small-coupling regime and verify the first-order expansion
results for larger couplings, thus disproving previous critiques on the apparent incompatibility of DMC with
analytical results and furnishing useful reference for a wide range of coupling strengths.
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I. INTRODUCTION

Ever since the emergence of polaron theory in the 1930s
[1], the concept of polarons has been applied to a wide variety
of physical systems in which a particle is coupled to its envi-
ronment, e.g., spin or magnetic polarons [2], exciton polarons
[3], BEC-impurity polarons [4], and ripplonic polarons [5].
The polaron problem in its original form considers a single
electron in a polar crystal interacting with the surrounding
lattice. Due to Coulomb forces, the electron distorts the ions
in its neighborhood, which creates a polarization that follows
the electron as it moves through the crystal. This generated
polarization acts back on the electron and so renormalizes
electronic properties. The resulting quasiparticle consisting of
the electron surrounded by the distorted lattice was termed
a “polaron.” Nowadays (cf. the review by Alexandrov and
Devreese [6]) a more quantum mechanical picture of a polaron
is used in which the electron dresses itself with a cloud of
phonons.

Polarons may be classified according to the strength of the
electron-phonon coupling (weak/strong) and the extension of
the lattice distortion around the electron (small/large) [6,7].
Weak-coupling polarons dress themselves with only a small
number of phonons N̄ � 1 leading to a slightly enhanced ef-
fective mass compared to the “bare” electron (m∗ − m) � m.
Strong-coupling polarons have more phonons in the cloud
N̄ � 1 and a much larger effective mass m∗/m � 1. By N̄

we denote the average number of phonons in the cloud, m∗
is the effective mass of the polaron, and m the mass of the
“bare” electron without coupling. Furthermore, a polaron is
called a small polaron when the lattice distortion induced by
the electron is of the same size as the lattice constant and a
large polaron when the distortion extends over several lattice
sites. Typically, the description of small polarons requires the
treatment of short-range electron-phonon interaction and an
explicit account of the lattice periodicity. Instead, the theory

of large polarons assumes long-range forces and relies on the
continuum approximation.

Studies of polarons are historically conducted in the frame-
work of quantum field theory using effective quantum Hamil-
tonians [8,9]. More recently, first-principles methods based on
density functional theory turned out to provide an accurate
microscopic description of both large and small polarons
[10,11]. The most famous model Hamiltonians go back to
the 1950s to Fröhlich [8] and Holstein [9]. Both contain a
term for a free particle He, a free phonon field Hph, and
for the particle-phonon interaction He-ph. While the Holstein
Hamiltonian models small polarons, the Fröhlich Hamiltonian,
which is the focus of the present study, describes large polarons
and is given as

H = He + Hph + He-ph, (1)

He =
∑

k

k2

2
a
†
kak, (2)

Hph =
∑

q

b†qbq, (3)

He-ph =
∑
k,q

[
Vd (q)b†qa

†
k−qak + V

†
d (q)bqa

†
k+qaq

]
. (4)

Here ak and bq are destruction operators for a particle with
wave vector k and a phonon with wave vector q, respectively.
Vd (q) is the coupling function for a system in d dimensions
and takes the form

V3(q) = i

(
2
√

2πα

A

) 1
2 1

q
(5)
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in 3 dimensions and

V2(q) = i

(√
2πα

A

) 1
2 1√

q
(6)

in 2 dimensions [12]. In Eqs. (5) and (6), A is the d-dimensional
volume of the system and α is the coupling constant which
is material dependent and determines the strength of the
electron-phonon interaction. Typical values for real materials
are in the range 0 < α < 5 [13]. Units are chosen such that
energy is measured in units of h̄ω0 and length in units of√

h̄/mω0 which leads to h̄ = ω0 = m = 1. In deriving and
solving the Fröhlich Hamiltonian, it is a common practice to
assume certain approximations: (i) the energy dispersion for
the electron is parabolic with a band mass m, (ii) the phonon
frequency ω(q) = ω0 is dispersionless and constant, (iii) the
interaction is only between the electron and long-wavelength
optical, longitudinal phonons, and (iv) the spatial extension of
the polaron is larger than the lattice constant. In this paper,
we exclusively focus on the Fröhlich model and we study the
polaron dispersion law, i.e., the dependence of the ground state
energy E0(k,α) on the modulus of the total polaron momentum
k = |k|.

A large body of work [6] exists on solving the Fröhlich
Hamiltonian, and most of it concerns the energy of the polaron
at rest, E0(0,α). Yet, so far no exact analytic solution was
found. The most successful approach to calculate E0(0,α)
is Feynman’s path integral formalism [14,15], a variational
treatment that provides a very accurate upper bound for the
polaron ground state energy for all coupling strengths as
well as approximate values for the polaron effective mass.
Early work on the behavior of the dispersion curve [16,17]
allowed one to conclude that the energy-momentum relation
starts off quadratically at low k (thus allowing one to define a
polaron mass) but bends over when approaching the continuum
edge Ec(α) = E0(0,α) + h̄ω0. Later it was found that in 3D
the dispersion hits the continuum edge whereas for 2D it
approaches it asymptotically, and upper and lower bounds for
the dispersion were obtained [18–20]. These bounds, as well as
some analytically known limits, constitute good benchmarks
for any theory of the polaron dispersion.

More recently, the diagrammatic Monte Carlo method
(DMC) was developed and applied to the 3-dimensional Fröh-
lich polaron [21,22]. It makes use of diagrammatic expansions
of Green’s functions and a Metropolis sampling algorithm to
perform a random walk in the space of all Feynman diagrams.
The DMC not only allows for the calculation of the ground state
energies but as well the polaron dispersion curves, Z factors
(quasiparticle weights), and phonon statistics. However, the
DMC results [21,22] were criticized [19,20]: the reported
results disagree with the analytically known second-order
coefficient in α for the polaron ground state energy, as well
as the large-α expansion coefficient.

The aim of the present paper is the application of our newly
implemented DMC code to the solution of the Fröhlich Hamil-
tonian in both the 3-dimensional (3D) and the 2-dimensional
(2D) case. To our knowledge, there do not exist any DMC
results for the 2D Fröhlich polaron in the literature. We find
that the present DMC results, both in 2D and 3D, agree with
the analytically known limits, thus refuting the critique of the

DMC method formulated in [19,20]. In addition, we compare
the obtained dispersion relations with analytic upper and lower
bounds (where available) and a fitting function [20].

The structure of the paper is as follows. The DMC pro-
gram is based on the seminal works of Prokof’ev [21] and
Mishchenko [22], and is described in Sec. II. The numerical
outcome is presented and discussed in Sec. III. We first
benchmark our results for the 3D case with the reference data of
Prokof’ev et al. [21] and Mishchenko et al. [22] as well as with
results obtained from Feynman’s path integral approach [15].
Furthermore, we show ground state energies E0(0,α), polaron
dispersions E0(k,α), and effective masses m∗(α) for the 2D
Fröhlich polaron and compare them to various scaling relations
derived by Peeters and Devreese [23]. We also provide values
for the exactly known weak- and strong-coupling coefficients.
Finally, conclusive remarks are drawn in Sec. IV.

II. THEORY AND METHODOLOGY

In this section, we introduce the concepts of many-body
Green’s functions, diagrammatic expansions, and correspond-
ing Feynman diagrams as well as the basic concepts of the
diagrammatic Monte Carlo method. Necessary computational
details of our code are also given in this section.

A. Green’s functions and Feynman diagrams

To solve the Fröhlich Hamiltonian from Eq. (1) for the
lowest energy eigenvalues, we make use of the Green’s func-
tion formalism from many-body physics. In particular, we are
interested in the one-electron-N -phonon Green’s function in
the momentum (k,q̃i)–imaginary time (τ ) representation at
zero temperature, where we assume τ > 0:

G(N)(k,τ,{q̃i}) = 〈0|bq̃N
(τ ) . . . bq̃1

(τ )ak1
(τ )

× a
†
k1

(0)b†q̃1
(0) . . . b

†
q̃N

(0)|0〉. (7)

The ket |0〉 in Eq. (7) is the electron and phonon vacuum state
[24] and the operators are in the Heisenberg picture ak(τ ) =
eτHake

−τH . The total or polaron wave vector is given by k =
k1 + ∑

i q̃i and is a conserved quantity [8].
By adding a complete set of polaron eigenstates |β(k)〉

to Eq. (7), with H |β(k)〉 = Eβ(k)|β(k)〉 and H |0〉 =
Ev|0〉 = 0, the Green’s function becomes

G(N)(k,τ,{q̃i}) =
∑

β

∣∣〈β(k)|a†
k1

b
†
q̃1

. . . b
†
q̃N

|0〉∣∣2
e−(Eβ (k)−Ev )τ

=
∑

β

Z
(N)
β (k,{q̃i})e−Eβ (k)τ . (8)

The Z
(N)
β factor measures the squared overlap between the

polaron eigenstate |β(k)〉 and a state with one free electron
and N free phonons. If τ → ∞, Eq. (8) shows that the term
which contains the state with the lowest energy eigenvalue
E0(k) is the dominant one in the sum. Therefore it is possible
to retrieve E0(k) and the corresponding Z

(N)
0 (k,{q̃i}) factor for

given k and {q̃i} values from the asymptotic behavior of the
Green’s function at long imaginary times:

G(N)(k,τ → ∞,{q̃i}) = Z
(N)
0 (k,{q̃i})e−E0(k)τ . (9)
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FIG. 1. Eighth-order diagram for G(2)(k,τ,q̃1,q̃2). Note that dia-
grams in the expansion of G(2) have two phonon propagators attached
to the diagram end. The total polaron wave vector k = k1 + q̃1 + q̃2

is conserved at the vertices.

To calculate G(N), we expand the Green’s function in a
perturbation series [25]. Formally, this leads to an expression
of the form

G(N)(k,τ,{q̃i}) =
∞∑

n=0

∑
ξn

∫
· · ·

∫
Dn,ξn

(
k,τ,{q̃i}; x

)
dx,

(10)

where n labels the order of the perturbation expansion,
ξn indexes different terms of the same order, and x =
(τ1, . . . ,τn,q1, . . . ,qk) is a vector of integration variables
(times of interaction vertices and internal phonon wave vec-
tors). Note the difference between external phonon wave
vectors {q̃i} appearing in the definition of G(N) and internal
phonon wave vectors {qi} over which is integrated. The
integrands Dn,ξn

are given as a product of free electron
Green’s functions G0(k,τi − τj ), free phonon Green’s func-
tions W0(q,τi − τj ), and squared interaction vertices |Vd (q)|2.
With the following simple rules it is possible to map all Dn,ξn

functions to Feynman diagrams:

(11)

(12)

(13)

This allows us to write the Green’s function as an infinite series
over Feynman diagrams. Odd orders in the perturbation series
evaluate to zero because phonon operators appear linear in
the interaction term of the Hamiltonian [Eq. (4)]. A typical
diagram is presented in Fig. 1. It shows an eighth-order diagram
of G(2)(k,τ,q̃1,q̃2). All diagrams of G(N) have N external
phonon propagators attached to the diagram end. The rules
from Eqs. (11)–(13) can be used to translate a diagram back
into its functional form. Integration has to be performed over
all internal phonon wave vectors {qi} and over all times {τi}
so that their chronological order is maintained, e.g., 0 < τ1 <

τ2 < · · · < τ8 < τ in Fig. 1. The total wave vector k is always
conserved at interaction vertices. For example, the electron
propagator between τ1 and τ2 in Fig. 1 must have the wave
vector k2 = k1 + q̃1 so that k = k2 + q̃2.

FIG. 2. General workflow of the DMC algorithm. The algorithm
returns the histogram of the function Q({y}).

Expressing the Green’s function in terms of Feynman
diagrams does not solve the problem. It merely is a way to
rewrite the expansion in a more accessible way. It is still
necessary to sum the infinite series of integrals from Eq. (10).

B. Diagrammatic Monte Carlo

In Refs. [21,22,26] it was shown how to use the DMC
method to numerically calculate a function Q({y}) which is
given in a diagrammatic expansion of the form

Q({y}) =
∞∑

n=0

∑
ξn

∫
· · ·

∫
Dn,ξn

({y}; x1, . . . ,xn)dx1 . . . dxn.

(14)

The overall idea behind the DMC method is to interpret Q({y})
as a distribution function for the external variables {y} [21]. It
then uses a Markov chain Monte Carlo (MCMC) procedure to
simulate Q({y}) by generating diagrams stochastically. This is
achieved with a Metropolis-Hastings update scheme to accept
or reject new diagrams in which the numerical values of Dn,ξn

serve as statistical weights. The function Q({y}) is obtained
by collecting statistics for the external variables {y}, e.g., in
the form of a histogram. At the heart of the DMC algorithm
are updates that allow the Markov chain to explore the whole
space of Feynman diagrams; i.e., the Markov chain has to be
ergodic. It is therefore necessary to implement updates which
change the order n, the topology ξn, external variables {y}, and
internal variables xi . Details on basic updating procedures and
acceptance probabilities can be found in Refs. [21,22,26,27].

A general workflow of a DMC application is sketched
in Fig. 2. Necessary requirements are a diagrammatic
expansion of Q({y}), updates {U1, . . . ,Uk}, and probabilities
{p(U1), . . . ,p(Uk)} with which the updates are chosen.
The current diagram in each step is denoted by Dcur and
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characterized by its parameter values z =
({y}; x1, . . . ,xn,n,ξn). The proposed diagram is called
Dnew with new parameters z′ = ({y ′}; x ′

1, . . . ,x
′
n′ ,n′,ξ ′

n′ ). At
the beginning, an initial diagram D(0), e.g., a free electron
propagator, is defined and the grid for the histogram is
generated. During each Monte Carlo step an update Ui gets
selected with probability p(Ui). The update Ui proposes a
new diagram Dnew by changing one or more of the current
parameters of z to z′. Then a Metropolis-Hastings accept/reject
step is performed with the following acceptance ratio (detailed
balance is assumed):

R = p(U †
i )DnewP (z′ → z)

p(Ui)DcurP (z → z′)
, (15)

where p(U †
i ) is the probability of selecting the inverse update

U
†
i of Ui and P (z → z′) is an arbitrary probability density from

which the new parameters z′ are chosen. If R � r , where r is a
uniform random number, Dnew is accepted, otherwise rejected.
Finally, the histogram at position {y} is updated. These steps
are repeated until convergence is achieved. Normalizing the
resulting histogram leads to an estimation for Q({y}).

C. DMC for the Fröhlich polaron

With the general procedure of the DMC algorithm at hand,
it is fairly easy to apply it to the Fröhlich polaron. Comparing
Eq. (10) with (14) leads to the following identifications:

(i) Q ↔ G(N),
(ii) {y} ↔ {k,τ,{q̃i}},
(iii) {x1, . . . ,xn} ↔ {τ1, . . . ,τn,q1, . . . ,qk}.
The most straightforward way to obtain the lowest-energy

eigenvalues E0(k,α) of the Fröhlich Hamiltonian for a given
k and α with the DMC method is to simulate G(0)(k,τ ) and fit
an exponential function to its long imaginary time behavior, as
can be seen in Eq. (9). This was done in the original paper by
Prokof’ev [21].

Mishchenko et al. [22] provided some improvements to
this method. They simulated all G(N)(k,τ,{q̃i}) up to some
maximum value N < Nmax in a single run. It allowed them
to introduce direct Monte Carlo estimators for the energy,
effective mass, group velocity, and Z factors and to obtain
results up to α = 20.

In the present paper, we follow the approach by Mishchenko
using estimators for the energy eest(D) and inverse effective
polaron mass mest(D) making the curve-fitting procedure
obsolete. A detailed exposition of the workflow can be found in
Fig. 3. Values for the coupling constant α and the polaron wave
vector k are defined as inputs before the simulation starts. The
parameter μ is used as part of a guiding function of the form
eμτ to improve the sampling in τ space. In practice this means
that each diagram is multiplied by eμτ or simply by changing
the value of the free electron Green’s function to

G0(k,τi − τj ,μ) = e−(k2/2−μ)(τi−τj ). (16)

For our calculations, we set μ slightly smaller than the true
ground state energy, as recommended in Ref. [21]. We also
have specified maximum values for the diagram length τmax,
the order nmax, and for the number of phonon propagators
attached to the diagram end Nmax. The value τmin is used

FIG. 3. Detailed workflow of the DMC algorithm as it was used in
this paper. The algorithm returns estimates for the lowest eigenenergy
E0(k,α) and the inverse of the effective polaron mass 1/m∗(α) for
given k and α values.

as a cutoff, in the sense that we only accumulate estimators
if the current diagram length τ is greater than τmin. In our
case, τmax = 50 and τmin = 5. Values for nmax and Nmax are
dependent on the coupling strength α; τmax and μ and should
be chosen sufficiently higher than the average diagram order
and average number of external phonons per diagram. The most
important ingredients are the updates Ui . We implemented
updates for adding and removing internal as well as external
phonon propagators, changing the diagram length τ , stretching
the diagram as a whole, shifting a single vertex in imaginary
time, and swapping the phonon propagators of two adjacent
vertices. All these updates and a derivation of the estimators are
explained in detail in Ref. [22]. We only changed the arbitrary
proposal probability distribution P (z → z′) for some of the
updates [see Eq. (15)]. Updates are addressed with the same
probability p(Ui) = p(Uj ).

The basic concept is the same as in the general DMC
algorithm, except that we accumulate estimators instead of
a histogram (cf. Figs. 2 and 3). We start from an initial
diagram D(0). The accumulators for the energy EMC

0 and
inverse effective mass mMC

∗ as well as the counter c, for the
number of diagrams with τ > τmin, are set to zero. In the main
loop, an update Ui is chosen with probability p(Ui) and a
new diagram Dnew is proposed. It is accepted with probability
min{1,R}. After the accept/reject step, we check whether the
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FIG. 4. Comparison of our results (circles) with previous DMC
results by Mishchenko [22] (continuous lines) and with results
obtained with Feynman’s approach [15] (dashed lines). The top graph
shows the polaron ground state energy E0(0,α) and the bottom graph
the logarithm of the polaron effective mass log m∗(α) as a function
of α.

current diagram length is greater than τmin. If τ > τmin, c is
increased by 1 and the energy and inverse effective mass
estimator for the current diagram Dcur are accumulated. The
effective mass is calculated near k = 0 using the quadratic
approximation:

m∗(α) =
[
∂2E0(k,α)

∂k2

]−1

k=0

. (17)

The loop is repeated until the energy and inverse effective mass
estimates have converged. The final estimates are obtained by
dividing the accumulators by c.

In Fig. 4, we reproduced some of the results from Ref. [22]
to verify the correctness of our code. The top graph shows the
polaron ground state energy and the bottom graph shows the
logarithm of the effective mass as a function of α. Our data
are in very good agreement with Mishchenko’s data which
lets us assume that our code gives reliable DMC results.
The figure also displays results obtained with Feynman’s
variational treatment [15].

III. RESULTS AND DISCUSSION

In this section, we provide a more extensive discussion
of the DMC results for the Fröhlich polaron in 3D and 2D.
We show and discuss polaron ground state energies, effective
polaron masses, and polaron dispersions for different coupling
strengths and prove that DMC correctly accounts for the
3D → 2D scaling relations. All energies are given in units of
h̄ω0 and lengths in units of

√
h̄/mω0.

A. Polaron ground state energy and effective mass

We first focus on our results for the polaron ground state
energy E0(0,α) (Fig. 5), i.e., the minimum of the polaron
energy band, and for the effective polaron mass m∗(α) (Fig. 6)
as a function of α for 3D and 2D systems. Both cases are
compared to Feynman’s approach [15] and with available

FIG. 5. Polaron energy E0(0,α) as a function of the coupling con-
stant α. The modulus of the total wave vector is k = 0. Results from
the Feynman approach are shown as dashed lines. DMC results for
3D systems are depicted as squares and for 2D as circles. 	E0 is the
difference between Feynman and DMC results. The inset shows the
scaling ratio RE(α) = E2D

0 (0,α)/E3D
0 (0,3πα/4) between our 2D and

3D DMC results.

DMC results in 3D [22] (Fig. 4). The corresponding numerical
values are written in Table I (3D) and Table II (2D).

Feynman results in 2D have been obtained from the 3D
results via scaling relations [23,28,29]. These scaling relations
are exact for the Feynman polaron energy and Feynman
polaron mass:

E2D
0 (0,α) = 2

3
E3D

0 (0,3πα/4), (18)

m2D
∗ (α)

m2D
= m3D

∗ (3πα/4)

m3D
. (19)

For α = 0 the polaron does not form and therefore E0 = 0
and m∗(0) = m. As expected, with increasing electron-phonon

FIG. 6. Logarithm of the polaron effective mass m∗(α) as a
function of the coupling constant α. Results from the Feynman
approach are shown as dashed lines. DMC results for 3D systems are
depicted as squares and for 2D as circles. The inset shows the scaling
ratio Rm∗ (α) = m2D

∗ (α)/m3D
∗ (3πα/4) between our 2D and 3D DMC

results.
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TABLE I. Ground state energies E0(0,α) and effective masses
m∗(α) in 3D from the DMC and Feynman method [15]. Values in
parentheses stand for the uncertainty in the DMC simulation; e.g.,
−1.01662(47) has a sample standard error of 4.7×10−4.

α E0 DMC E0 Feynman m∗ DMC m∗ Feynman

1 −1.01662(47) −1.0130308 1.19396(2) 1.1955147
2 −2.06957(84) −2.0553559 1.46166(7) 1.4718919
3 −3.16829(136) −3.1333335 1.85047(13) 1.8889540
4 −4.32490(211) −4.2564809 2.45196(57) 2.5793104
5 −5.55297(296) −5.4401445 3.47194(180) 3.8856197
6 −6.86647(287) −6.7108710 5.41952(625) 6.8383564
7 −8.31039(309) −8.1126875 9.7130(268) 14.394070
8 −9.92206(606) −9.6953709 20.55(14) 31.569255
9 −11.72535(701) −11.485786 46.90(78) 62.751527
10 −13.7820(136) −13.490437 98.8(3.3) 111.81603
11 −16.0660(127) −15.709808 158.2(4.6) 183.12497
12 −18.5943(240) −18.143395 270.1(20.0) 281.62189
13 −21.2434(249) −20.790681 412.78190
14 −24.1151(369) −23.651278 582.58390
15 −27.2629(359) −26.724904 797.49838

coupling the polaron energy E0(0,α) decreases and the ef-
fective mass increases as a consequence of the progressive
localization of the polaron band. This effect is stronger in 2D
than in 3D and explains the steeper curves in 2D.

Overall, our DMC data agree very well with the Feynman
results in the entire range of coupling strength, in particular
for what concerns the polaron energy (Fig. 5). The only
sizable deviation is observed for the effective mass in the
intermediate-coupling regime, for which Feynman’s approach
gives considerably higher values than the DMC (Fig. 6). Both
the DMC results and the variational results obey the scaling
laws (18) and (19). This can be seen in the insets of Figs. 5 and 6
where we show the ratios RE(α) = E2D

0 (0,α)/E3D
0 (0,3πα/4)

and Rm∗ (α) = m2D
∗ (α)/m3D

∗ (3πα/4) between our DMC re-
sults in 2D and 3D. However, the uncertainty in the Monte
Carlo calculations of m2D

∗ for α > 2 worsens the stability of
the scaling relation of the effective mass at large α. The reason
for this low performance is that the effective mass estimator
actually calculates the inverse of the effective mass rather than
the effective mass itself [22]. Since the polaron mass grows
very fast with increasing coupling, its inverse becomes very
small, which unavoidably worsens the accuracy of theresults.

To test the accuracy of our calculations, we have also
retrieved values for the exactly known weak-coupling coef-
ficients q1 and q2

E0(0,α) = −q1α − q2α
2 + O(α3) (20)

TABLE II. Ground state energies E0(0,α) and effective masses
m∗(α) in 2D from the DMC and Feynman method [15]. Values in
parentheses stand for the uncertainty in the DMC simulation; e.g.,
−1.64348(23) has a sample standard error of 2.3×10−4.

α E0 DQMC E0 Feynman m∗ DQMC m∗ Feynman

1 −1.64348(23) −1.62321 1.57437(8) 1.59966
2 −3.48333(62) −3.39482 3.01609(21) 3.40982
3 −5.66337(46) −5.47667 8.94191(730) 15.2085
4 −8.45543(149) −8.20738 52.108(341) 81.1684
5 −12.08288(610) −11.7281 229.3(7.8) 257.452
6 −16.5403(269) −16.0402 601.9(46.0) 609.244
7 −21.7231(566) −21.1408
8 −27.1346(802) −27.0283
9 −34.4669(370) −33.7021
10 −40.4139(379) −41.1602

and the strong-coupling coefficient γ

lim
α→∞ E0(0,α)/α2 = −γ. (21)

The exact [19,28] and DMC values for these coefficients,
listed in Table III, are in very good agreement. However, a word
of caution is needed here: the coefficients are obtained with a
simple curve-fitting procedure and the final numerical values
are highly sensitive to the range of α values included in the
fitting process. We have computed q1 and q2 using α < 0.85
and α < 0.2, in 3D and 2D respectively, whereas for γ we have
included values in the range 9 � α < 18 (3D) and 4 � α < 9
(2D).

Gerlach, Kalina, and Smondyrev [19] correctly point out
that the (3D) second-order perturbative result q2 = 0.0126
obtained by Mishchenko using DMC [22] deviates from
Röseler’s [30] exact result q2 = 0.01592 . . ., but we surmise
that they incorrectly concluded that the DMC results E0(0,α)
are incompatible with Röseler’s results. Here, we resolve
this issue by providing the calculated DMC values explicitly,
showing that there is no discrepancy. Both for the 3D and the 2D
case, it can be seen in Table III that the DMC technique yields
accurate estimates for q2, as well as for the other analytically
known expansion coefficients q1 and γ .

B. Polaron dispersion

In Fig. 7, we display some dispersion curves in 3D and
2D for selected values of α. The results have been shifted
so that the ground state energy at k = 0 is E0(0,α) = 0.
This makes a comparison between different α values easier.
As expected, E0(k,α) increases monotonically as a function
of k and becomes more flat with increasing coupling. This
reflects the tendency to form more localized bands as the

TABLE III. Exactly known (exact) vs calculated (calc.) expansion coefficients of E0(0,α) for the weak- and strong-coupling limit. The
coefficients were obtained using different ranges of α in 2D and 3D. In 2D, we have included α < 0.2 for computing q1 and q2 and 4 � α < 9
for γ . The corresponding 3D ranges are α < 0.85 (q1 and q2) and 9 � α < 18 (γ ).

q1 exact q1 calc. q2 exact q2 calc. γ exact γ calc.

3D 1.0 0.9999 ± 3.8×10−4 0.01592 0.01588 ± 9.1×10−4 0.1085 0.10805 ± 7.7×10−4

2D 1.5708 1.57084 ± 1.7×10−4 0.06397 0.06483 ± 2.8×10−3 0.4047 0.40236 ± 3.8×10−3
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FIG. 7. Polaron energy E0(k,α) − E0(0,α) as a function of the modulus of the total wave vector k in 3D (left, for coupling constants
α = 1.0,2.0, and 3.0) and 2D (right, α = 0.5,1.0, and 1.5). The continuum edge is shown at Ec(k) = 1.

electron-phonon coupling strength becomes stronger, an effect
that is more intense in the more localized 2D limit, where
the dispersion curves bend over more sharply. Clearly, this
behavior correlates with the polaron effective mass since it is
defined as the inverse of the curvature of the energy band at
k = 0 (see Fig. 6).

For large k, the energy curve approaches the so called
“continuum edge” Ec(α) defined as the energy value:

Ec(α) = E0(0,α) + h̄ω0 = E0(0,α) + 1, (22)

i.e. the energy value which is one phonon excitation quantum or
unity (in our units) above the ground state energy. An important
difference between the 3D and 2D case is that in 3D the
dispersion curve crosses the continuum edge at a finite critical
wave vector length kc(α). Instead, in 2D, it has been proven
that this edge constitutes an asymptote and is approximated
from below as k → ∞ [18–20].

For small α, there exist rigorous upper and lower bounds
for the polaron dispersion [20] that restrict this dispersion to a
narrow domain. In the top row of Fig. 8, the DMC results are
shown together with these bounds for α = 0.068, the value of
the coupling strength for GaAs. Our results lie in between the
bounds, close to the upper bound, both in 3D (upper left panel
of Fig. 8) and 2D (upper right panel). The strict lower bound
only exists for small values of the coupling strength: α = 0.5
already lies outside the range where this lower bound can be
found.

Gerlach and Smondyrev [20] propose a fitting function for
the dispersion. This fit is based on a rescaling of the upper
bound formula, to obtain the correct gap between bottom of the
band and the continuum edge, while maintaining the effective
mass. As shown in the lower left panel of Fig. 8, the DMC
results for the 3D case forα = 0.5 lie below both the variational
upper bound and the Gerlach-Smondyrev dispersion. The same
conclusion can be drawn for the 2D case, shown in the lower
right panel of Fig. 8.

We now focus on the 3D case, in which the dispersion
reaches the continuum edge at a given kc. Up to lowest order
in α,

kc(α) =
√

2 +
(

π

2
− 1

)
α√
2

+ O(α2). (23)

In Table IV, we compare for several α values the critical wave
number obtained (i) with DMC, (ii) with the first-order ap-
proximation, Eq. (23), and (iii) using the Gerlach-Smondyrev
dispersion. At small coupling strength α = 0.068, all three
approaches yield the same result. However, as α is increased
slightly (remaining in the regime where the lowest-order
approximation can be expected to be valid), the result obtained
from the Gerlach-Smondyrev dispersion drops below the value
found by the other two approaches. The value of kc in the
Gerlach-Smondyrev approach is 3% resp. 8% smaller than the
DMC result for α = 0.5 and 1.

Previously [20], this discrepancy was blamed on the fact
that the DMC method supposedly failed to reproduce even the
known q2 parameter (the coefficient of α2), whereas the fitting
function is claimed to be good up to order α3. However, as
we have shown in the previous subsection, this explanation
cannot hold since contrary to what was believed earlier, the
DMC does reproduce the q2 value with high accuracy. The
Gerlach-Smondyrev dispersion is not the result of variational
minimization, nor is it a rigorous lower bound: rather it is
an ad hoc proposal that rescales the best variational upper
bound to give the correct known limits. Keeping in mind that
the DMC calculation takes many phonons into account (i.e.,
goes well beyond order α in the diagrams), we can conclude
that the DMC results indicate that this fitting procedure is not
appropriate for α � 0.5.

IV. SUMMARY AND CONCLUSION

The diagrammatic Monte Carlo is a powerful method which
has proven to work in many applications for many different
systems [31–36]. For this paper, we have implemented a DMC

TABLE IV. Critical wave vectors kc(α) for coupling constants
α = 0.068, α = 0.5, and α = 1.0. Listed are results from our DMC
calculations, from Eq. (23), which is valid up to first order in α, as
well as from the fitting function from Ref. [20].

α = 0.068 α = 0.5 α = 1.0

DMC, this work 1.440 1.615 1.833
Result to order α, Eq. (23) 1.442 1.616 1.818
Gerlach and Smondyrev, Ref. [20] 1.442 1.570 1.697
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FIG. 8. Polaron energy E0(k,α) in 3D (left) and 2D (right) as a function of the modulus of the total wave vector k for coupling constant
α = 0.068 (top row) and α = 0.5 (bottom row). Lower and upper bounds and a fitting function to the dispersion are taken from Ref. [20].

code based on the Refs. [21,22] and applied it to the solution
of the large polaron Fröhlich Hamiltonian in 3D and 2D. We
benchmarked our code with existing DMC results for the 3D
case to verify its correctness and then computed polaron ground
state energies, effective polaron masses, and polaron dispersion
curves in 2D and 3D.

In summary, our data confirm that the effect of electron-
phonon coupling is enhanced in 2D compared to 3D, and this
is reflected in all computed physical quantities. Concerning
the ground state energies, the DMC results are in very good
agreement with those obtained by Feynman’s approach [15]
and we have demonstrated that they obey the scaling relations
between 3D and 2D [23]. The reliability of the DMC procedure
is further corroborated by the calculations of the coefficients
used for the weak- and strong-coupling regime, which are
almost identical to the exactly known values. This refutes a
claim [19] that the DMC technique is not able to correctly
obtain the q2 coefficients. Regarding the effective polaron
mass, the DMC performance becomes slightly less satisfactory
at stronger coupling. This inaccuracy should be traced back to
the numerical errors involved in the calculation of the inverse
of the effective mass. Alternative definitions of the polaron
effective mass have been proposed in the literature, which
could be possibly tested in future work to assess and compare
the performance of DMC and path integral approaches [37,38].

One of the most interesting outcomes of the present study
is the polaron dispersion curves. The DMC calculations re-
produce very well the different behavior seen in 2D and
3D: in 2D the energy curve approaches the continuum edge
asymptotically from below, whereas in 3D it reaches the
continuum edge at a finite critical kc. For small α (=0.068,
a realistic value for a material like GaAs), the DMC dispersion
as well as the kc are in very good agreement with the known
lower and upper limits derived from the variational approach of
Gerlach and Smondyrev [20]. For larger α (α = 0.5, 1.0), the
DMC data agree well with the first-order expansion results, but
deviate from the values based on a proposed fitting function for
the dispersion. While the DMC technique cannot validate the
fitting procedure proposed by Gerlach and Smondyrev for α �
0.5, it does suggest that up to α ≈ 1 the first-order expansion
result of Eq. (23) already provides an accurate estimate of kc.
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