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Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure
into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where
the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an
incomplete picture of the dynamics. Here, principal vibrational modes (PVMs) are introduced as descriptors of
the dynamics of a material system with N atoms. The PVMs represent the independent collective movements of
the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using
density functional theory calculations, provide both the data describing the atomic motion and the data used to
construct the PVMs. The leading mode, PVM0, represents the 3N -dimensional direction in which the system
moves with greatest amplitude. For structural phase transitions, PVM0 serves as a generalization of soft phonon
modes. At low temperatures, PVM0 reproduces the soft phonon mode in systems where one phonon dominates
the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which
case PVM0 culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal
structure, PVM0 can be equally well calculated on either side of the structural phase transition. Two applications
demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures
proposed for the β phase of uranium, the higher-symmetry structure of which stabilizes with temperature.
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I. INTRODUCTION

Atoms in a solid move constantly, and understanding their
movement is key to understanding the solid’s mechanical
and thermal behavior. Descriptions of macroscopic behavior
depend on judiciously merging the dynamic behavior at the
atomic scale. Connecting the understanding across length
scales requires culling the collective motion of the N atoms,
which is a challenge because N is so large. Hence, we codify
our understanding of the N atoms’ varying positions by
extracting meaningful descriptors. For example, in crystalline
solids we refer to the average position of the atoms as the crystal
structure.

Starting from the crystal structure, phonons capture the
collective movement of the atoms at individual frequencies.
The phonon modes describe the motion of the atoms in the
harmonic approximation, which allows them to be calculated
from the forces of a static crystal with the appropriate atomic
displacements [1]. At low temperatures, the 3N phonons
interact minimally, and meaningful descriptors such as the
heat capacity can be evaluated using statistical mechanics
[2]. A plethora of applications employing density functional
theory calculations has shown this procedure to be successful
at describing and predicting many properties of a vast range of
materials [3–6].

In some materials, individual phonon modes stand out to
signal a structural phase transformation [7]. Such a “soft
phonon” in a higher-symmetry structure describes the col-
lective motion of the atoms that take the system to a lower-
symmetry structure. As the phase transition is approached the
soft phonon foreshadows the coming change with a marked

lowering of its frequency. The soft modes provide clear
understanding of, e.g., why and how the high-temperature bcc
Ti structure disappears as temperature is lowered: the soft
modes point directly to the low-temperature hcp and omega
(ω-Ti) Ti structures [8].

Understanding the details of structural phase transitions in
Ti and other materials leads to better control of the transitions.
Many materials exhibit technologically useful phases, but in a
temperature range that is not suited for specific applications.
Alloying or doping with other elements can lead to a more
favorable temperature range, and significant research goes into
the atomistic understanding of how the added elements best
affect the phase transition.

The suitability of phonons as a basis for understanding a ma-
terial has limits. Materials are not static, the atoms continuously
move, and with increasing temperature the phonons interact.
Eventually, at high temperatures, the phonons lose their inde-
pendent nature, diminishing their usefulness as fundamental
building blocks for descriptors. Phonons are low-temperature
collective excitations, and collective motion at high temper-
ature needs a different description. The paper presented here
shows how such descriptors derive from atomistic simulations
of materials.

Quantum molecular dynamics (QMD) accurately repre-
sents the atomic motion, and from it collective behavior can be
extracted. With the data from QMD simulations correlations
can be quantified, and new displacement patterns can be built
based on the correlations. With this approach, the QMD data
serve two purposes: they provide both the “raw” information
of how the atoms interact and the framework in which to look
at the information.
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Section II outlines the formalism employed here to extract
and put to use correlations from QMD simulations. Rotating
the 3N -dimensional basis of the displacements to reflect
the correlations results in a new set of modes that are no
longer correlated with each other: each of the new modes
describes an independent collective movement of the atoms
that reflects some principle activity in the material. Here such
a mode is referred to as a principle vibrational mode (PVM).
Section III demonstrates applications of the formalism, first to
the structural transformations into and out of the body-centered
cubic (bcc) Ti structure and second to two proposed structures
for the β phase of uranium.

II. METHOD

Experimental scattering methods provide information about
atomic motion in condensed matter. The measured spectrum
is represented by the dynamic structure factor S(Q,ω) [9],
first introduced by van Hove (see [10,11]). S(Q,ω) relates to
the atomic positions by way of temporal and spatial Fourier
transforms: the spatial Fourier transformation of the time-
dependent positions ri(t) of the N atoms defines a wave-vector
Q-dependent particle density operator:

ρ(Q,t) =
N∑

i=1

e−iQ·ri (t). (1)

The temporal Fourier transformation,

S(Q,ω) =
∫ ∞

−∞
e−iω·tF (Q,t)dt, (2)

transforms the correlation of the particle density, known as the
intermediate scattering function and given by

F (Q,t) = 1

N
〈ρ(Q,t)ρ(−Q,0)〉. (3)

This formalism serves equally well to extract theoretical
spectra from QMD simulations [12].

The paper presented here employs a formalism that modifies
the above to extract descriptors of the collective atomic motion
in a QMD simulation. First, the time-dependent positions ri(t)
of the N atoms are tracked in terms of the displacement of the
atoms from a crystal structure’s sites Ri , δri(t) = ri(t) − Ri .
Second, the particle density operators are described in a basis
{Bn} that reflects the correlations extracted from the QMD
simulation:

ρBn
(t) =

N∑
i=1

Bn · δri(t). (4)

Finding the basis {Bn} relies on analyzing the QMD data.
This analysis of the QMD data is performed in terms of

an orthonormal set of 3N basis vectors for the atomic dis-
placements with respect to a crystal structure, {ej }. These basis
vectors are not the basis {Bn}, but a necessary step in finding the
basis {Bn}. Here the eigenvectors of the phonon modes serve
as the {ej }, calculated using density functional perturbation
theory. These basis vectors define the instantaneous amplitude

of the phonon modes,

ρ̃(ej ,t) =
N∑

i=1

ej · δri(t), (5)

and the time-dependent correlation of each phonon mode:

F̃ (ej ,t) = 1

N
〈ρ̃(ej ,t)ρ̃(e∗

j ,0)〉. (6)

An advantage of using the eigenvectors of the phonon modes
as the {ej } for the analysis applied to a system with multiple
elements is that the eigenvectors of the phonon modes scale
the atomic displacements according to the different masses of
the elements.

The correlations between phonon modes are codified in the
matrix

Cej ,ek
=

∫ ∞

−∞
F̃ (ej ,t)F̃ (ek,t)dt. (7)

This definition of correlations between phonon modes is not
unique but well suited for the current application to structural
phase transformations. Principle component analysis of C
leads to the basis in which the descriptors of the atomic
motion are decorrelated; specifically, diagonalization provides
the eigenvectors vn of C which define {Bn}:

Bn =
∑

j

vn(j ) · ej . (8)

Inserting the particle density operator of Eq. (4) into Eqs. (2)
and (3) produces the spectra for PVMn.

By construction, the eigenvector v0 with the largest eigen-
value defines the mode with the largest root-mean-squared
amplitude. This mode, referred to here as the leading principle
vibrational mode, PVM0, represents the direction in the 3N -
dimensional space in which one collective motion of atoms
probes the deepest. This and succeeding modes with large
amplitudes in a material are often critical properties for the
material’s application, and the leading PVMs can serve as the-
oretical descriptors. Across a structural phase transformation,
the movement of atoms needed to describe the transformation
involves a large finite displacement and is hence reflected in
PVM0 as shown in Sec. III.

Application of the formalism involves choosing a reference
crystal structure, which defines the crystal structure sites Ri .
Across structural phase transformations, both connected crys-
tal structures serve as reference structures in two independent
analyses. Taken together, they provide complementary insight
into the atomic motion described by the QMD data.

The QMD data analyzed here originate in density functional
theory calculations using the VASP package [13,14]. The QMD
calculations simulate a fixed number of atoms in a fixed
simulation cell with constant energy. For comparison with
experiment, QMD simulations with fixed pressure rather than
fixed simulation cell would be preferable, but the resulting
changes to cell dimensions and shape remain outside the
current implementation of the formalism. Similarly, fixed
temperature would be preferable over fixed energy, and indeed
using a Nosé thermostat (with Nosé mass corresponding to a
frequency of 5 THz) delivers results in general agreement with
those presented here. Sections III A and III B discuss the chosen
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simulation cell shapes. The constant energy values are set by
preparatory QMD calculations that scale the velocities to set
sequences of temperatures for each system. The electrons are
treated in the generalized gradient approximation of Perdew,
Burke, and Ernzerhof [15]. No additional specific treatment
of the spin-orbit coupling or f -electron correlation effects in
uranium are included [16]. The electronic energy, treated in the
projector augmented wave method [17], is evaluated at each
atomic time step of 5 fs with Methfessel-Paxton smearing,
σ = 0.1 eV, and Fermi-Dirac smearing, σ = 0.027 eV, for Ti
and U, respectively, with a convergence criterion of 10−5 eV.
The k-point meshes rely on 2 × 2 × 2 and 6 × 6 × 6 grids for
Ti and U, respectively.

III. RESULTS

A. Ti bcc to ω transition

Structural transformations in Ti receive a lot of attention
[18]. On the technological side, Ti plays a major role in
industrial applications requiring light weight, high strength,
and corrosion resistance. On the scientific side, the high-
temperature bcc phase of Ti exhibits soft phonon modes di-
rectly linked to low-temperature phases [8]. Density functional
theory calculations of the bcc Ti phonons show these modes as
unstable at zero temperature [19]. Because of these instabili-
ties, Ti is frequently invoked as a test system for methods aimed
at calculating vibrational properties of mechanically unstable
high-temperature phases [20,21].

The titanium QMD calculations employ simulation cells
chosen to represent both bcc and ω crystal structures. The

calculations are performed at a volume of 18.13 Å
3
/atom

in a hexagonal unit cell with c/a = 0.612. The simulation
cells encompass 2 × 2 × 3, 3 × 3 × 4, or 4 × 4 × 6 unit cells
containing three atoms each. With Ti atoms placed at (0,0,0),
( 1

3 , 1
3 , 1

3 ), and ( 2
3 , 2

3 , 2
3 ), the unit cells describe a bcc lattice with a

lattice constant of 3.31 Å [22]. Placing the Ti atoms at (0,0,0),
( 1

3 , 1
3 , 1

2 ), and ( 2
3 , 2

3 , 1
2 ) represents the ω-Ti lattice at a slightly

negative pressure [23]. Figure 1 illustrates the two structures
and the atoms’ pathways connecting them in the 2 × 2 × 3
supercell.

The two larger systems in the QMD simulations undergo
the expected structural transformations. In the current com-
putational framework, the low-temperature ω-Ti structure
transforms into the bcc structure when the average temperature
increases above around 800 K (3 × 3 × 4 supercell) or around
600 K (4 × 4 × 6 supercell). Conversely, decreasing the av-
erage temperature below around 800 K (3 × 3 × 4 supercell)
or around 600 K (4 × 4 × 6 supercell) transforms the high-
temperature bcc structure into a hcp structure with line defects.
The hcp structure is expected at this volume, but the simulation
cell does not allow a complete transformation into perfect hcp.

The 2 × 2 × 3 simulation cell retains the ω-Ti structure
up to average temperatures around 800 K. For average tem-
peratures above around 900 K, the system transforms but
fails to stabilize a flawless bcc structure. The number of
phonons commensurate with the small supercell is insufficient
to support the phonon-phonon interactions needed to stabilize
the bcc crystal structure. Hence, the remainder of this paper
focuses on the two larger systems.

FIG. 1. Schematic of the structural phase transformation between
bcc-Ti and ω-Ti. A 2 × 2 × 3 supercell is shown from the side (a, c)
and from the top (b, d) for the two crystal structures, respectively.
Arrows indicate the directions and relative magnitudes of the atoms’
pathways that transform the solid from one crystal structure to the
other. The dashed red line represents the hexagonal plane present in
ω-Ti.

Figure 2 shows the resulting PVM0 for ω-Ti at low tem-
perature (3 × 3 × 4 supercell). Evaluated in the bcc basis,
PVM0 exhibits near-static behavior (its spectrum peaks sharply
at zero frequency) and describes the atomic displacements
needed to take the bcc structure into the ω-Ti structure. These
displacements, projected into the phonon mode basis ej , are
those of one unstable phonon mode, corresponding to the
displacements shown in Fig. 1. Five independent simulations,
with average temperatures between 44 and 51 K, all have PVM0

described by the same unstable phonon mode. Analyzed in the
ω-Ti basis, the PVM0s of the five independent simulations
are all dominated by linear combinations of the degenerate
phonon modes with frequency 2.6 THz, with weight between
0.93 and 0.96. The remaining phonon modes contributing to
PVM0 differ between the simulations, but come from phonon
modes with similar frequencies (between 2.0 and 2.8 THz).
PVM0 in the ω-Ti basis exhibits near-harmonic behavior with a
sharply peaked spectrum at 2.4 THz for the 3 × 3 × 4 supercell
and at 2.0 THz for the 4 × 4 × 6 supercell. This lowering of
frequency is consistent with PVM0 representing the direction
in 3N -dimensional space in which one collective motion of
atoms probes the deepest: as the simulation cell is increased,
longer-wavelength phonon modes become commensurate with
the cell, and they generally have lower frequencies.

At high temperatures, Ti adopts the bcc crystal structure.
Compared to low temperatures, this reverses the roles of the
ω-Ti and bcc structures in the PVM analysis. This reversal of
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FIG. 2. PVM0 for ω-Ti (3 × 3 × 4 supercell) at 50 K evaluated in
the ω basis (red) and in the bcc basis (blue). The system on average
assumes the ω-Ti structure, and the instantaneous amplitude of PVM0

averages to zero in the ω basis; the spectrum of PVM0 shows a sharp
peak at 2.4 THz. In the bcc basis, the system has transformed away
from the bcc-Ti structure, hence PVM0 acquires a nearly constant,
finite amplitude; consequently the spectrum of PVM0 is sharply
peaked at zero. The offset of the instantaneous PVM0 amplitude
evaluated in the bcc basis reflects the sum of all atomic displacements
that connect the atomic positions in the bcc structure with the average
atomic positions in the simulation.

roles appears in Fig. 3 (3 × 3 × 4 supercell). The amplitude of
PVM0 now exhibits a finite average value in the ω basis, albeit
with larger fluctuations due to the higher temperature. The
atomic displacement superimposes the displacement patterns
defined by mainly the phonon modes with frequencies 4.2
and 6.1 THz, which have polarizations mainly in the direction
of the transformation [see Fig. 1(c)]. Evaluated in the bcc
basis, the instantaneous amplitude of PVM0 exhibits large
fluctuations centered around zero. At this temperature, the
system contains significant anharmonicity, as evident from the
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FIG. 3. PVM0 for bcc-Ti (3 × 3 × 4 supercell) at 1500 K evalu-
ated in the bcc basis (blue) and in the ω basis (red). The system on
average acquires the bcc-Ti structure, and PVM0 exhibits strongly
nonharmonic behavior that averages to zero in the bcc basis; the
spectrum of PVM0 shows a peak at 1.3 THz, but other low frequencies
are present. In the ω basis, the system has transformed away from the
ω-Ti structure, and the average of PVM0 assumes a finite amplitude;
the spectrum of PVM0 is sharply peaked at zero.

spectrum of PVM0—and the fact that the bcc crystal structure
appears stable.

Table I lists the main phonon modes the displacement
patterns of which contribute to the PVM0 for bcc-Ti in five
QMD simulations with average temperatures near 1500 K. The
atomic motion described by PVM0 is described dominantly by
phonon modes that are unstable at zero temperature. Which
phonon mode dominates varies between simulations.

The formalism performs equally well in a QMD simulation
that includes a structural phase transformation. Figure 4 shows
an example in which the 3 × 3 × 4 supercell system goes
from the bcc crystal structure to the hcp structure containing
line defects. Because the hcp structure lies lower on the

TABLE I. Frequencies describing PVM0 for bcc-Ti in QMD simulations with average temperatures around 1500 K (3 × 3 × 4 supercell).
The five simulations are ordered by their average temperature, 〈T 〉. The peak in the spectrum of each simulation’s PVM0, fmax, is reported
along with a fit of the spectrum to a Gaussian centered at ffit with variance σ . The phonon modes listed by their frequencies in the first row are
those that contribute to the PVM0 of at least one simulation with a weight of at least 0.01, where the reported weight in the column below the
mode’s frequency sums contributions from all degenerate modes.

Phonon frequencies (THz): 1.56 −0.41 −0.62 −2.18 −2.91 −3.28 −3.68 −4.32 −5.00
〈T 〉 fmax ffit σ Phonon mode weights in PVM0

(K) (THz)

Run 1 1460 1.76 1.37 0.71 0.01 0.00 0.03 0.07 0.83 0.00 0.02 0.02 0.01
Run 2 1473 1.30 1.01 0.73 0.00 0.01 0.92 0.00 0.01 0.02 0.00 0.02 0.00
Run 3 1483 1.30 1.25 0.77 0.09 0.00 0.57 0.02 0.03 0.00 0.26 0.01 0.01
Run 4 1517 1.62 1.32 0.44 0.06 0.00 0.75 0.07 0.09 0.00 0.01 0.00 0.00
Run 5 1530 1.56 1.38 0.60 0.01 0.00 0.01 0.51 0.41 0.01 0.00 0.02 0.01
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FIG. 4. Temperature, potential energy, and instantaneous ampli-
tude of PVM0 for Ti in a QMD simulation showing the structural
transformation from bcc to hcp with line defects (3 × 3 × 4 supercell).
Data extracted from the QMD simulation are shown in red; black
dashed lines are the averages for the first and last 200 time steps,
respectively.

potential-energy surface, the potential energy moves from a
higher to a lower average, while the kinetic energy, and hence
the temperature, increase from a lower to a higher average.
Evaluated in the bcc basis (applying the formalism to the
full sequence of steps in Fig. 4), PVM0 culls contributions
from the displacement patterns of many phonon modes, the
majority of which are unstable at zero temperature. The
PVM0 starts with fluctuations around zero while in the bcc
structure, and then moves to values that fluctuate around a finite
value once the transformation concludes. The same behavior
appears in the 4 × 4 × 6 supercell, though the details differ: for
example, the transformation starts and ends with lower average
temperatures, around 650 and 780 K, respectively, because
the increased number of modes commensurate with the larger
cell allows for better resolution of in particular low-frequency
modes, the entropy contribution of which lowers the free
energy of the bcc phase.

Figure 5 maps the atomic displacement pattern of PVM0

onto the atomic displacement patterns of the phonon modes
of the bcc structure (3 × 3 × 4 supercell). The figure plots
the weights of the phonon modes in PVM0 on a logarith-
mic scale because the dominant contributing phonon mode
generally has a much larger weight than the other phonon
modes. In the bcc Ti structure, simulated at 〈T 〉 ≈ 880 K,
unstable zero-temperature phonon modes dominate PVM0. At
this temperature, strong anharmonicity introduces correlation
between the atomic motions of these modes, causing them to
appear stable in both measurements (with finite lifetime) [8]
and calculations [20].

The mapping in Fig. 5 corresponds to the simulation in
Fig. 4 and one simulation each with average temperature
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FIG. 5. Weights of the phonon modes in the PVM0 of
Ti (3 × 3 × 4 supercell) referenced to the bcc structure (a–
c), and frequencies of the (zero-temperature) phonon modes
(d). The weights are obtained by projecting the atomic displacements
in PVM0 onto the displacement patterns defined by the phonon modes.
The phonon modes (d) are indexed from highest to lowest frequency
for the stable modes (blue), followed by the unstable modes (red)
from lowest to highest imaginary frequency (plotted as negative
frequencies). The color code is retained in panels (a)–(c) as a visual
aid. At 880 K the average atomic positions are on the bcc lattice, and at
700 K they are on the hcp lattice with line defects. (b) The weights are
for the QMD simulation shown in Fig. 4, where the system transforms
from bcc to hcp with line defects.

700 and 880 K, respectively. Independent QMD simulations
(3 × 3 × 4 supercell) with average temperatures close to those
of the shown simulations agree with the results reported in the
previous paragraphs. Differences arise in the question of which
phonon modes represent the atomic motion of the PVM0, but
in all cases those modes that contribute with a weight larger
than 0.01 are unstable phonon modes. Differences also appear
in how long the structures remain stable: the hcp structure
with line defects generally remains stable throughout the
simulations (up to 25 ps), while the bcc structure simulated
around 780 K transforms after at most 5 ps and rarely exceeds
15 ps for average temperatures around 880 K.

As mentioned in Sec. II, PVM0 represents the direction in
the 3N -dimensional space with the largest amplitude. Figure 5
shows that across the structural phase transition in Ti unstable
phonon modes of the bcc structure contribute significantly to
PVM0. These are the known instabilities of the bcc structure
that take it to the lower-symmetry and lower-temperature struc-
tures. However, the phonon modes with relevant contributions
to PVM0 of bcc Ti also remain relevant in the low-temperature
structure. This connection indicates that the directions with the
largest amplitude for these high- and low-temperature phases
of Ti are intimately linked. As shown below, such a link does
not connect the two structures analyzed for the β phase of U.
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FIG. 6. Calculated projections of the energy landscape around
the space group 136 (λ = 0) structure of β-U. Displacing the atoms
according to the pattern described by the unstable phonon mode
(red) lowers the energy in either direction (with λ = 1 defined as the
amplitude that minimizes the energy). Displacing the atoms according
to the pattern described by the differences in their positions in the
space group 136 (λ = 0) structure and the space group 102 (λ = 1)
structure lowers the energy only in the positive direction. Reversing
the atomic displacements raises the energy, and this asymmetry
indicates that the path connecting the two structures is defined by
more than a single phonon mode.

B. β-U crystal structure

The β-U phase appears in a small temperature range around
1000 K, making experimental determination of the crystal
structure difficult. The structure has 30 atoms in a tetragonal
unit cell, but disagreement persists in the literature on the exact
symmetry. Neutron powder diffraction data point to a structure
with higher symmetry, space group 136 [24], which more
recent symmetry arguments support [25]. Density functional
theory calculations show that a structure with lower symmetry,
space group 102, has a lower energy [26]. The calculations
furthermore show an unstable phonon mode for the higher-
symmetry structure, which can lead the structure toward the
lower-symmetry structure.

Figure 6 plots the energy calculated along two paths
described by atomic displacement from the higher-symmetry
structure. The path defined by the unstable phonon mode
lowers the energy and is symmetric around the undistorted
crystal structure. The path defined by the differences in atomic
positions between the two structures, illustrated in Fig. 7,
lowers the energy by roughly double the amount and is not
symmetric. The calculated energy difference between the
two structures is almost an order of magnitude smaller than
the energy scale of the temperature at which β-U appears;
this suggests a strongly anharmonic system in which the
phonons interact to stabilize the higher-symmetry structure.
The difference in how much the two paths in Fig. 6 lower the

FIG. 7. Schematic of the atomic pathways connecting the space
group 136 and space group 102 crystal structures of β-U. The
primitive cell is shown from the side (a, c) and from the top (b, d)
for the two space groups, respectively. Arrows indicate the directions
and relative magnitudes of the atoms’ pathways that take the crystal
structure to the other space group. The dashed red line represents
the mirror plane present in space group 136 but absent in space
group 102.

energy, as well as the asymmetry in the energy of the path
defined by the structural differences, suggest that multiple
phonon modes combine to describe the path. These points
motivate performing QMD simulations on these structures and
applying the PVM analysis.

The β-U QMD calculations employ fixed simulation cells
that can represent both proposed crystal structures. The sim-
ulation cells are made close to cubic by doubling the unit
cells, which were optimized for both structures independently.
The QMD simulations employ a k-point mesh of 6 × 6 × 6.
The total energies agree with those of a k-point mesh of
8 × 8 × 8 to within 2 × 10−5 eV. In a comparison of the
phonons calculated with the two mesh densities, the stable
modes’ phonon frequencies agree to within at worst 2%, and
the unstable mode’s imaginary frequency differs by 0.2%. A
less dense mesh appears insufficient: the total energy agrees
to within 0.2 meV/atom for a k-point mesh of 4 × 4 × 4, but
the agreement for the phonons is significantly worse, hence the
QMD simulations employ the 6 × 6 × 6 k-point mesh.

Figure 8 shows the stability of the higher-symmetry struc-
ture in a range of temperatures above and well below 1000 K.
The lower-symmetry structure, on the other hand, becomes
unstable for high temperatures. At lower temperatures, the
structure with lower symmetry appears metastable in these
QMD simulations, but the stable α-U structure precludes
experimental observation of it.

For the higher-symmetry structure, Fig. 8 shows the fre-
quency of the PVM0 spectral peak varying nonmonotonically
before the transformation. This variation, however, should not
be attributed to a particular phonon mode: the spectra of PVM0

at different temperatures show, in Fig. 9, that the variation
reflects a change in which vibrational modes dominate the
atomic motion.
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above (690, 300, and 210 K) and below (100 K) the transition, and
frequencies of the (zero-temperature) phonon modes (e). The weights
are obtained by projecting the atomic displacements in PVM0 onto
the displacement patterns defined by the phonon modes. The phonon
modes are indexed from highest to lowest frequency for the stable
modes (blue), followed by the unstable modes (red) from lowest to
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color code is retained throughout the finite-temperature results as a
visual aid.

Figure 10 provides the same insight by mapping the atomic
displacement pattern of PVM0 onto the atomic displacement
patterns of the phonon modes. At 690 K, the dominant
contribution is from a stable zero-temperature phonon mode
with harmonic frequency 1.48 THz. At 300 and 210 K, the
dominant contribution is from a phonon mode with harmonic
frequency 0.80 THz. Strong anharmonicity introduces corre-
lation between the atomic motions of these dominant phonon
modes and other (stable and unstable) phonon modes. While
the latter contribute to the atomic displacement pattern of
PVM0 with much less weight (Fig. 10), they strongly affect
the spectrum of PVM0 (Fig. 9).

Below the transition temperature, the atomic displacement
pattern of PVM0 combines the atomic displacement patterns of
mainly stable zero-temperature phonon modes. The dominant
contribution (49%) is from the phonon mode with harmonic
frequency 2.48 THz, followed by the phonon mode with
harmonic frequency 1.48 THz (30%). This latter mode is the
dominant mode for the PVM0 at 690 K, but in general phonon
modes contributing to PVM0 above the transition temperature
do not contribute significantly to PVM0 below the transition
temperature. This is in stark contrast to the structural phase
transition in Ti, where many of the same phonon modes
contribute to PVM0 above and below the transition temperature
(Fig. 5).
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Also remarkably different from the structural phase tran-
sition in Ti, the atomic displacement pattern of PVM0 for
β-U below the transition temperature has an almost negligible
contribution from unstable zero-temperature phonon modes.
This stems from the small atomic displacements that take the
higher-symmetry structure into the lower-symmetry structure:
both the average 0.15 Å and the maximum 0.29 Å are signifi-
cantly smaller than the corresponding values for the structural
phase transition in Ti, 0.32 and 0.48 Å. The fluctuations in
the instantaneous PVM0 amplitude for β-U are consequently
comparable to the average PVM0 amplitude, while for Ti the
fluctuations are significantly smaller than the average.

IV. CONCLUSION

The paper presented here uses data from QMD simulations
as both the source of information and as the determining
factor in how the information serves to advance understanding.
Correlations present in the data serve to define the PVMs with
which the data are analyzed. The atomic motion in a material
simulation, expressed originally in the phonon modes, exhibits
correlations between the modes. The construction of the PVMs
leads to no correlation between modes.

The leading PVM, PVM0, emerges as a descriptor of the
collective motion with the largest amplitude. Because the ex-
traction of PVM0 does not rely on any symmetries, it can guide
the study of effects of symmetry-breaking changes, e.g., doping
or alloying, on technologically desired or undesired properties
directly related to the direction in the 3N -dimensional space
in which one collective motion of atoms probes the deepest.
While the examples in the paper presented here consider
systems with single elements, experience shows that the PVM
analysis works equally well for compounds and alloys (to be
published elsewhere).

Applied to materials with structural phase transitions,
PVM0 serves as a generalization of the soft phonon modes.
It describes the complete structural transformation to the new
phase in a single mode, and it can be mapped out from the
crystal structure present on either side of the transformation.

Two materials show how the analysis works in practice.
Across the structural transformations into and out of the bcc
Ti structure, PVM0 describes the atomic motion needed to
transform between structures. The analysis furthermore reveals
a close link between the directions with the largest amplitude
for the high- and low-temperature phases of Ti. In the second
material, uranium, the literature disagrees on which of two
structures is the correct structure for the β phase observed
around 1000 K. The QMD simulations show that temperature
stabilizes the high-symmetry structure, and the amplitude of
PVM0 assumes a finite or zero average when analyzed in
reference to the lower-symmetry or higher-symmetry structure,
respectively. For the β phase of U, the analysis reveals no
close link between the two crystal structures in terms of the
3N -dimensional directions in which the systems move with
greatest amplitude.

Both materials exhibit a structural transformation that can
be attributed to phonon modes that are unstable at zero
temperature. The PVM analysis reveals the presence of the
atomic displacement patterns of these phonon modes in
the atomic displacement patterns of PVM0 in simulations
above the transition temperature. The phonon modes that
contribute the most to PVM0 in the high-temperature phase
remain important in the low-temperature phase of Ti, but not
in U.
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