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Epitaxial phase diagrams of SrTiO3, CaTiO3, and SrHfO3: Computational investigation including
the role of antiferrodistortive and A-site displacement modes
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Ground-state epitaxial phase diagrams are calculated by density functional theory (DFT) for SrTiO3, CaTiO3,
and SrHfO3 perovskite-based compounds, accounting for the effects of antiferrodistortive and A-site displacement
modes. Biaxial strain states corresponding to epitaxial growth of (001)-oriented films are considered, with misfit
strains ranging between −4% and 4%. Ground-state structures are determined using a computational procedure in
which input structures for DFT optimizations are identified as local minima in expansions of the total energy with
respect to strain and soft-mode degrees of freedom. Comparison to results of previous DFT studies demonstrates
the effectiveness of the computational approach in predicting ground-state phases. The calculated results show that
antiferrodistortive octahedral rotations and associated A-site displacement modes act to suppress polarization and
reduce the epitaxial strain energy. A projection of calculated atomic displacements in the ground-state epitaxial
structures onto soft-mode eigenvectors shows that three ferroelectric and six antiferrodistortive displacement
modes are dominant at all misfit strains considered, with the relative contributions from each varying systematically
with the strain. Additional A-site displacement modes contribute to the atomic displacements in CaTiO3 and
SrHfO3, which serve to optimize the coordination of the undersized A-site cation.
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I. INTRODUCTION

Ferroelectric thin films based on perovskite-structured ox-
ide compounds are widely researched for a variety of micro-
electronic device applications [1]. Thin-film forms of these
ferroelectric (FE) materials are of interest due to their reduced
dimensionality, as well as the novel properties that arise from
epitaxial constraints [2]. In particular, epitaxial strain has been
shown to have a strong effect on the polarization and domain
behavior of FEs [3], and it thus provides a means of tuning
properties for device applications.

To exploit such epitaxial effects, predictive first-principles
computational models based on density-functional theory
(DFT) have been developed and applied to predict the structure
and polarization of oxide FEs as a function of the biaxial
strain. In such modeling efforts, a few approaches have been
employed. In early studies [4,5], expansions of the total
energy with respect to the amplitudes of unstable phonon
modes and strain were determined and used to compute stable
structures and associated energetics and polarizations as a
function of the misfit strain. Although effective for prototypical
perovskites like BaTiO3, a limitation of the approach was
the consideration of only zone-centered soft-phonon modes
and the associated neglect of octahedral rotations, which have
been shown to suppress polarization in many perovskites [6].
In more recent studies that have considered a broader range
of compositions [7–12], direct DFT relaxations of candidate
perovskite-based structures were undertaken as a function
of the biaxial strain. In some of these studies, candidate
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structures were limited to those that could be derived only
from distortions and zone-center displacements in the primitive
five-atom unit cell, again neglecting structural distortions
associated with octahedral rotations. In other first-principles
computational studies, more complex structures have been
considered, derived from experimental measurements [13,14].
The latter studies have accounted for important effects of non-
zone-centered displacement modes, such as antiferrodistortive
(AFD) octahedral rotations or A-site displacement modes, but
they have been limited to the relatively few compositions where
experimentally measured crystallographic data for strained
thin films are available.

In the present work, a methodology is presented extending
previous efforts to account for non-zone-centered modes in
the calculation of ground-state structures and associated po-
larizations in epitaxially strained perovskite thin films. The
approach makes use of direct DFT optimizations of candidate
structures corresponding to local minima in expansions of the
energy with respect to the strain and the amplitudes of the
nine most unstable phonon modes of reference high-symmetry
perovskite structures. Expansions are carried out at several
strain states, and the full set of structures corresponding to
the minima identified in the energy expansions is used as
input to DFT energy minimizations as a function of the
biaxial strain. From the lowest-energy structures identified,
epitaxial phase diagrams and polarization plots similar to
those presented in Ref. [8] are constructed, but accounting
for more complex polymorphs that feature non-zone-centered
displacement modes.

This approach is employed in the present work in a DFT-
based study of the ground-state phase diagrams of epitaxially
strained SrTiO3, CaTiO3, and SrHfO3 compounds. While
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SrTiO3 and CaTiO3 are more commonly studied perovskite
oxides and thus serve as good reference compounds for
comparisons to other methods, SrHfO3 is a lesser-studied
system in the context of thin films. SrHfO3 was chosen due to
its similarity to CaTiO3 with respect to ratios of ionic radii, thus
facilitating an analysis of the effect of composition on thin-film
properties, but also because of its promising polar response
properties. In Ref. [15], a metastable P 4mm phase of SrHfO3

was selected out of a first-principles screening of nearly a
thousand piezoelectric tensors due to its large piezoelectric re-
sponse, having a maximal longitudinal modulus of ||eij ||max ≈
10 C/m2. It is thus worthwhile to determine in the present work
whether this P 4mm SrHfO3 phase can be epitaxially stabilized
by measuring its degree of metastability and, also, to see if this
system retains a large polarization under epitaxy.

Ground-state structures and associated energetics and po-
larization properties are calculated for SrTiO3, CaTiO3, and
SrHfO3 as a function of the epitaxial strain state, corresponding
to the biaxial tension and compression in the (001) plane. In
the remainder of this paper, the computational approach is
described in detail in Sec. II, and results obtained are presented
in Sec. III. Insights derived from these results, as they relate
to the role of non-zone-centered phonons in the stability and
polarization properties of epitaxially strained perovskite thin
films, are discussed in Sec. IV, and the main conclusions are
summarized in Sec. V.

II. METHOD

In the present computational approach, epitaxial thin films
are modeled as bulk compounds subjected to biaxial strain
in the (001) plane, neglecting explicit surface and interface
effects. In discussing crystallographic structures and strain
states, we employ throughout a coordinate system in which
the x and y directions are along the [100] and [010] directions
of a reference tetragonally distorted perovskite unit cell, and
z is the direction normal to the plane of the biaxial strain. In
what follows, a description is given of the nature of the energy
expansions used to identify candidate structures for DFT
optimizations (Sec. II A), the way in which resulting optimized
structures are used to construct epitaxial ground-state phase
diagrams (Sec. II B), and the associated details of the DFT
calculations (Sec. II C).

A. Total energy expansions

For each composition, the lattice constant of an ideal cubic
perovskite structure (space group Pm3̄m) is calculated. Tensile
strains are then applied to the x and y directions by a misfit
strain η̄, considering values of −2%, −1%, 0%, 1%, and 2%.
For each biaxial strain state, the out-of-plane (c-axis) lattice
constant is relaxed, and 40-atom (2 × 2 × 2) supercells are
then constructed from these structures to serve as reference
states for subsequent expansions of the total energy.

The total energy expansions consider both homogeneous
strain and atomic displacement degrees of freedom. Regarding
strain, the mechanical boundary conditions for a coherently
strained epitaxial thin film are defined as

εxx = εyy = η̄, εxy = 0; σzz = σyz = σxz = 0, (1)

where ε and σ are the strain and stress tensors, respectively,
and η̄ is the misfit strain, calculated as η̄ = a/a0 − 1, where a0

is the lattice constant of the reference cubic perovskite (with
zero misfit strain), and a corresponds to the lattice constant
of a cubic substrate. At fixed misfit strain, εzz, εxz, and εyz

constitute the three strain degrees of freedom. For the following
total energy expansions, the two out-of-plane shear strains εxz

and εyz are assumed to be relatively unimportant in dictating
candidate energy minima in the potential-energy landscape,
and only εzz is considered explicitly.

Regarding the atomic positional degrees of freedom, the
most basic approach is to include all x, y, and z displacements
of each atom in the reference structure. However, this leads
to (40 × 3) − 3 = 117 additional degrees of freedom and a
prohibitive number of coefficients that must be evaluated. A
more efficient technique is to choose a set of displacement
variables that still forms a complete basis but can be prioritized
by relative importance for the energy landscape. This is
accomplished most simply by considering unstable and soft
modes of the force-constant matrix [4].

The force-constant matrix, D
τ,τ ′
α,β , is defined as

D
τ,τ ′
α,β = ∂2E

∂υτ
α∂υτ ′

β

∣∣∣∣∣
0

. (2)

In this work, D
τ,τ ′
α,β is always a 120 × 120 matrix, with �υ

denoting the 120-component atomic displacement vector in
Cartesian coordinates, τ and τ ′ denoting atom indices (1
through 40), and α and β denoting Cartesian indices (x, y, or z).
For each composition, a force-constant matrix is calculated for
each of the five biaxially strained reference structures defined
above.

For each force-constant matrix, the eigenvectors and eigen-
values are determined by the eigenequation:

∑

βτ ′
D

τ,τ ′
α,β ξ τ ′

β (j ) = λ(j )ξ τ
α (j ). (3)

Here, j is a mode index running from 1 to 120, λ(j ) is the
j th real-valued eigenvalue, and ξ (j ) is the j th 120-component
real-valued eigen-displacement vector.

The eigenvectors ξ (j ) form a complete orthonormal basis
capable of describing any pattern of displacement having
wavelengths commensurate with the supercell dimensions.
This basis is more convenient than Cartesian coordinates under
the assumption that the ξ (j ) corresponding to lower λ(j )
eigenvalues dominate in the lowest-energy structures. Because
the eigenvalues λ(j ) track the curvature of the energy with
respect to that displacement mode, very positive curvatures will
tend to prohibit the appearance of these displacement modes
in low-energy structures.

The vector corresponding to the displacements within the
40-atom supercell can be written in terms of these eigenvectors
ξ (j ) as

�υ =
∑

j

uj ξ (j ). (4)

Here, uj is the j th eigenmode coordinate, a real-valued scalar
whose absolute value, the eigenmode amplitude, represents
the degree to which the j th eigenmode displacement pattern,
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ξ (j ), contributes to the atomic displacements. For any arbitrary
structure considered in this study, the eigenmode coordinate
is determined by a projection of the Cartesian displacement
vector onto the eigenbasis:

uj =
∑

τα

ξ τ
α (j )υτ

α . (5)

An expansion of the total energy about the reference state
is separated into four terms [5]:

E(εzz,uj ; η̄) = E0 + Eelas(εzz) + Edisp(uj ) + Eint(εzz,uj ).
(6)

The misfit strain, η̄, is a parameter that defines the reference
state in the expansion and is not an expansion variable. Thus,
E0 is the energy of the tetragonally relaxed reference structure,
and εzz is the out-of-plane strain relative to this reference.

As σzz, σyz, σxz, and atomic forces in the reference structures
are 0, no first-order terms persist in the expansions. The pure
elastic contributions to the total energy are thus described as

Eelas(εzz) = B2ε
2
zz + B3ε

3
zz + B4ε

4
zz. (7)

For pure displacement terms, second-order cross terms
(uiuj ) also cannot persist due to the choice of eigenbasis,
and third-order terms vanish due to centrosymmetry of the
chosen reference structures under arbitrary homogeneous
strain, ensuring that E(εzz,υ

τ
α ) = E(εzz,−υτ

α ). The resulting
fourth-order expansion for the pure displacement energy
contribution is

Edisp(uj ) =
∑

j

1

2
λju

2
j + Cju

4
j , (8)

where j is chosen in this work to include the nine most
unstable (or soft) modes. For the interaction terms describing
strain-displacement couplings, all second-order terms (εzzuj )
vanish due to centrosymmetry, and the lowest-order term in
the expansion, which is the only one retained in the current
work, has the form

Eint(εzz,uj ) =
∑

j

Aj εzzu
2
j . (9)

It is noted that there is a unique expansion for each
composition at each misfit strain, resulting in 3 × 5 = 15
sets of expansion coefficients. There are many options for
deciding the number of terms to keep in the above expansions.
Although (40 × 3) − 3 = 117 different eigenmode degrees of
freedom exist, only up to 9 are explicitly included in this
work. By considering up to the nine softest eigenmodes, it is
ensured that the three ferroelectric modes and the six octahedral
rotational modes can always be considered if they are the
most unstable. As these modes are commonly observed among
perovskite oxides, they are essential in capturing common
complex ground-state structures [16]. Further, although the
above expansions can be taken to arbitrary order, this work
truncates Eelas and Edisp at fourth order, truncates Eint at third
order, and does not include cross-coupling displacement mode
terms (i.e., u2

i u
2
j -type terms). These truncations result in the

smallest number of terms that still give rise to an expression
that is guaranteed to have a bounded minimum. Higher-order
terms could be included and would improve the accuracy,
but the expansions in the present workflow are used only to

find candidate metastable structures for subsequent input into
DFT geometry optimizations, and thus the truncation to low
order still provides sufficient accuracy for the purposes of this
work. Further, the present workflow’s use of a distinct energy
expansion at each misfit strain greatly helps to reduce the role
that higher-order terms play in dictating the local minima of
the potential-energy landscape.

Validation of the assumptions underlying this approach
are undertaken through comparisons to previous work (see
Sec. IV B), and for the compounds considered, the approach
is found to be effective in identifying ground-state structures.
For other systems requiring a more refined approximation to
the energy landscape, the present approach can be extended
straightforwardly by including more degrees of freedom and/or
including additional higher-order terms.

The expansion coefficients defined in this section are
determined through fitting to results of DFT calculations
that consider different finite displacements and distortions of
the reference structures [5]. Details are discussed in Sec. I
of the Supplemental Material [17], which gives an example for
the case of SrTiO3. These expansion coefficients correspond
to a small subset of those required in the effective Hamiltonian
approach presented in Ref. [18], and a significant number of
additional fitted parameters would be necessary to study the
phase transition behaviors of SrTiO3, CaTiO3, and SrHfO3.

B. Construction of epitaxial phase diagrams

For each of the three compositions, and at each of five misfit
strains, a set of candidate structures is generated by analytically
solving for all minima of the total energy expansion defined
in Sec. II A. These candidate structures are subsequently used
as the starting configuration for a DFT calculation in which
the structure is relaxed, keeping the in-plane strains fixed at
the relevant value of η̄. After all of the candidate structures
have been relaxed, the DFT energies are compared to identify
the most energetically stable (i.e., the lowest-energy) state. The
result is a set of five low-energy structures, one for each value of
the misfit strain (η̄ = −2%, −1%, 0%, 1%, and 2%). For each
of these five structures, an energy–versus–misfit strain curve
is generated by re-relaxing the structures, with the in-plane
strain fixed at several values of η̄ on a finer grid spanning
values from −4% to 4%. Prior to these structural relaxations,
the atom positions are given small random displacements in
order to reduce the symmetry to P 1, guaranteeing that the
final structures are stable with respect to distortions of the
40-atom cells. It is emphasized that out-of-plane shear strain
degrees of freedom are not constrained during these structural
optimizations, and the resulting lattice need not be tetragonal.
The lowest-energy phase at each misfit strain comprises the
set of ground-state structures based on the 40-atom supercells,
and from these structures the zero-temperature phase diagram
versus misfit strain is thus produced.

C. Calculation methods

All ab initio DFT calculations made use of the Vienna
ab initio simulation package (VASP) [19–22], version 5.4.1.
A conjugate-gradient algorithm was used for all structural
relaxations. As the standard VASP software package does
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not allow for arbitrary mechanical boundary conditions, the
relaxations under fixed in-plane strain made use of a custom
modified version of the software in which certain components
of the stress tensor are constrained to 0.

Calculations used the Ceperley-Alder form of the local den-
sity approximation (LDA) exchange-correlation functional, as
parameterized by Perdew and Zunger [23], with the electron-
ion interaction described by the projector augmented wave
method [24,25]. Force-constant matrices were calculated by
density-functional perturbation theory [26] at the zone cen-
ter for each of the reference 2 × 2 × 2 supercells. For all
calculations required to compute expansion coefficients, and
for the subsequent relaxations of candidate structures, use
was made of a 600-eV plane-wave cutoff energy, 3 × 3 × 3
Monkhorst-Pack sampling of the Brillouin zone [27], and
Gaussian smearing of 0.01 eV.

More refined computational parameters were used in the fi-
nal relaxations and polarization calculations in the construction
of the ground-state phase diagrams. In these more refined cal-
culations, an 800-eV plane-wave cutoff energy and a 4 × 4 × 4
Monkhorst-Pack sampling of the Brillouin zone were used. All
relaxations of the structures were continued until the forces
and out-of-plane stresses converged to magnitudes within
0.001 eV/Å and 0.005 eV/f.u., respectively, where eV/f.u. is
per five-atom formula unit. The resulting level of convergence
in energy differences is to within 0.1 meV/f.u.

The Berry phase approach, as described in the modern
theory of polarization [28], was used to calculate the electric
polarization vector at each misfit strain. All calculations as-
sume a fixed (vanishing) external electric field corresponding
to thin films surrounded by perfectly charge-compensating
electrodes, as discussed in Refs. [29] and [30]. Further, use of
the LDA in the present work leads to well-known systematic
errors in the calculated lattice constants, amounting to an
underestimation of their values of the order of a percent [2,5].
Further discussion of the effect of the exchange-correlation
functional is given in the Supplemental Material [17], in which
the phase diagram for CaTiO3 is recalculated using the SCAN
meta-GGA functional [31]. A comparison between the LDA
and the SCAN results suggests that the predicted phases and
their order with respect to misfit strain are equivalent, with the
phase boundaries of SCAN shifted to epitaxial lattice constants
that are approximately 1% larger in magnitude compared to
those for the LDA.

III. RESULTS

A. Properties of bulk systems

The ground-state structures of bulk, unstrained SrTiO3,
CaTiO3, and SrHfO3 were calculated for use as energetic
references, and their properties are listed in Table I. Included
in this table is the Goldschmidt tolerance factor [33] t , which
is defined as

t = RA-O√
2RB-O

, (10)

where RA-O and RB-O are the ideal A-O and B-O perovskite
structure bond lengths.

SrTiO3 adopts the tetragonal I4/mcm structure, obtained
by condensing an out-of-phase rotational instability (R+

4 in

TABLE I. Bulk properties of the three compositions considered,
including calculated cubic lattice constants, Goldschmidt tolerance
factors [33], and space groups and Glazer systems [16] of the bulk
ground-state phase.

Formula a0 (Å) Tolerance factor t Space group Glazer system

SrTiO3 3.86 1.001 I4/mcm a0
0a

0
0c

−
0

CaTiO3 3.81 0.946 Pnma a−
0 a−

0 c+
0

SrHfO3 4.07 0.949 Pnma a−
0 a−

0 c+
0

the irreducible representation notation of Ref. [32]) about
the direction of elongation. CaTiO3 and SrHfO3 adopt the
orthorhombic Pnma structure, obtained by condensing equal
amplitudes of the R+

4 mode about two axes and a unique
amplitude of an in-phase rotational instability (M+

3 ) about
a third axis. Additional A-site displacement modes further
contribute to the latter two structures, and these modes are
discussed in more detail in the context of epitaxial structures
in Sec. IV D. None of the three bulk structures exhibits a
macroscopic polarization.

B. Eigenmode properties and expansion coefficients

Table II lists the properties of the nine most unstable or
softest stable displacement eigenmodes at five misfit strains
for SrTiO3, CaTiO3, and SrHfO3. Properties listed include the
Glazer system (detailed in Ref. [16]), eigenvalue, and mode
polarization vector, �Z, which is defined as the dot product of
the Born effective charge tensor [34] of the reference structure
with the associated eigenvector:

�Zi =
∑

τα

ξ τ
α (i)Z∗τ

α . (11)

This vector represents the macroscopic polarization that de-
velops per small increase in the ith eigenmode coordinate.
For plots of the eigenvalues of many of the eigenmodes listed
in Table II, see the bottom panels in Fig. 1. Table SI in the
Supplemental Material [17] lists the expansion coefficients
defined in Sec. II A for five values of the misfit strain for
SrTiO3, CaTiO3, and SrHfO3.

C. Epitaxial phase diagrams

Figure 1 plots the energies, polarization components, and
eigenmode amplitudes of the epitaxial ground-state structures
and the force-constant matrix eigenvalues of the tetragonal
reference structures versus misfit strain for SrTiO3, CaTiO3,
and SrHfO3. The top panel in each plot corresponds to the
energy and polarization of the ground-state structure as a
function of the misfit strain. The reference energy for each
compound is that of the corresponding bulk, fully relaxed
structure listed in Table I. The energy values plotted in Fig. 1
can thus be interpreted as the elastic energy of the epitaxially
constrained phase, and the more positive this energy is, the
higher the driving force for strain relaxation, e.g., through the
formation of misfit dislocations. Misfit strains corresponding
to phase transitions are indicated by dashed vertical lines, and
the space groups of the epitaxial phases in each misfit strain
regime are indicated in the top panels. The horizontal scale
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TABLE II. Properties of the nine softest eigen-displacement modes at various misfit strains for SrTiO3, CaTiO3, and SrHfO3. Properties

listed include the tilt system of each eigenmode, as denoted by the modified Glazer notation, the eigenvalue, λi (eV/Å
2
), of the ith displacement

mode, and the mode polarization vector, �Zi (C/m2), as defined in Eq. (11) in Sec. III B. An asterisk denotes a trivial translational eigenmode
which must have an eigenvalue of 0 and vanishing polarization vector, while N/A denotes a displacement mode that cannot be described by the
Glazer notation.

Eigenmode index

Misfit strain 1 2 3 4 5 6 7 8 9

SrTiO3

Glazer a0
0a

0
0c

0
+ a0

0a
0
0c

−
0 a0

0a
0
0c

+
0 a−

0 b0
0b

0
0 a0

0b
−
0 a0

0 a+
0 b0

0b
0
0

−2% λi −2.06 −1.1 −0.69 −0.46 −0.46 * * * 0.07
�Zi (0 0 0.9) 0 0 0 0 0

Glazer a0
0a

0
0c

0
+ a0

0a
0
0c

−
0 a−

0 b0
0b

0
0 a0

0b
−
0 a0

0 a0
0a

0
0c

+
0 a+

0 b0
0b

0
0 a0

0b
+
0 a0

0

−1% λi −0.81 −0.76 −0.49 −0.49 −0.33 −0.01 −0.01 * *
�Zi (0 0 0.9) 0 0 0 0 0 0

Glazer a−
0 b0

0b
0
0 a0

0b
−
0 a0

0 a0
0a

0
0c

−
0 a+

0 b0
0b

0
0 a0

0b
+
0 a0

0 a0
0a

0
0c

+
0

0% λi −0.49 −0.49 −0.48 −0.05 −0.05 −0.04 * * *
�Zi 0 0 0 0 0 0

Glazer a0
+b0

0b
0
0 a0

0b
0
+a0

0 a−
0 b0

0b
0
0 a0

0b
−
0 a0

0 a0
0a

0
0c

−
0 a+

0 b0
0b

0
0 a0

0b
+
0 a0

0

1% λi −1.18 −1.18 −0.52 −0.52 −0.27 −0.12 −0.12 * *
�Zi (0.9 0 0) (0 0.9 0) 0 0 0 0 0

Glazer a0
+b0

0b
0
0 a0

0b
0
+a0

0 N/A N/A a−
0 b0

0b
0
0 a0

0b
−
0 a0

0 a+
0 b0

0b
0
0 a0

0b
+
0 a0

0 a0
0a

0
0c

−
0

2% λi −2.81 −2.81 −1.4 −1.4 −0.52 −0.52 −0.14 −0.14 −0.11
�Zi (0.9 0 0) (0 0.9 0) 0 0 0 0 0 0 0

CaTiO3

Glazer a0
0a

0
0c

−
0 a0

0a
0
0c

0
+ a0

0a
0
0c

+
0 a−

0 b0
0b

0
0 a0

0b
−
0 a0

0 a+
0 b0

0b
0
0 a0

0b
+
0 a0

0 a0
+b0

0b
0
0 a0

0b
0
+a0

0

−2% λi −3.53 −3.27 −3.23 −3.05 −3.05 −2.69 −2.69 −1.2 −1.2
�Zi 0 (0 0 0.8) 0 0 0 0 0 (0.67 0 0) (0 0.67 0)

Glazer a0
0a

0
0c

−
0 a−

0 b0
0b

0
0 a0

0b
−
0 a0

0 a0
0a

0
0c

+
0 a+

0 b0
0b

0
0 a0

0b
+
0 a0

0 a0
0a

0
0c

0
+ a0

+b0
0b

0
0 a0

0b
0
+a0

0

−1% λi −3.15 −2.94 −2.94 −2.84 −2.61 −2.61 −2.35 −1.47 −1.47
�Zi 0 0 0 0 0 0 (0 0 0.76) (0.69 0 0) (0 0.69 0)

Glazer a−
0 b0

0b
0
0 a0

0b
−
0 a0

0 a0
0a

0
0c

−
0 a+

0 b0
0b

0
0 a0

0b
+
0 a0

0 a0
0a

0
0c

+
0 a0

+b0
0b

0
0 a0

0b
0
+a0

0 a0
0a

0
0c

0
+

0% λi −2.83 −2.83 −2.8 −2.53 −2.53 −2.5 −1.91 −1.91 −1.77
�Zi 0 0 0 0 0 0 (0.72 0 0) (0 0.72 0) (0 0 0.71)

Glazer a−
0 b0

0b
0
0 a0

0b
−
0 a0

0 a0
0a

0
0c

−
0 a0

+b0
0b

0
0 a0

0b
0
+a0

0 a+
0 b0

0b
0
0 a0

0b
+
0 a0

0 a0
0a

0
0c

+
0 a0

0a
0
0c

0
+

1% λi −2.73 −2.73 −2.53 −2.5 −2.5 −2.45 −2.45 −2.22 −1.4
�Zi 0 0 0 (0.75 0 0) (0 0.75 0) 0 0 0 (0 0 0.66)

Glazer a0
+b0

0b
0
0 a0

0b
0
+a0

0 a−
0 b0

0b
0
0 a0

0b
−
0 a0

0 a+
0 b0

0b
0
0 a0

0b
+
0 a0

0 a0
0a

0
0c

−
0 a0

0a
0
0c

+
0 a0

0a
0
0c

0
+

2% λi −3.24 −3.24 −2.61 −2.61 −2.35 −2.35 −2.29 −1.98 −1.21
�Zi (0.78 0 0) (0 0.78 0) 0 0 0 0 0 0 (0 0 0.61)

SrHfO3

Glazer a0
0a

0
0c

−
0 a0

0a
0
0c

+
0 a−

0 b0
0b

0
0 a0

0b
−
0 a0

0 a+
0 b0

0b
0
0 a0

0b
+
0 a0

0 a0
0a

0
0c

0
+ N/A N/A

−2% λi −2.74 −2.46 −2.27 −2.27 −1.91 −1.91 −1.31 −0.48 −0.45
�Zi 0 0 0 0 0 0 (0 0 -0.45) 0 0

Glazer a0
0a

0
0c

−
0 a−

0 b0
0b

0
0 a0

0b
−
0 a0

0 a0
0a

0
0c

+
0 a+

0 b0
0b

0
0 a0

0b
+
0 a0

0 a0
0a

0
0c

0
+ a0

+b0
0b

0
0 a0

0b
0
+a0

0

−1% λi −2.33 −2.11 −2.11 −2.04 −1.8 −1.8 −0.72 −0.21 −0.21
�Zi 0 0 0 0 0 0 (0 0 -0.42) (0.38 0 0) (0 0.38 0)

Glazer a−
0 b0

0b
0
0 a0

0b
−
0 a0

0 a0
0a

0
0c

−
0 a+

0 b0
0b

0
0 a0

0b
+
0 a0

0 a0
0a

0
0c

+
0 a0

+b0
0b

0
0 a0

0b
0
+a0

0 a0
0a

0
0c

0
+

0% λi −1.98 −1.98 −1.97 −1.69 −1.69 −1.68 −0.41 −0.41 −0.39
�Zi 0 0 0 0 0 0 (0.39 0 0) (0 0.39 0) (0 0 0.39)

Glazer a−
0 b0

0b
0
0 a0

0b
−
0 a0

0 a0
0a

0
0c

−
0 a+

0 b0
0b

0
0 a0

0b
+
0 a0

0 a0
0a

0
0c

+
0 a0

+b0
0b

0
0 a0

0b
0
+a0

0 N/A
1% λi −1.88 −1.88 −1.67 −1.61 −1.61 −1.38 −0.74 −0.74 −0.41

�Zi 0 0 0 0 0 0 (0.39 0 0) (0 0.39 0) 0
Glazer a−

0 b0
0b

0
0 a0

0b
−
0 a0

0 a+
0 b0

0b
0
0 a0

0b
+
0 a0

0 a0
0a

0
0c

−
0 a0

0a
0
0c

+
0 a0

+b0
0b

0
0 a0

0b
0
+a0

0 N/A
2% λi −1.78 −1.78 −1.53 −1.53 −1.41 −1.12 −1.11 −1.11 −0.77

�Zi 0 0 0 0 0 0 (0.39 0 0) (0 0.39 0) 0
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FIG. 1. Plots of ground-state epitaxial structure energies, polarization components, eigenmode amplitudes, and tetragonal reference structure
eigenvalues versus misfit strain for (a) SrTiO3, (b) CaTiO3, and (c) SrHfO3. Absolute values of polarization components are taken for visualization
purposes. The in-plane lattice constant of the epitaxial structure at each misfit strain is indicated on the top axis. The lower legend corresponds
to the eigenmodes shown in Fig. 2 realized down the x, y, or z axis.

given at the top of each figure indicates the cubic substrate
lattice constant, a, required to produce the given degree of
misfit strain, with a = a0(η̄ + 1).

The eigenmode amplitudes shown in the middle panels
are determined by Eq. (5). These measure the degree to
which the three FE eigenmodes at � [Fig. 2(a)] and six
rotational displacement eigenmodes at the M [Fig. 2(b)] and
R [Fig. 2(c)] boundary points of the Brillouin zone of the
cubic perovskite compound have condensed in the ground-state
epitaxial structures. The eigenvalues corresponding to these
nine modes are plotted in the bottom panels and are determined
from diagonalization of the force-constant matrices of the
tetragonal reference structures.

Figure 1(a) plots the ground-state epitaxial properties for
SrTiO3. Under strong biaxial compression, a polar I4cm phase
is predicted having two displacement modes activated, an
out-of-plane octahedral rotation R+

4 mode (orange diamonds
in the middle and bottom panels), and an out-of-plane zone-
centered FE mode (blue diamonds). These are also the two

most unstable modes of the reference tetragonal structures in
the compressive regime, as indicated in the bottom panel. As
the strain becomes less compressive, both modes gradually
diminish until the FE mode entirely vanishes, giving way to
the paraelectric I4/mcm phase beginning at −1% misfit strain.
In this region, only the R+

4 mode persists, and its amplitude
continues to diminish until 0.25% misfit strain, at which point
the polar Ima2 phase sets in through a first-order transition.
The Ima2 phase consists of four active displacement modes,
including two in-plane octahedral rotation R+

4 modes (gray
squares and purple triangles) and two in-plane zone-centered
FE modes (red squares and green triangles). These are also the
four most unstable modes of the reference tetragonal structures
in the tensile strain regime, as shown in the bottom panel. With
increasing tensile strain, the two in-plane octahedral rotation
R+

4 modes in the Ima2 phase tend to remain approximately
constant in their eigenmode amplitudes, while the in-plane FE
modes gradually increase in eigenmode amplitude. The elastic
energy curve for SrTiO3 is symmetric with respect to misfit
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FIG. 2. The three most dominant unstable eigenmodes for epitaxial SrTiO3, CaTiO3, and SrHfO3. (a) The zone-centered FE mode, often
transforming like the irrep �−

4 ; (b) the in-phase AFD octahedral rotation, transforming like the irrep M+
3 ; and (c) the out-of-phase AFD octahedral

rotation, transforming like the irrep R+
4 . All three can be independently realized down each of the three unit-cell axes. This figure was created

using VESTA [35].

strain, having a minimum at 0% misfit strain and approximately
150 meV/f.u. of elastic energy at the extremes of compressive
and tensile misfit strain considered.

Figure 1(b) plots the ground-state epitaxial properties for
CaTiO3. Compared to SrTiO3, the predicted phases of CaTiO3

involve a more complicated interplay of a larger number of
displacement modes. From −4% to −2.5% misfit strain, the
polar Pm phase is predicted as a ground-state structure, for
which the atomic displacements involve a combination of an
out-of-plane FE, in-plane R+

4 rotation, in-plane M+
3 rotation,

and out-of-plane R+
4 rotation mode. As the magnitude of

the biaxial compressive strain is reduced, the two in-plane
rotational modes slightly increase in amplitude, while the two
out-of-plane modes diminish. At −2.5% misfit strain, the am-
plitude of the out-of-plane FE mode vanishes, and the nonpolar
P 21/m parent phase becomes stable in a smooth second-order
transition. This phase persists from −2.5% to 0% misfit strain,
over which the in-plane rotation modes continue to slowly
increase in amplitude while the out-of-plane rotation mode
continues to diminish. At zero misfit strain, the three octahedral
modes are discontinuously replaced by two in-plane FEs, one
out-of-plane M+

3 rotation, and two in-plane R+
4 rotation modes

in a first-order transition to the polar Pmn21 phase. This phase
persists to the extreme of tensile strain considered, with the
in-plane FE modes gradually increasing and the octahedral
modes remaining roughly constant in amplitude. The elastic
energy curve of CaTiO3 has its minimum shifted to −1%
misfit strain. This shift is possible because the energy curve
is referenced to the fully relaxed bulk CaTiO3 structure, while
the misfit strain is referenced to the equilibrium lattice constant
of a bulk cubic structure. The energy curve reflects this with
100 meV/f.u. of elastic energy at −4% misfit strain and
250 meV/f.u. at 4% misfit strain.

Figure 1(c) plots the calculated properties for SrHfO3.
Like CaTiO3, this system exhibits a complicated interplay of
many displacement modes. Under a large compressive strain,
a paraelectric I4/mcm phase is predicted, having only an
out-of-plane R+

4 rotation mode active. At −3% misfit strain,
there is a first-order transition to a paraelectric P 21/m phase.
Continuing to −1% misfit strain, there is another first-order
phase transition to a paraelectric Pnma phase that is like the
bulk Pnma phase, but with a tetragonal lattice instead of an
orthorhombic one. An orthorhombic rather than a tetragonal

space group is adopted in this case due to symmetry-lowering
atomic displacements in the epitaxial ground-state structure.
This Pnma phase remains stable to the extreme of tensile
strain considered, with the in-plane R+

4 rotation mode am-
plitudes remaining nearly constant, and the out-of-plane M+

3
mode amplitude diminishing. The elastic energy curve for
SrHfO3 is asymmetric, having a −1% shift in the minimum,
100 meV/f.u. elastic energy at −4% misfit strain, and over
300 meV/f.u. elastic energy at 4% misfit strain.

IV. DISCUSSION

A. Comparison to previous calculations

In order to validate the accuracy of the present computa-
tional approach, results are compared in this section to previous
DFT calculations that include some form of input from experi-
mental observations or phenomenological theory. As discussed
below, the present work correctly leads to the identification
of stable phases reported previously for epitaxially strained
SrTiO3 and CaTiO3. Quantitative discrepancies with these
previous computational investigations, which do not relate to
the efficacy of the present structure optimization approach, are
found and attributed to differences in the numerical parameters
in the underlying DFT calculations.

Lin et al. [14] use DFT to calculate the epitaxial phase
diagram of SrTiO3 by considering all phases predicted by phe-
nomenological Landau theory [36]. The general polarization
behavior and stable phases at the extremes of misfit strain
compare very well to those in the present work. Specifically, the
results of both studies feature the stability of an I4cm phase
with enhanced out-of-plane polarization under compression
and an Ima2 phase with enhanced in-plane polarization
under tension. Near 0% misfit strain, the two works differ
in their predicted phases. While the present work predicts a
paraelectric I4/mcm phase near 0% misfit strain, Ref. [14]
predicts a total of three phases in this same region of strains,
including, in addition to the I4/mcm phase, two other polar
phases with Ima2 and Fmm2 symmetries. These differences
arise due to the near energetic degeneracy of the competing
phases, such that differences in the parameters underlying
the DFT calculations can influence conclusions about relative
stability. To ensure this is the case, rather than being due
to the underlying structural optimization procedure of the
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present workflow, the energies of the Ima2 and Fmm2 phases
were computed using the computational parameters given in
Sec. II C, featuring a plane-wave cutoff nearly twice as large as
that employed in Ref. [14]. Consistent with the results shown in
Fig. 1, with the DFT parameters employed in the present work,
it was verified that the lowest-energy structure was the one with
I4/mcm symmetry, with the Ima2 and Fmm2 polymorphs
being higher in energy and therefore metastable.

For CaTiO3, Eklund et al. [13] computed epitaxial phase
diagrams using DFT by considering the relative stability of a
number of candidate phases derived from the experimentally
observed bulk phase. There is good agreement between the
present results and the work in Ref. [13] in terms of the stable
phases predicted, with both studies determining the P 21/m

phase to be stable under moderate compression and the Pmn21

phase to be stable under tension. The strain corresponding
to the transition between these two phases is quantitatively
different in the two studies, however: Eklund et al. find a
value of η̄ = 0%, while in the present work this value is
approximately 2%. As above, these quantitative differences
are likely a consequence of the different DFT parameters
employed in the two studies.

B. The role of non-zone-center displacement modes

In previous work by the authors [7], epitaxial phase di-
agrams were calculated using an approach similar to that
described here but disallowing relaxations associated with
non-zone-center displacement modes. In other words, the work
in Ref. [7] considered only phases that could be derived
from the perovskite structure through homogeneous strains
and zone-centered FE displacement modes. A comparison of
the results obtained in Ref. [7] with those obtained in the
present work is therefore of interest, as it highlights the role
of non-zone-centered distortions, such as octahedral rotations,
in determining the structural, energetic, and polarization de-
pendences on epitaxial strain. This information is of interest
because non-zone-centered distortions may be frozen out in
very thin films if they increase the interfacial energy, while
they may be present in thicker films if they reduce the strain
energy.

For SrTiO3, the effect of non-zone-centered distortions is to
widen the range of stability of the paraelectric phase by nearly
0.5% misfit strain. Specifically, octahedral rotations reduce the
strain energy by 147 meV/f.u. at −4% misfit strain, and by
86 meV/f.u. at 4% misfit strain. This implies that rotational
modes reduce the elastic energy and should allow for larger
critical thicknesses for epitaxial growth. Under compressive
epitaxial strain, the out-of-plane polarization is nearly halved
when the out-of-plane rotation is allowed, implying an unfa-
vorable coupling with the out-of-plane FE mode. In contrast,
under tensile misfit strain, the presence of the two in-plane R+

4
octahedral rotation modes does not significantly change the
polarization compared to the results obtained from disallowing
non-zone-center distortions.

For SrHfO3, much larger effects of non-zone-center modes
are found. The elastic energy is reduced by 343 meV/f.u.
at −4% misfit strain and 109 meV/f.u. at 4% misfit strain
when the non-zone-centered modes are allowed. Also, in the
calculations where non-zone-center distortions are disallowed,

large polarizations are computed, up to 0.56 C/m2, and a
direct transition from a P 4mm phase with purely out-of-plane
polarization to a Pmm2 phase with purely in-plane polariza-
tion is predicted around 0% misfit strain. The presence of
non-zone-centered distortions in SrHfO3 strongly suppresses
these two phenomena, giving way to a paraelectric film over
the entire range of epitaxial strain between −4% and 4%.

C. Predominant displacement modes

The atomic displacements calculated in the present work
for the epitaxial ground-state structures of SrTiO3, CaTiO3,
and SrHfO3 can be predominantly decomposed into a small set
of displacement eigenmodes. Figure 2 shows the displacement
patterns of the most dominant unstable eigenmodes, including
a zone-centered FE distortion wherein the B cations shift
against the other sublattices [Fig. 2(a); irreducible represen-
tation �−

4 ] and two types of AFD octahedral rotations wherein
the oxygen octahedra rotate either out of phase [Fig. 2(b);
R+

4 ] or in phase [Fig. 2(c); M+
3 ] along an axis. Note that the

irreducible representation of the FE mode can vary with the
composition and misfit strain and need not be �−

4 , although this
is the most common, whereas the octahedral rotation modes
are uniquely determined by symmetry. Each of these three
displacement patterns can be independently realized along
each of the three orthogonal unit cell axes, leading to nine
dominating displacement eigenmodes. Linear combinations of
these nine eigenmodes account for 95.8% of the total atomic
displacement predicted in the ground-state epitaxial phases of
SrTiO3, 70.1% of the total displacement in CaTiO3, and 77.2%
in SrHfO3.

Even in cases where other displacement modes are more
unstable in the reference tetragonal structures, combinations
of the nine modes described in the previous paragraph still
dominate in their contribution to the atomic displacements of
the relaxed epitaxial ground-state structures. Table II lists the
sets of nine eigenmodes with the most unstable eigenvalues
for each of the reference tetragonal structures at various misfit
strains. In some cases, denoted “N/A” in the Glazer system
entry in Table II, these sets include modes other than the
nine dominant modes described in the previous paragraph.
However, even when these other modes are more unstable, the
nine modes described in the previous paragraph still dominate
in contributions to calculated displacement patterns in the
relaxed ground-state structures. This tendency implies that
the displacement modes illustrated in Sec. IV C have a more
optimal balance of strong instability and favorable coupling
with each other than other subsets of displacement modes.

For example, when η̄ � 2% for SrTiO3, two symmetry-
equivalent in-plane AFD modes have more negative eigen-
values in the reference tetragonal structures than all six of
the R+

4 and M+
3 rotational modes. Yet these two in-plane

AFD modes do not contribute significantly to the calculated
displacements in the relaxed ground-state structures of SrTiO3

for strains ranging between 2% and 4%, while three of the six
R+

4 and M+
3 rotational modes make large contributions to these

displacements. Likewise, under large biaxial compressive or
tensile strains, SrHfO3 also has other unstable eigenmodes
in the tetragonal reference structures that ultimately do not
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FIG. 3. (a) Antipolar A-site displacement mode (irreducible rep-
resentation X+

5 ). This mode can be independently realized down
each of the three unit-cell axes. (b) Metastability relative to the
ground-state structures of CaTiO3 and SrHfO3 resulting from the
eigenmode amplitudes of all modes other than the nine mentioned
in Sec. IV C being set to 0. Panel (a) was created using VESTA [35].

contribute significantly to the atomic displacements in the
relaxed ground-state structures.

D. Role of A-site bonding

Although the nine dominant displacement modes illustrated
in Fig. 2 largely describe the atomic displacements calculated
for SrTiO3, the ground-state epitaxial structures of CaTiO3

and SrHfO3 also have nonnegligible atomic displacement
contributions from a few additional stable or weakly unstable
displacement eigenmodes. Of these, the most relevant is an
antipolar A-site mode transforming like the irreducible rep-
resentation X+

5 , shown in Fig. 3(a). As described in detail
in Ref. [6], the X+

5 mode is energetically favorable when
both the R+

4 and the M+
3 rotational modes are present. Thus,

most epitaxial ground-state structures for CaTiO3 and SrHfO3

predicted in this work show a significant antipolar shift in the
A sublattice with some dependence on misfit strain. Although

these modes contribute less than 30% of the total atomic
displacement in the relaxed structures, their impact on the
energy is still significant.

In order to determine the energetic influence of these
eigenmodes having predominantly A-site displacements, the
energies of the ground-state structures for CaTiO3 and SrHfO3

are recalculated for modified structures in which only the
contributions to the displacements associated with the nine
dominant eigenmodes illustrated in Fig. 2 are kept, all other
amplitudes being set to 0. The primary effect of this constraint
is to disallow the structure to shift the A-site sublattices. Fig-
ure 3(b) shows the resulting energy curves versus misfit strain
for CaTiO3 and SrHfO3. For CaTiO3, removing all but the
nine dominant modes from the structures increases the energy
by up to 250 meV/f.u., with the most pronounced effects
at the extremes of misfit strain. For SrHfO3, the energetic
influence is smaller, but still significant, with a maximum
increase in energy of 80 meV/f.u at η̄ = −2%. At η̄ = −4%,
contributions of modes other than the dominant nine vanish in
SrHfO3.

The reason these A-site displacement modes are important
in CaTiO3 and SrHfO3, but not in SrTiO3, can be explained by
simple geometrical considerations. The relative ratios of the A-
and B-cation radii, as characterized by the Goldschmidt toler-
ance factor (t) [33], are very different in these two cases. While
SrTiO3 (t = 1.001) has a tolerance factor that is close to unity,
implying that the A and B cations have radii nearly perfectly
suited to the ideal perovskite structure, CaTiO3 (t = 0.946) and
SrHfO3 (t = 0.949) have A cations that are relatively too small.
As a result, the A-site coordination environment is unfavorable
in the latter two systems, which explains why the eigenvalues
of the CaTiO3 and SrHfO3 tetragonal reference structures are
consistently 2–3 eV/Å2 lower in value than those of SrTiO3 for
both the FE and the AFD rotational eigenmodes (see bottom
panels in Fig. 1). Both the FE and the AFD eigenmodes can
optimize the A-site bonding, although octahedral rotations tend
to do so more effectively and, thus, contribute more signifi-
cantly to atomic displacements in the ground-state structures
of CaTiO3 and SrHfO3 [6]. These rotations alone, however, are
not enough to satisfy the A-site bonding preferences, which
is why additional displacement modes, such as the antipolar
A-site X+

5 eigenmode shown in Fig. 3(a), also condense in
the structure. These modes further serve to minimize A-O re-
pulsion and optimize the undersized A-site’s coordination [6].
This can be visualized in the displacement pattern of the X+

5
mode, which brings the A cations closer to the square oxygen
interstice, while also drawing some of the equatorial oxygen
atoms toward the A cations. Figure 3(b) illustrates that these
A-site bond-optimizing modes can be important in lowering
the strain energy and that the degree to which these modes are
needed to optimize the A-site bonding are highly sensitive to
both the misfit strain and the composition of the system.

E. Behavioral trends

Irrespective of differences in cation bonding preferences
between SrTiO3, CaTiO3, and SrHfO3, the results of this
work demonstrate many shared features among the behavior
of the three compositions under epitaxy. In all three systems,
application of misfit strain consistently destabilizes the B-site
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coordination environment, leading to increasing FE eigenmode
instabilities under both compression and tension. Increasing
biaxial compressive strains lead to the out-of-plane FE dis-
placement mode becoming more unstable, while increasing
biaxial tensile strains always leads to the two in-plane FE
modes becoming more unstable. The bottom panels in Fig. 1
indicate for all three systems that the FE modes of the tetragonal
reference structures couple much more strongly to misfit
strain than any of the octahedral rotation modes. The next
strongest couplings occur in the two out-of-plane rotation
modes, which are both strongly destabilized by increasing
compressive strains, while the in-plane rotation modes have
the weakest coupling to misfit strain.

V. SUMMARY AND CONCLUSIONS

Presented in this work is a computational framework for
the calculation of ground-state epitaxial phase diagrams of
ferroelectric perovskite oxides. This framework employs ex-
pansions of the total energy at various misfit strains with respect
to soft-mode displacements and homogeneous deformations,
in order to locate candidate ground-state structures, which are
then further optimized through DFT calculations. Competing
phases are predicted entirely from first principles, with no
assumptions made regarding which set of displacement modes
to consider and no requirement of input information from
experimental measurements. This method also considers the
important effects of AFD and A-site displacement modes in
ground-state epitaxial phases. The approach outlined in this
work for identifying ground-state phases under epitaxial strain
can be used in future work to treat a larger range of perovskite
systems in order to explore compositional trends more broadly.
This approach is demonstrated in the present work in an
application to three perovskite oxides, SrTiO3, CaTiO3, and
SrHfO3, over a range of epitaxial strains applied parallel to
the (001) plane. The main conclusions can be summarized as
follows.

Compared to calculations in which relaxations associated
with non-zone-centered displacement modes are disallowed,
the present results show that the inclusion of non-zone-
centered displacement modes significantly affects the depen-
dence of energy and polarization on misfit strain. Namely, AFD

octahedral rotations and associated A-site displacement modes
tend to strongly suppress polarization and also reduce the
epitaxial strain energy. This information has important conse-
quences for the stability of competing phases as a function of
the film thickness. Non-zone-centered distortions can be frozen
out in very thin films if they increase the interfacial energy
with the underlying substrate lattice, while these distortions
are likely to appear in thicker films because they reduce the
strain energy. In this way, competing phases with very different
polar properties have the potential to be accessed as a function
of the film thickness.

A set of nine displacement modes, three zone-centered FE
distortions often transforming like �−

4 and six AFD octahedral
rotations, three transforming like R+

4 and three like M+
3 ,

comprise the largest contributors to the atomic displacements
found in the calculated ground-state structures across all of the
compositions and misfit strains considered. Combinations of
these modes dominate atomic displacements in stable epitaxial
phases even when other modes show more unstable eigenvalues
in the high-symmetry reference structures. While the atomic
displacements of SrTiO3 can almost entirely be decomposed
into contributions from these nine dominant displacement
modes, those obtained for CaTiO3 and SrHfO3 also contain
significant contributions from additional predominantly A-site
displacement modes. This difference between SrTiO3 and the
other two compounds is driven by A-site bonding preference.
The main effect of these additional modes is an antipolar A-site
shift that significantly lowers the strain energies of the epitaxial
phases by optimizing the coordination geometry of the A-site
cation.
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