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Finite-size effects in thermodynamics: Negative compressibility
and global instability in two-phase systems
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We have measured the equilibrium melting pressure of helium-4 as a function of the crystal size. Negative
compressibility of a liquid with an inclusion of solid seed is predicted theoretically and verified experimentally
with helium-4 crystal-superfluid system at 0.15 K. This two-phase system is shown to be stable if the crystal size
is large enough, which is proven by the experiment. Crystal seeds that are too small spontaneously either melt
completely or grow to a large enough size.

DOI: 10.1103/PhysRevB.97.134101

I. INTRODUCTION

Positivity of the compressibility, i.e., an increase of the
internal pressure of a body as a result of a decrease of
its volume, is intuitively obvious and is proved in the first
chapters of textbooks on thermodynamics [1]. The classical
proof of the positivity of the compressibility, however, does
not account for energy of interfaces which are present if the
system consists of more than one phase. The importance of the
surface energy becomes nonetheless obvious if one considers a
phase of smaller and smaller size R in which the energy density
(that is the internal pressure) α/R diverges (α is the surface
tension). We will show below that the presence of a piece of
one phase, e.g., solid, merged in the bulk of another phase,
e.g., liquid, results in several unusual effects such as negative
compressibility of the whole system and global instability of
such two-phase system.

The experimental observation of the finite-size effects in
usual systems is quite problematic because of an extremely
long relaxation time needed for thermodynamic equilibrium
to settle down. To exemplify, the relaxation time of a cubic
centimeter size water-ice system is about 1011 s ∼ 3000 years
[2]. The reasons for such a long relaxation rate are the large
latent heat of crystallization/melting and weakness of the
capillary/gravity forces, which drive the system to equilibrium.
The latent heat can be reduced by decreasing temperature, and
helium is the only substance which exists in a liquid phase
down to absolute zero: the equilibrium melting pressure P0

amounts 25.3 bar for helium-4 and 34.4 bar for helium-3. At
the same time, at low enough temperatures liquid phase of
helium is superfluid, which provides extremely fast transport
of heat and mass. Thus, helium presents a unique system where
the conditions for phase equilibrium can be reached and tested
experimentally.

In this work, we present a full theoretical description of the
two-phase system including mechanical and thermodynamic
equilibrium with finite surface energy and deduce the con-
ditions for negative compressibility and its stability regime.
We also describe an experimental observation of negative
compressibility in the system consisting of liquid and solid
helium-4 at 0.15 K.

II. COMPRESSIBILITY OF TWO-PHASE SYSTEM

Without loss of generality, we may consider a small seed
of solid merged into liquid. For simplicity, we neglect the
anisotropy of solid as well as the gravity (the latter assumption
is always valid if the size R of the seed is smaller than the cap-
illary length which is about 1 mm for the solid-liquid interface
of helium). In equilibrium, the solid forms a sphere with radius
R surrounded by the liquid. For the finite curvature of the solid
surface, the pressure in the liquid, PL, and in the solid, PS , are
shifted up with respect to the equilibrium melting pressure for
a flat surface, P0, to satisfy the conditions of force balance
at the interface, PS = PL + 2α/R, and the thermodynamic
equilibrium, μS(PS) = μS(P0) + (PS − P0)/ρS = μL(PL) =
μL(P0) + (PL − P0)/ρL (μ is the chemical potential per unit
mass) [3]. We assume that the contributions from the entropy
and temperature variations are negligible, which is the case for
low enough temperatures. From the above equations we find
the relation between the equilibrium pressure in the liquid and
the size of the solid seed, PL(R) = P0 + 2αρL/[R(ρS − ρL)].

Suppose that the total volume V of the considered two-
phase system increases by an amount δV at fixed mass. This
will result in the change δR of the radius of the solid and in
the corresponding change δPL of the pressure in the liquid,

δPL = −2
αρL

R2(ρS − ρL)
δR + 2

α

R

ρSδρL − ρLδρS

(ρS − ρL)2
. (1)

Change of the pressure leads to the change of the densities
of both phases according to compressibilities βL, βS ,

δρL

ρL

= βLδPL, (2)

δρS

ρS

= βS

(
δPL − 2

α

R2
δR

)
. (3)

The pressures and densities change due to the total volume
change and due to partial melting of the solid,

δρL

ρL

= δML

ML

− δVL

VL

, (4)

δρS

ρS

= −δML

MS

− δV

VS

+ δVL

VS

, (5)
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TABLE I. Comparison of the product of the surface tension and the compressibility, αβ, in different systems with the theoretical estimation,
a/6 (see text). β is given for denser phase.

System α [erg/cm2] β [cm3/erg] α × β [Å] a/6 [Å]

Water liquid-vapour, NC 70 4.4× 10−11 0.31 0.52
Methanol liquid-vapour, NC 20 1.0× 10−10 0.20 0.68
Mercury liquid-vapour, NC 500 3.2× 10−12 0.16 0.48
Helium-4 solid-liquid T < 2 K 0.2 5.5× 10−9 0.11 0.52

where we have employed δML = −δMS and δVS =
δV − δVL.

The geometrical relation
δR

R
= 1

3

δVS

VS

= 1

3

δV

VS

− 1

3

δVL

VS

(6)

closes the system of Eqs. (1)–(6) with respect to the
six unknown increments δR, δPL, δρL, δρS , δML, and
δVL. Finally, we obtain the sought-for compressibility β ≡
−(1/V )(∂V/∂P ) of the system

β = − 1

αρ2
LV (2�ρSL − 4αρSβS/R)

×R
[
VS(3�ρSL−2αβSρS/R)

(
�ρ2

SL−2αρSρL�βLS/R
)

− 2αρL(�ρSL − 2αβSρS/R){VSβSρS + VLβLρL}],
(7)

where �ρSL = ρS − ρL and �βLS = βL − βS .
Each round bracket contains two competing terms corre-

sponding to two effects of the volume increase: (i) the increase
of the pressure due to the increase of curvature of the solid seed,
and (ii) the decrease of the pressure due to compressibilities of
both phases. The compressibility −(1/V )(∂V/∂P ) is negative
if the first effect is stronger than the latter, which occurs
if the radius R of the solid is large. The crossover radius
Rcr ∼ (ρ/�ρ)αβ can be estimated as follows. The internal
pressure of a body is of the order of 3ε/a3, assuming 6 nearest
neighbors, where a is the interatomic distance and ε is the
characteristic interaction between neighboring particles. The
compressibility β is thus of the order of −(1/V )∂V/∂P =
−(3/a)/(∂P/∂a) = (1/3)a3/ε. The surface tension α is about
(1/2)ε/a2, and the product α × β is therefore of the order
of a/6. To illustrate the validity of this estimation we list
in Table I the corresponding measured values for several
substances. As can be seen, the product α × β indeed by the
order of magnitude smaller than the interatomic distance a,
which ensures that R � αβ, and that the compressibility of
the two-phase system is always negative:

β ≡ − 1

V

∂V

∂P
= −3R

2α

(
�ρSL

ρL

)2
VS

V
. (8)

This conclusion remains valid also for system where
the lighter phase (gas bubble) is surrounded by the heavier
one (liquid). In this case the shift of the equilibrium pressure
due to finite R is negative [see Eq. (1)], but increase of the
volume leads to evaporation, i.e., to the increase of the radius,
and the change in pressure is again positive.

Note also that the compressibility Eq. (8) goes to zero if
R → 0, meaning that the bulk modulus diverges. However,
we will see later that too small crystals are unstable.

III. STABILITY OF TWO-PHASE SYSTEM

In the following we consider a stability of the two-phase
system, i.e., sustainability with respect to a small change of
the radius R of the solid. The change δR of the radius results
in the change of pressures δPS in the solid and δPL in the
liquid which are connected by the mechanical force balance,
δPS = δPL − (2α/R2)δR. The condition of the conservation
of mass �ρSLδVL = VSδρS + (V − VS)δρL gives

δPL = −4πR[R�ρSL − (2/3)αβSρS]

[VβL + VS(βsρs − βLρL)]
δR, (9)

and the corresponding change of chemical potential difference
between the phases is

δμL − δμS

= δPL

ρL

− δPS

ρS

= �ρSL

ρSρL

+ 2α

ρSR2
δR

=
(

−4πR[R�ρSL − (2/3)αβSρS]

[VβL + VS(βsρs − βLρL)]
+ 2α

ρSR2

)
δR. (10)

As shown in Sec. I, the ratio αβ/R is always much smaller
than unity, and, with the assumption VS � V , the exact
Eq. (10) simplifies to

R2 ∂�μLS

∂R
= 2α

ρS

− 3�ρSLR

βLρL

VS

V
. (11)

The derivative ∂�μLS/∂R is positive if the volume VS

of the solid is relatively small. This means global instability
of the solid seed: a random decrease of its size results in
the undersaturation �μLS < 0, and the crystal will continue
melting and disappears completely. In the opposite case of
small increase of the size, �μLS > 0, and the crystal will
continue growing until its size reaches the critical value Rc =
(ρL/�ρSL)1/2(αβV/2π )1/4 at which the derivative Eq. (11)
changes sign to negative, and the system becomes stable. For
the solid-liquid helium-4 sample of 1 cm size, the critical radius
Rc is about 0.1 mm.

Finally, let us consider the conditions for homogeneous
nucleation of a solid in the case of a finite-size sample.
In the infinite liquid the critical radius for 3D-nucleation
is determined by the competition between the surface en-
ergy 4πR2α and the oversaturation (4/3)πR3(�μL − �μS):
R3D = (2α/�PL)(ρL/�ρSL) [1]. If the volume V of the liquid
is finite, one should account for the compressibility of the
liquid. After the nucleation of a solid seed with radius R, the
chemical potential difference between liquid and solid phases
becomes

μL − μS = �ρSL

ρSρL

�PL + �ρSL

ρSρL

δPL − 2α

ρSR
, (12)
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FIG. 1. Oversaturation μL − μS after the nucleation of a crystal
of size R, Eq. (14). If the initial oversaturation (�ρSL/ρSρL)�PL is
positive and the volume is infinite then the crystal grows to an infinite
size (upper, thin solid curve). Accounting for the finite total volume
V shifts the critical radius R3D of the homogeneous 3D nucleation to
a larger value R1 and sets the maximum size of the crystal R2 (thick
solid curve). Decreasing the initial oversaturation brings R1 and R2

closer together until they coincide at the critical radius R = Rc(V ),
which is the smallest possible stable size of the solid seed (lowest,
dashed curve). See text for more details.

where �PL = P 0
L − P0 is the initial oversaturation of the

liquid, and δPL = PL(R) − P 0
L is the change of the pressure

in the liquid due to the formation of the solid seed. The change
δPL = PL(R) − P 0

L is found from the mass conservation
relation, ρLδVL + VLδρL + ρSδVS = 0:

δPL = −4πR3�ρSL

VβLρL

. (13)

By substituting Eq. (13) into Eq. (12) we find the chemical
potential difference between phases after the nucleation,

μL − μS = �ρSL

ρSρL

�PL − 4

3

πR3�ρ2
SL

VβLρSρ
2
L

− 2α

ρSR
. (14)

Figure 1 displays a sketch of the dependence in Eq. (14). The
finiteness of the volume V shifts the critical radius for the 3D
nucleation R3D to a larger value R1. This radius, R1, however,
corresponds to unstable configuration: it will either melt or
grow further; but in contrast to the infinite liquid where the seed
grows infinitely large (upper curve), there is finite radius R2

at which the configuration is stable. The decrease of the initial
oversaturation �PL brings R1 and R2 closer together, and
at �PL,c = (8/3)(2πα3ρ2

L/βL�ρ2
SLV )1/4 both radii coincide

with the critical radius of global instability Rc derived above,
R1,max = R2,min = Rc = (ρ2

LαβV/2π�ρ2
SL)1/4 ≈ 0.1 mm for

V ∼ 1 cm3. The corresponding shift of the equilibrium melting
pressure amounts to ≈0.5 mbar, and no crystal can be created
at lower overpressures. This conclusion agrees very well with
all available measurements data of the overpressure needed to
nucleate a crystal. For example, in the experiments by Ruutu
et al. in Helsinki [4,5] the nucleation occurred at overpressures
2.8 … 3.5 mbar, while in the 3He crystal experiments by
Tsepelin et al. [6] at 2.5 mbar, and in the experiments in
Lancaster at 2 … 3 mbar [7]; in this work, we have observed
3 . . . 15 mbar.

IV. THERMAL EFFECTS AND RELAXATION TIME

Growing or melting of a solid is associated with the
release of the latent heat L on the interface. Due to the
finite thermal conductivity κ and due to the Kapitza thermal
boundary resistance RK there will be thermal gradients in the
system, δTκ = vLρSR/κ and δTK = vLρSRK , respectively.
A typical velocity v of the helium solid-liquid interface in
our experiments was about 10−5 m/s, and the latent heat
at the temperature of the experiment, of 0.15 K, is L =
3.6 mJ/kg [8]. Using κ = 3 × 103 W/(m2 K) [9] we find
δTκ ≈ 2 × 10−11 K, which is negligible. The Kapitza resis-
tance RK = 0.78 J/(m2sK) [10] gives δTK ≈ 10−5 K. The
temperature change δTK contributes a term SδTK to the varia-
tion �μ of the chemical potential, which should be compared
to the term δP/ρ due to the variation of the pressure. Thus,
we find thermal corrections to the pressure in our experiments
δpT = ρSδTK ≈ 4 × 10−4 μbar, which are negligible.

The relaxation time of the system can be estimated as τ =
R2ρS/(αk) [2], where k ≡ v/�μ is the growth coefficient of
the solid-liquid interface. In the absence of thermal effects the
growth coefficient is limited by scattering of phonons on the
interface, k = 33/T 4 sK4/m [11–13], and τ is 0.1 s for a
helium sample of radius R ≈ 1 cm at 0.15 K. We note again that
helium at low temperatures presents a unique system where
the relaxation is fast enough to carry out measurements on
equilibrium crystal shapes [14].

V. EXPERIMENT

We have measured the pressure in superfluid 4He in con-
tact with solid helium during slow melting at 0.15 K. The
experimental cell is described elsewhere [15]. The capacitive
mechanical pressure gauge of Straty-Adams type [16] had a
sensitivity of 44 pF/bar allowing measurements with the accu-
racy of a few microbars in a second using an Andeen-Hagerling
2700A capacitance bridge. Figure 2 shows the pressure during
slow melting of the solid sample with the constant extraction
rate V̇ = −2.9 μmol/s. Zero pressure corresponds to the
equilibrium melting pressure P0 for the flat interface. The solid
curve represents PL(R) − P0 = 2αρL/[R(t)�ρSL] assuming
spherical shape of the solid with the contact angle of 135◦
[17–20] at the bottom of the cell and with the initial radius
of 3.9 mm. Here we neglect the gravity which has two effects
on the measured pressure in the liquid. First, gravity flattens
crystals that are larger than the capillary length λ ≈ 1 mm.
Second, when the crystal becomes smaller, the hydrostatic
pressure difference between the crystal surface and the pressure
gauge increases. However, these effects are small: when the
crystal is large, R � λ, its height almost does not change with
its volume, and the curvature on top is nearly zero; when the
crystal is small, R � λ, gravity effects are weak compared to
the Laplace pressure. Indeed, one can see from Fig. 2 that the
simple model of spherical crystal fits our experimental data
very well.

The observed system of superfluid-solid helium-4 shows
thus negative compressibility: its pressure increases when
the number of particles decreases. No spontaneous instability
shows up: the pressure increases smoothly without any unusual
noise or jumps. In Sec. II we have predicted that the minimum
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FIG. 2. Pressure in the cell containing superfluid and solid
helium-4 during slow unloading with the rate V̇ = −2.9 μmol/s.
The unloading begins at t = 0 and stops at t = 410 s. During
the melting process the size of the crystal decreases which leads
to the increase of the melting pressure. The system thus shows
negative compressibility. Solid curve represents the theoretical depen-
dence PL(R) − P0 = 2αρL/[R(t)�ρSL], assuming there is no gravity.
See text for more details.

stable radius of the solid Rc = 0.1 mm and that corresponding
shift of the melting pressure PL(Rc) − P0 = 500 μbar. In the
experiment, however, we could not stabilize radii smaller than

0.5 mm with pressure shifts higher than 80 μbar because
pressure changes became too fast and we had to stop the
melting process in order not to lose the crystal. After the helium
extraction was stopped, the pressure in the cell dropped because
cold helium gas in the filling line warmed, and the crystal grew
back slightly due to backflow of helium from the filling line to
the cell. After this process the crystal and the pressure in the
cell were stable.

VI. CONCLUSIONS

We have shown theoretically that any two-phase system of
finite size has negative compressibility, i.e., its internal pressure
increases when its volume increases. This effect is inherently
originates with the surface tension of the interface between
phases, which shifts the co-existence pressure. Moreover, if
the size of one of the phases is too small, the phase is unstable
and spontaneously melts completely or grows to a large enough
size. We have demonstrated the negative compressibility in the
system consisting of solid and liquid helium at 0.15 K where
the relaxation time is short enough. We have observed the shift
of the equilibrium melting pressure up to 80 μbar due to the
melting of solid.
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