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Surface waves on multilayer hyperbolic metamaterials:
Operator approach to effective medium approximation
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In this paper, we elaborate on the operator effective medium approximation developed recently in Popov et al.
[Phys. Rev. B 94, 085428 (2016)] to get insight into the surface polariton excitation at the interface of a multilayer
hyperbolic metamaterial (HMM). In particular, we find that HMMs with bilayer unit cells support the TE- and
TM-polarized surface waves beyond the Maxwell Garnett approximation due to the spatial dispersion interpreted
as effective magnetoelectric coupling. The latter is also responsible for the dependence of surface wave propagation
on the order of layers in the unit cell. Elimination of the magnetoelectric coupling in three-layer unit cells
complying with inversion symmetry restores the qualitative regularity of the Maxwell Garnett approximation, as
well as strongly suppresses the influence of the order of layers in the unit cell.
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I. INTRODUCTION

A surface wave is usually treated as an electromagnetic
wave localized near the interface between two different media,
with fields’ tails fading exponentially away from the interface.
Electromagnetic waves coupled to the surface dipole (e.g.,
plasma) excitations are called surface polaritons (SPs).

Surface polaritons attract a fair amount of interest because
of their prospects for applications. Since the electromagnetic
field of SPs is confined to a tiny region near the interface (on
a nanometer scale at optical frequencies), one can harness SPs
to control the fields on a deeply subwavelength scale. This
can lead to the beneficial miniaturization of photonic devices
and their performance (speed and energy supply) improvement
[1]. SPs on the interface of a sample and sharp metallic probe
(scanning plasmon near-field microscopy [2]) can be used
to overcome the diffraction limit imposed by conventional
optics. Surface polaritons have great potential in biological
sensing and label-free detection of chemicals [3,4]. They can
effectively assist with the control of radiation of quantum
emitters placed at the interface [5,6].

The history of surface electromagnetic waves dates back
to the Zenneck waves propagating along the plane interface
between dielectric and conducting surfaces at radio frequen-
cies and Wood’s (or grating) anomalies in optics [7,8]. The
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anomalies were consistently explained using the excitation of
surface polaritons on the flat interface between the air and
metal. Since in this case the surface electromagnetic waves are
coupled to the induced electron surface charges, they are called
surface plasmon polaritons (SPPs). In general, SPPs are the
eigenstates of the flat interface between semi-infinite dielectric
and metallic media. But there are other types of surface
polaritons (phonon, exciton, and Dyakonov’s polaritons) that
depend on the properties of adjacent media.

Unlike the SPPs that exist due to the opposite signs of
dielectric functions of the contiguous media [9], the Dyakonov
surface waves emerge due to different crystallographic
symmetries of media forming the interface [10]. Being excited
on the interface between isotropic dielectric and uniaxial
dielectric crystals with the optical axis in the plane of the
interface, these surface waves are allowed to propagate (exist)
only in certain directions.

Artificial periodic photonic structures provide one more
way to control properties of surface waves. They are commonly
called Tamm’s surface electromagnetic waves, with the name
borrowed from solid-state physics. Bloch surface waves exist
on the interface of the periodic structure when the adjacent
medium is a dielectric. The term “Bloch surface wave” can be
misleading as the word “Bloch” usually implies periodicity in
the direction of propagation. However, this term is widely used
by the community with respect to surface waves propagating
along the interface of a periodic structure [3,11,12].

One-dimensional multilayer structures are the simplest ar-
tificial electromagnetic materials with a well-developed theory
[13]. The interaction of multilayers with electromagnetic fields
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has been studied for more than two centuries, eventually
resulting in the creation of a number of optical devices, such
as antireflecting coatings, dielectric mirrors, polarizing beam-
splitters, filters, waveguides, etc. Layered structures once
again attracted a great deal of attention shortly after the concept
of indefinite and hyperbolic metamaterials (HMMs) was pro-
posed [14,15]. By definition, HMMs are the class of anisotropic
media possessing hyperboloidal isofrequency surfaces, which
can be implemented using alternating isotropic dielectric and
metal subwavelength layers. The promising applications of
HMMs are in the field of nano-optics: nanolithography [16],
subwavelength imaging [17–19], engineering of the Purcell
factor [20,21], etc.

The usage of multilayers in applications becomes more
visual if it is possible to replace a periodic composite with
the equivalent homogeneous medium, i.e., to homogenize the
multilayer. The Maxwell Garnett approximation is ordinarily
exploited for homogenization of deeply subwavelength layered
structures giving local effective material parameters. Although
the Maxwell Garnett approximation is appealing due to its sim-
plicity, it may fail in some special situations. In Refs. [22,23]
it was demonstrated that the Maxwell Garnett approach often
overestimates the Purcell factor used for engineering the
emitters’ lifetime. The Maxwell Garnett approximation also
contradicts theoretical [24,25] and experimental [26] research
on the behavior of periodic all-dielectric mutilayers with
deeply subwavelength unit cells near the critical angle of
the total internal reflection. The inadequacy of the Maxwell
Garnett approximation is explained by the presence of the
spatial dispersion in the multilayer [27], which is relevant to
light transmission near the critical angle as well [28].

Generalization of homogenization for periodic metamater-
ials developed in Ref. [29] was used in Ref. [30] with regard to
layered HMMs. This approach proposes the exact solution to
the problem and describes the system in terms of the effective
dielectric permittivity tensor alone. The latter assertion
implies that the magnetization currents are eliminated from
the constitutive equations [29], and the tangential components
of the magnetic field are discontinued across the interface
of the effective medium, which makes solving the boundary
problem more difficult. However, the exact solution for HMM
homogenization obtained in Ref. [30] is too cumbersome to
analyze in the closed form. Recently, Ref. [28] gave a different
perspective on the generalization of the homogenization
exploiting the operator technique. The operator approach to
the effective medium theory allows describing the structure in
terms of four material tensors: dielectric permittivity, magnetic
permeability, and two gyration pseudotensors. The material
tensors are written in the form of a series over small k0d, where
k0 is the vacuum wave number of the electromagnetic wave
and d is the period of the structure. The material parameters
up to (k0d)2 take into account spatial dispersion and can be
analyzed analytically.

In this paper we consider surface waves on the interface be-
tween the semi-infinite isotropic medium and periodic layered
metal-dielectric structure, as shown in Fig. 1. We deal with
subwavelength layered structures of two types: (i) one with a
bilayer unit cell (metal-dielectric and dielectric-metal) and (ii)
one with a three-layer unit cell possessing the center of inver-
sion (metal-dielectric-metal and dielectric-metal-dielectric).

FIG. 1. Sketch of the surface wave propagating on the interface
z = 0 between the semi-infinite dielectric (permittivity ε) and multi-
layer media.

We investigate the influence of spatial dispersion of HMMs
on propagation of surface waves in the above-mentioned
configurations of the unit cell. Using the operator effective
medium approximation we reveal the origin of different
branches of dispersion curves for TM- and TE-polarized
surface waves and derive the criterion to choose the unit-cell
structure which validates the Maxwell Garnett approximation.

This paper is organized as follows. In Sec. II, the structures
with the bilayer and three-layer unit cells are homogenized in
accordance with the operator approach. Wave impedances of
eigenwaves in the effective medium and Bloch waves in the
layered medium are discussed in Sec. III. The derivation of
dispersion equations and comparison of dispersion curves of
TM- and TE-polarized surface waves within the exact theory,
Maxwell Garnett approximation, and operator approach are
presented in Sec. IV. Section V concludes the paper.

II. UNIT-CELL-BASED HOMOGENIZATION

Since subwavelength stratified structures possess strong
spatial dispersion [24,27], we aim to reveal its influence on
surface electromagnetic states using the operator effective
medium approximation (OEMA) developed in Refs. [28,31].
The OEMA allows one to homogenize a planar multilayer
structure with an arbitrary unit cell. When the unit-cell
thickness d is small in comparison with wavelength λ, the
OEMA provides effective medium parameters in terms of
decomposition in (k0d). Here k0 = 2π/λ = ω/c is the vacuum
wave number, andω is the angular frequency. Time dependence
exp(−iωt) is assumed throughout the paper. The maximum
power of (k0d) kept in the effective medium parameter decom-
position defines the OEMA order.

Effective medium parameters within the Maxwell Garnett
approximation do not depend on the position of layers in a unit
cell, but the accurate solution indeed does. In this section we
show that the structure of the unit cell can be captured by the
operator effective medium approximation. We consider bilayer
and three-layer unit cells composing multilayer structures. The
bilayer unit cell is a couple of isotropic metallic and dielectric
slabs with permittivities εm and εd and thicknesses dm and dd ,
respectively. We distinguish two structures depending on the
order of layers, as in the insets of Figs. 2(a) and 2(b). The three-
layer unit cell has the inversion center and can be obtained from
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FIG. 2. Dispersion curves of surface polaritons on the semi-infinite multilayer with the bilayer unit cell: (a) metal fill fraction ρ = 0.2 and
upper dielectric layer in the unit cell, (b) ρ = 0.2 and upper metallic layer, (c) ρ = 0.6 and upper dielectric layer, and (d) ρ = 0.6 and upper
metallic layer. Effective dielectric permittivity ε|| is positive above the curve ε|| = 0. The magnetoelectric coupling coefficient is positive above
the orange dash-dotted curve αT M = 0 for (a) and (c) and below the curve for (b) and (d). Shaded areas represent propagation bands within the
second-order OEMA. Parameters: ε = 1, εd = 4, and ωp = 2πc/(4d).

the bilayer unit cell if half of the upper layer is replaced at the
bottom, as demonstrated in the insets of Figs. 3(a) and 3(b).
Again, two unit cells are possible depending on the order of
slabs.

Propagation of electromagnetic waves in the multilayer
structure can be described as in Appendix A. On the other
hand, the subwavelength layered structure can be replaced with
the homogeneous effective medium with permittivity ε̂eff and
permeability μ̂eff tensors and gyration pseudotensors α̂eff , β̂eff

[28]. The zeroth-order OEMA reproduces the Maxwell Garnett
approximation for any of the considered unit cells: the effective
medium is a nonmagnetic (μ̂eff = 1̂) and nongyrotropic (α̂eff =
β̂eff = 0̂) uniaxial crystal, with the dielectric permittivity tensor
being equal to

ε̂eff = ε
(0)
|| Î + ε

(0)
⊥ q ⊗ q,

ε
(0)
|| = ρεm + (1 − ρ)εd,

1

ε
(0)
⊥

= ρ

εm

+ 1 − ρ

εd

, (1)

where q is the unit vector orthogonal to the plane of layers
(see Fig. 1), q ⊗ q is the outer (tensor) product of vectors q
defined as (q ⊗ q)i,j = qiqj , Î = 1̂ − q ⊗ q is the projector
operator on the plane of layers, 1̂ is the three-dimensional
unit tensor, and ρ = dm/d is the fill fraction of material 1. In

the Maxwell Garnett approximation, structures depicted in the
insets of Figs. 2 and 3 are indistinguishable, being described
by the same permittivity tensor equation (1). However, as
demonstrated both theoretically and experimentally [24,26],
there is a nonvanishing difference in the electromagnetic
response depending on the geometry of the unit cells even
in the deep-subwavelength regime. This difference can be
successfully reproduced within the second-order OEMA [28].
Higher-order corrections are too cumbersome for analytical
analysis and have minor impact.

Nonlocal effective material parameters ε̂eff , μ̂eff , α̂eff , and
β̂eff [28] provide higher accuracy in comparison with the
Maxwell Garnett approach. The second-order OEMA in-
troduces only the second-order corrections to the Maxwell
Garnett permittivity and permeability tensors for both the
bilayer and three-layer unit cells as

ε
(2)
|| = ε

(0)
|| + δε

(2)
|| (b,ω), ε

(2)
⊥ = ε

(0)
⊥ + δε

(2)
⊥ (b,ω),

μ
(2)
|| = 1 + δμ

(2)
|| (b,ω), μ

(2)
⊥ = 1 + δμ

(2)
⊥ (b,ω), (2)

where δε
(2)
||,⊥(b,ω) and δμ

(2)
||,⊥(b,ω) are proportional to (k0d)2.

Explicit expressions for the corrections in the cases of two- and
three-layer unit cells can be found in Appendix B. Nonlocality
of the homogenized material is manifested as a dependence

FIG. 3. Dispersion curves of surface polaritons on a semi-infinite multilayer with the three-layer unit cell for different metal fill fractions
and orders of layers. The metal fill fraction is (a) and (b) ρ = 0.2 and (c) and (d) ρ = 0.6. Effective dielectric permittivity ε|| is positive above the
upper curve ε|| = 0. Shaded areas represent propagation bands within the second-order OEMA. Parameters: ε = 1, εd = 4, and ωp = 2πc/(4d).

125428-3



POPOV, LAVRINENKO, AND NOVITSKY PHYSICAL REVIEW B 97, 125428 (2018)

of the effective parameters on the normalized tangential wave
number b = kt/k0. In the context of surface waves, the length
of tangential wave vector kt = k0b defines the propagation
constant of surface waves (see Fig. 1).

Bilayer unit cells are also characterized by the gyration
pseudotensors [28]

α̂eff = −β̂T
eff = iαTE

a ⊗ b
b2

+ iαTM
b ⊗ a

b2
, (3)

where a = b × q and effective magnetoelectric coupling
constants

αTE = k0d

2
σ, αTM = k0d

2
σf (b), (4)

f (b) = b2

εr

− 1, εr = (
ε−1
m + ε−1

d

)−1
. (5)

The parameter σ is defined by the sequence of layers, being
equal to

σ = ρ(1 − ρ)(εm − εd ) < 0 (6)

when the top layer is the dielectric one [as in the inset of
Fig. 2(a)] and

σ = ρ(1 − ρ)(εd − εm) > 0 (7)

when the metallic layer is the topmost one [see the inset of
Fig. 2(b)]. Thus, when one reverses the order of slabs in the
stack (m ↔ d), the parameter σ changes its sign and so do
α̂eff and β̂eff . There are two mechanisms of spatial dispersion
according to Eq. (4), first, the gyrotropy as such and, second,
the explicit dependence of αTM (but not αTE) on the tangential
wave vector through the function f (b).

Three-layer unit cells have an inversion center that prohibits
the existence of the material’s gyrotropy (α̂eff = β̂eff = 0).

In the following section we will study the influence of the
unit-cell structure (and therefore magnetoelectric coupling) on
the propagation of the surface waves.

III. ANALYSIS OF SURFACE POLARITON DISPERSION

Let us now consider surface modes localized at the interface
between two semi-infinite media. The first medium is an
isotropic dielectric of permittivity ε. The second medium is a
multilayer HMM with permittivities of dielectric εd and metal
εm(ω) = 1 − (ωp/ω)2, where ωp is the plasma frequency.
Electromagnetic waves localized at the interface z = 0 be-
tween semi-infinite adjacent media can be characterized by
the wave impedance defined by q × Em+

t = Z+
mHm+

t for z > 0
and q × Em−

t = Z−
mHm−

t for z < 0. Here m designates TE and
TM polarizations, Et and Ht are the tangential components
of electric and magnetic fields, respectively, at the interface
z = 0, and Z is the wave impedance. Applying the conditions
of continuity of tangential fields, it can be concluded that the
surface mode exists only if the wave impedances of evanescent
eigenwaves in both neighboring media coincide, i.e.,

Z−
m = Z+

m, (8)

where Z− and Z+ are the impedances of waves in dielectric
(z < 0) and multilayer/effective media (z > 0), respectively

(Fig. 1). A complete description of the propagation character-
istics of the surface waves can be extracted from the dispersion
equation (8).

Replacing the HMM with a homogeneous spatially dis-
persive medium, the dispersion equations for TM- and TE-
polarized surface modes take the form (see Appendix C for
details)

ε|| + ε

κ
αTM = − ε

κ
κTM, (9)

αTE

κTE
= −1 − μ||κ

κTE
, (10)

respectively, whereκ > 0 andκT E,T M > 0 are attenuation con-
stants corresponding to the waves in the dielectric and effective
medium regions, respectively. The attenuation constants are
defined as kz = iκk0 (kz is the longitudinal wave number). For
instance, within the Maxwell Garnett approximation one has
to set αTE = αTM = 0, μ|| = μ⊥ = 1, ε|| = ε

(0)
|| , and ε⊥ = ε

(0)
⊥ .

For nonhomogenized periodic multilayers the TE- and
TM-polarized surface states follow from Eq. (8), where the
impedances of Bloch waves (D4) and (D7) can be found in
Appendix D.

A. TM polarization

We start with the analysis of dispersion equation (9) for
TM-polarized surface modes on the interface between the ho-
mogenized medium and dielectric ε. This dispersion equation
obviously has a solution only if the signs of the left- and
right-hand sides coincide. It is important that the peculiar
properties of the surface wave dispersion equation related to the
spatial dispersion (such as nonzero magnetoelectric coupling
αTM) are missing in the Maxwell Garnett approximation.
αTM plays a dramatic role in the surface wave phenomena
primarily because it is normally much larger than the effective
permittivity and permeability corrections. Parameter αTM �= 0
is realized for bilayer-cell multilayers. In this case the Maxwell
Garnett approximation is unable to describe the surface waves
in a proper way, as demonstrated in Fig. 2. On the other
hand, the gyrotropic response of the three-layer unit cells with
the inversion center is absent (αTM = 0), and therefore, the
Maxwell Garnett approach is in good agreement with the exact
solution, as seen in Fig. 3. The second-order OEMA almost per-
fectly describes dispersion of surface polaritons independent
of unit-cell structure even when k0d is not much less than unity.
Clearly, the breakdown of the Maxwell Garnett approximation
originates from the strong spatial dispersion represented here
by the magnetoelectric coupling. It is necessary to remember
that description of the spatial dispersion is not unique, and simi-
lar results could be obtained by means of the nonsymmetric per-
mittivity tensor instead of the magnetoelectric coupling [28].

Let us now discuss the properties of surface wave dispersion
curves in detail, paying attention to the order of metallic and
dielectric slabs and the dependence on the metal fill fraction
ρ. For a thick dielectric layer on top of a multilayer [Fig. 2(a)]
the effective permittivity is metallic (ε|| < 0), providing the
coupling of electromagnetic waves to plasmons. When the
order of the metal and dielectric is reversed [see Fig. 2(b)], the
low-kt branch for surface polaritons reaches the propagation
band (shaded area), terminates, and recrudesces after the break
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FIG. 4. Close-up of the dispersion diagram in Fig. 2(b) in the
vicinity of the break of exact and OEMA dispersion curves.

as a high-kt branch. Notice that for ε|| > 0 the existence
of surface polaritons can be explained only by the spatial
dispersion or, in our interpretation, negative magnetoelectric
coupling coefficient αTM (see Fig. 4).

The high-kt branch squeezes between the allowed propaga-
tion band and the curve ε|| = 0 and exists owing to the proper
sign of αTM that is not realized in Fig. 2(a).

Now we turn to the influence of the metal fill fraction. In
the limiting case ρ → 1 the surface modes on the multilayer
interface change to the surface plasmon polaritons on the
metal-dielectric interface. The Maxwell Garnett approach
provides a reasonable approximation for the case with an upper
dielectric layer [see Figs. 2(a) and 2(c)], revealing behavior
similar to that of surface waves on the interface of a uniaxial
crystal [9,32,33]. The high-kt branch noticed in Fig. 2(b) ceases
to exist when ρ > 0.5 and αTM < 0, as in Fig. 2(d).

The significant role of magnetoelectric coupling is more
conspicuous for the surface polaritons on the three-layer-cell
multilayer shown in the insets of Figs. 3(a) and 3(b). Due to the
inversion symmetry of the cell, or, in other words, αTM = 0,
there is no qualitative change in the surface polariton dispersion
depending on the order of layers [see Fig. 3(a) vs Fig. 3(b)
and Fig. 3(c) vs Fig. 3(d)]. Moreover, the Maxwell Garnett
approximation reproduces the exact dispersion curves quite
well, and the second-order OEMA quantitatively improves
only the performance of the zeroth order. Thus, to get rid of
the noticeable influence of the spatial dispersion on surface
polariton dispersion, one needs to exploit the unit cells with
the inversion center. Then the interface of the multilayer HMM
sustains the surface modes regardless of the order of the layers,

and the predictions of the Maxwell Garnett approximation are
fulfilled for the subwavelength metal-dielectric multilayers.

In general, the OEMA of the second-order well describes
the surface wave dispersion curves that appear in the band
gap between the first and second propagation bands in the
low-frequency range k0d < 1. Varying the material parameters
has no dramatic effect. Dielectrics of a high refractive index
squeeze the band structure, keeping the dispersion curves of
surface waves within the considered band gap. On the contrary,
extremely low index dielectrics such as epsilon-near-zero
(ENZ) materials stretch the band structure. In this case only the
band gap right below the first propagation band gets into the
low-frequency range k0d < 1. Still, the second-order OEMA
perfectly describes the structure with the three-layer unit cell.
However, the case of the bilayer unit cell requires careful anal-
ysis taking into account the interplay between αTM, εd , and ε.

The strong influence of the order of layers for bilayer unit
cells was revealed in Ref. [34]. However, the peculiarities of the
structures composed of three-layer unit cells and the ability of
the Maxwell Garnett approximation to describe them well have
not been presented in the literature to the best of our knowledge.

B. TE polarization

Although TE-polarized surface modes do not exist on the
interfaces of homogeneous crystals when the optical axis
is normal to the interface, they can be excited on photonic
crystals, whose unit cell size is compared with the operating
wavelength (one-dimensional photonic crystals are discussed
in Refs. [34–36]). TE-polarized surface waves can also be
excited on grounded thin dielectric slabs with large dielectric
permittivity [37].

Homogenizing the subwavelength structure within the
Maxwell Garnett approximation, we get an effective medium
incapable of supporting propagation of TE-polarized surface
waves, although the exact solution predicts them. TE-polarized
surface waves can be explained in the second-order OEMA
governed by Eq. (10). Since κ and κTE are certainly positive,
the effective parameters αTE and μ|| should be responsible for
excitation of the TE surface waves. But the effective magnetic
response of the multilayers specified by Eqs. (2) is weak, and
as demonstrated by Fig. 5, μ|| is always positive. Thus, in
spite of the nontrivial magnetic response of the multilayer
HMMs, it cannot lead to the existence of TE surface modes
on its own. The only reason for the TE-polarized surface
waves is the gyrotropic response of multilayers αTE < 0. This
also means that TE surface waves cannot be supported by the

0.0
0.0

0.0
0.0

0.0
0.0

FIG. 5. μ|| − 1 vs normalized frequency k0d and metal fill fraction ρ for (a) the bilayer unit cell and the three-layer unit cells with the
topmost (b) dielectric and (c) metallic layers. Parameters: εd = 4 and ωp = 2πc/(4d).
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FIG. 6. Dispersion curves of TE-polarized surface modes on the
semi-infinite HMM with the bilayer unit cell (topmost dielectric layer)
plotted for different metal fill fractions. Parameters: ε = 1, εd = 4,
and ωp = 2πc/(4d).

three-layer-cell HMMs (αTE = 0), in full accordance with the
Maxwell Garnett approximation.

In contrast to the case of TM polarization, the sign of αTE is
determined only by the order of layers in the cell [parameter σ

in Eq. (4)]. Therefore, only the bilayer-cell structure with the
dielectric layer on top of the multilayer supports TE-polarized
surface states, while the dispersion curves behave similarly
for any metal fill fraction, as shown in Fig. 6. The agreement
of the second-order OEMA and exact calculations is almost
perfect. Dispersion curves of surface modes terminate when
approaching the edge of the first propagation band.

Varying the dielectric permittivity εd , we keep good agree-
ment between the second-order OEMA and exact dispersion
curves within the low-frequency range k0d < 1. The increase
in εd does not introduce qualitative changes to the dispersion
curves of TE-polarized surface waves. In another extreme case
of the ENZ dielectric, the TE surface waves cease to exist
because the system effectively behaves like a metal.

Such a counterintuitive existence of TE-polarized surface
waves can be explained in terms of OEMA. Since there is
only a tangential electric field, the surface charges (as in the
case of TM polarization) cannot be induced. However, the
magnetoelectric coupling coefficient leads to the existence of
the effective tangential magnetization surface current induced
in parallel to the electric field, resulting in the discontinuity
of the tangential component of the magnetic field across the
interface. Thus, TE-polarized surface electromagnetic waves
are coupled to the effective surface magnetization currents.
Since the currents are not real, TE-polarized surface waves
exist without surface excitations.

IV. CONCLUSION

In this paper, we have employed the operator effective
medium approximation to analyze the surface wave propaga-

tion on the flat interface between a semi-infinite dielectric and
layered hyperbolic metamaterial. We have considered HMM
unit cells with (three-layered cell) and without (bilayered
cell) an inversion center and studied the influence of the
layer order. The surface wave propagation was determined
by the dispersion curves, which were obtained within the
Maxwell Garnett approximation, second-order OEMA, and
exact solution of Maxwell’s equations. A direct comparison
of the dispersion curves reveals the constraints of the Maxwell
Garnett approach and explains the reasons for the peculiarities
of the surface wave dispersion.

Within the Maxwell Garnett approximation the order of
materials in a unit cell does not matter; only the filling fraction
of the constituent materials matters. However, the rigorous
calculation manifests a strong dependence of the surface mode
propagation on the order of layers if the inversion symmetry is
missing (bilayer unit cell). A pronounced demonstration of the
effect of the layer ordering comes out when metallic layers are
at the edge of the multilayer interface [see Figs. 2(b) and 2(d)].
If ρ is small enough, the structure supports surface polaritons
with high tangential wave numbers kt . From the OEMA, it
follows that such behavior is observed owing to the spatial
dispersion (effective magnetoelectric coupling) absent within
the Maxwell Garnett approximation. Magnetoelectric coupling
is also responsible for the sensitivity of the SP excitation with
respect to the order of layers and existence of the TE-polarized
surface waves shown in Fig. 6.

Having an inversion center, a three-layer-cell structure
has no gyrotropic response. Therefore, the dispersion curves
within the Maxwell Garnett approximation resemble those
extracted from the accurate calculation, while the second-order
OEMA serves only for the quantitative corrections. Thus, the
Maxwell Garnett approximation can be reasonably exploited
for multilayers with inversion-symmetric unit cells, e.g., three-
layer cells.

We emphasize that the predictions of the second-order
OEMA agree very well with the exact calculations for both
transmission and reflection and surface wave propagation.
Transmission and reflection require the equality of evolution
operators exp(ik0zM̂) of a unit cell and the corresponding ef-
fective medium slab (see Appendix B), as discussed in detail in
Ref. [28]. The surface wave dispersion equations can be written
as the equality of wave impedances (8), where the impedances
for the multilayer and effective medium are expressed by
means of matrices M̂ . The surface impedances for semi-infinite
homogenized media take into account only the waves leaving
the interface (Appendix C). That is why they are simpler
than the impedances of periodic structures capturing multiple
reflections of plane waves from the interfaces within the cell
(Appendix D). Thus, the OEMA comprehensively explains the
origin of the TM and TE surface polariton peculiarities on
the HMM interface by means of the effective magnetoelectric
coupling. Our results could be useful for various applications,
including sensors and near-field microscopy.
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APPENDIX A: WAVES IN MULTILAYERED
BIANISOTROPIC MEDIA

Let us consider the general case of a monochromatic
electromagnetic wave (angular frequency ω) propagating in
a planar bianisotropic slab. Due to the translation invariance
in the plane (x, y) the electric field (similarly magnetic field
and inductions) can be written as E(r) = E(z) exp(ik0b · r),
where b = kt /k0 is the normalized tangential wave vector
(see Fig. 1). The bianisotropic medium is characterized by
dielectric permittivity tensor ε̂, magnetic permeability tensor
μ̂, and gyration pseudotensors α̂ and β̂ [38,39] according to
the constitutive equations

D = ε̂(ω)E + α̂(ω)H, B = β̂(ω)E + μ̂(ω)H, (A1)

where E, H, D, and B are, respectively, the strengths of
the electric and magnetic fields, electric displacement, and
magnetic induction. Generally speaking, the layered medium
should be local only in the z direction but can possess spatial
dispersion in the plane of layers. This means that the material
parameters depend on the normalized tangential wave vector
b, e.g., as ε(ω,b).

Maxwell’s equations can be reduced to the four first-
order ordinary differential equations for the tangential field
components W = (Ht ,q × E)T , where T denotes transpose
operation, Ht = ÎH = (Hx,Hy)T , and q × E = (−Ey,Ex)T .
Thus, the system of four differential equations reads

dW(z)

dz
= ik0M̂W(z) = ik0

(
A B

C D

)
W(z). (A2)

Here 4 × 4 matrix M̂ is a block matrix [40], whose 2 × 2 blocks
Â, B̂, Ĉ, and D̂ in the case of bianisotropic media take the form

Â = q×α̂Î + q×ε̂q ⊗ v3 + (b + q×α̂q) ⊗ v1,

B̂ = −q×ε̂q× + q×ε̂q ⊗ q×v4 + (b + q×α̂q) ⊗ q×v2,

Ĉ = Î μ̂Î + Î μ̂q ⊗ v1 + (−a + Î β̂q) ⊗ v3,

D̂ = −Î β̂q× + Î μ̂q ⊗ q×v2 + (−a + Î β̂q) ⊗ q×v4. (A3)

We introduce the antisymmetric tensor q× dual to the unit
vector q [40]. In the index notation it can be written by means
of the antisymmetric Levi-Civita tensor εijk as (q×)ik = εijkqj

(the convention of summation over repeated indices from 1
to 3 is assumed). Vectors a/b = (b × q)/b, b/b, and q form
the Cartesian basis, as shown in Fig. 1. The other quantities in
Eq. (A3) are defined as

v1 = δq(βqqα̂Î − εqqμ̂Î − βqa),

v2 = δq(βqqε̂Î − εqqβ̂Î − εqa),

v3 = δq(αqqμ̂Î − μqqα̂Î + μqa),

v4 = δq(αqqβ̂Î − μqqε̂I + αqa),

δq = (εqμq − αqβq)−1, εq = qε̂q,

μq = qμ̂q, αq = qα̂q, βq = qβ̂q.

The fundamental solution of Eq. (A2) for a homogeneous
bianisotropic medium with constant matrix M̂ is the matrix

FIG. 7. Schematics of investigated unit cells. (a) Regular and
(b) reversed order of layers in bilayer unit cells. (c) Regular and
(d) reversed order of three-layer unit cells with the inversion center.

exponential [40,41]

W(z) = exp[ik0zM̂]W(0), (A4)

where W(0) is the initial field at z = 0. Owing to the continuity
of the tangential fields the output field from the first slab W is
the input field for the second one, the initial field for the third
slab is produced at the output of the second slab, and so on.
Thus, the result of transmission through the stack of N slabs
has the form

W(d) =
N∏

j=1

exp[ik0djM̂j ]W(0) = P̂ (d)W(0), (A5)

where d = ∑N
j=1 dj is the thickness of the stack and P̂ (d) is a

spatial evolution operator [42]. It should be noted that the order
of multiplication of noncommuting exponentials is important.
For instance, the evolution of the field W(0) passing from top
to bottom through the unit cell depicted in Fig. 7(a) is given
by the formula

W(d) = exp[ik0d2M̂2] exp[ik0d1M̂1]W(0). (A6)

Here M̂1 and M̂2 are the M matrices (A2) and (A3) of isotropic
media characterized by permittivities ε1 and ε2, respectively.
The order of exponentials changes for the unit cell in Fig. 7(b).

APPENDIX B: HOMOGENIZATION USING OEMA

The idea of the operator effective medium approximation is
based on equating the evolution operators of a layered medium
and homogenized effective medium. The latter should be
characterized by the bianisotropic response in the most general
case. Since the evolution operators define the transmission
and reflection coefficients [28], the original and homogenized
media are not distinguishable. Periodic media allow us just to
equate the evolution operators of the unit cell and homogenized
effective medium of the same thickness. For a bilayer unit cell
we write

exp[ik0(d1 + d2)M̂eff ] = exp[ik0d2M̂2] exp[ik0d1M̂1]. (B1)
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Using the Baker-Campbell-Hausdorff series [28,31], one
obtains the second-order OEMA as

M̂eff = ρM̂1 + (1 − ρ)M̂2

+ ik0d

2
ρ(1 − ρ)[M̂2,M̂1]

− (k0d)2

12
ρ(1 − ρ)(ρ[[M̂2,M̂1],M̂1]

+ (1 − ρ)[[M̂1,M̂2],M̂2]), (B2)

where d = d1 + d2 and [M̂1,M̂2] is a commutator. In the
zeroth-order OEMA we keep only the terms with (k0d)0; that
is, the effective material parameters following from the equa-
tion M̂eff = ρM̂1 + (1 − ρ)M̂2 lead to the Maxwell Garnett
approximation (1). With the second-order OEMA the Maxwell
Garnett components of the permittivity and permeability ten-
sors are corrected as follows:

ε
(2)
|| = ε

(0)
|| + (k0d)2

6
σf (b)ε̃||,

μ
(2)
|| = 1 + (k0d)2

6
σ (2ρ − 1),

1

ε
(2)
⊥

= 1

ε
(0)
⊥

+ (k0d)2

6
σ

(
2ρ − 1

εr

− f (b)

ε̃⊥

)
,

1

μ
(2)
⊥

= 1 + (k0d)2

6
σ

(
ρ

ε1

ε2
− (1 − ρ)

ε2

ε1

)
, (B3)

where

ε̃|| = ρε1 − (1 − ρ)ε2, ε̃⊥ =
(

ρ

ε1
− 1 − ρ

ε2

)−1

,

f (b) = b2

εr

− 1, εr = (
ε−1

1 + ε−1
2

)−1
,

σ = ρ(1 − ρ)(ε2 − ε1).

For bilayer-cell multilayers the set of effective parameters
should be completed with the gyration pseudotensors (3).

In the case of the three-layer unit cell we also equate
the evolution operators as follows [for the case depicted in
Fig. 7(d)]:

exp[ik0(d1 + d2)M̂eff ]

= exp

[
ik0d2

2
M̂2

]
exp[ik0d1M̂1] exp

[
ik0d2

2
M̂2

]
. (B4)

Then one can also derive Meff as a series with respect to
k0d. As expected, the zeroth-order OEMA will result in
the same nonmagnetic nongyrotropic effective medium with
parameters (1) as for the bilayer-cell structure. The second-
order OEMA introduces the following corrections to the
Maxwell Garnett permittivity and permeability tensors:

ε
(2)
|| = ε

(0)
|| − (k0d)2

6
σf (b)ε′

||,

μ
(2)
|| = 1 − (k0d)2

12
σ (2 − ρ),

1

ε
(2)
⊥

= 1

ε
(0)
⊥

− (k0d)2

6
σ

(
2 − ρ

2εr

− f (b)

ε′
⊥

)
,

1

μ
(2)
⊥

= 1 + (k0d)2

12
σ (2 − ρ), (B5)

where

ε′
|| = ρ

2
ε1 + (1 − ρ)ε2, ε′

⊥ =
(

ρ

2ε1
+ 1 − ρ

ε2

)−1

.

In contrast to the bilayer-cell structure, the artificial magnetic
response of the three-layer-cell effective medium is fairly
isotropic because (μ(2)

|| /μ
(2)
⊥ − 1) ∼ (k0d)4.

APPENDIX C: CALCULATION OF SURFACE
IMPEDANCES OF TE AND TM EIGENMODES

Wave impedances of TE- and TM-polarized eigenwaves are
defined as

q × Em
t = ZmHm

t , (C1)

where m designates TE and TM polarizations, Et and Ht

are the tangential components of electric and magnetic fields,
respectively, at the interface z = 0, and Z is the wave
impedance. Tangential magnetic fields for TE- and TM-
polarized eigenwaves in a homogeneous medium can be
written as Htm = H0m exp(ik0nmz)hm, where m = (TE, TM),
H0m is the amplitude, nm is the refractive index, hTE = b, and
hTM = a. Using the definition of impedance (C1), the electric
field reads q × Etm = H0m exp(ik0nmz)Zmhm. By substituting
these tangential fields into differential equation (A2) we obtain
the system of algebraic equations

nm = Am + BmZm, Zmnm = Cm + DmZm, (C2)

where Am = hmÂhm, Bm = hmB̂hm, Cm = hmĈhm, and
Dm = hmD̂hm. The ultimate expression for the surface
impedance takes the form

Zm = Dm − Am ±
√

(Am − Dm)2 + 4BmCm

2Bm

, (C3)

where the plus and minus signs correspond to the forward and
backward waves, respectively. If TE and TM waves are not
the eigenmodes of the media, then generalization of the wave
impedance notion is required (e.g., see Ref. [41]).

In the homogeneous medium characterized by material
parameter equations (2) and (3), the impedances can be derived
as

Z±
TE = μ||

iαTE + iκ±
TE

, Z±
TM = iαTM + iκ±

TM

ε||
, (C4)

where

κ±
TE = ±

√(
μ||
μ⊥

)(
b2 + α2

TE

μ⊥
μ||

− ε||μ⊥

)
,

κ±
TM = ±

√(
ε||
ε⊥

)(
b2 + α2

TM

ε⊥
ε||

− ε⊥μ||

)
. (C5)

The signs are chosen to ensure field localization at the interface.
General equation (C4) can be applied to isotropic dielectric

and effective media in the zeroth, first, and second orders of
OEMA. In the case of the isotropic dielectric with permittivity
ε, the attenuation constant is polarization independent, and
Eqs. (C4) and (C5) are reduced to

Z±
TE = 1

iκ± , Z±
TM = iκ±

ε
, κ± = ±

√
b2 − ε.
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APPENDIX D: EVOLUTION OPERATORS
AND IMPEDANCES OF UNIT CELLS

Here we present analytical expressions for the evolution
operators of periodic structures with alternating isotropic slabs
with permittivities ε1 and ε2 depicted in Fig. 7. The evolution
operator for both bilayer and three-layer unit cells takes the
same form,

P̂ (d) =

⎛
⎜⎝

ATE 0 iBTE 0
0 ATM 0 iBTM

iCTE 0 DTE 0
0 iCTM 0 DTM

⎞
⎟⎠. (D1)

The TM- (TE-) polarized magnetic (electric) field is oriented
along the vector a and can be described by the 2×2 matrix as

P̂m(d) =
(

Am iBm

iCm Dm

)
, m = (TE,TM). (D2)

The condition of unimodularity of the matrix P̂m(d) reads

ATEDTE + BTECTE = 1, ATMDTM + BTMCTM = 1.

In the case of the three-layer unit cell the following equalities
are also valid:

ATE = DTE, ATM = DTM.

Bloch eigenwaves of periodic multilayers gain phase KBd

after passing through a unit cell. It can be found as an
eigenvalue of the spatial evolution operator

P̂ (d)W(0) = exp[iKBd]W(0),

where KB is the Bloch wave number and W (0) is the field of
a Bloch wave on the very top of a multilayer. Thus, in order to
find the surface wave impedance of a Bloch wave on the top of
the multilayer one has to solve the eigenvalue and eigenvector
problem for a spatial evolution operator. General expressions
for the TE- and TM-polarized Bloch eigenvectors of operator
P̂ (d) [see Eq. (D1)] read

WTE(0) =

⎛
⎜⎝

1
0

ZTE

0

⎞
⎟⎠, WTM(0) =

⎛
⎜⎝

0
1
0

ZTM

⎞
⎟⎠. (D3)

Wave impedances of the eigenwaves are provided by the
equation

Z±
m = Cm

i Dm−Am

2 ± i

√(
Am+Dm

2

)2 − 1
. (D4)

In the case of the bilayer unit cell shown in Fig. 7(a)
one arrives at the following components exploited in the
expressions for impedances:

ATE = cos(kz1d1) cos(kz2d2) − kz2

kz1
sin(kz1d1) sin(kz2d2),

CTE = k0[sin(kz2d2) cos(kz1d1)/kz2

+ sin(kz1d1) cos(kz2d2)/kz1],

DTE = cos(kz1d1) cos(kz2d2) − kz1

kz2
sin(kz1d1) sin(kz2d2),

(D5)

ATM = cos(kz1d1) cos(kz2d2) − ε1kz2

ε2kz1
sin(kz1d1) sin(kz2d2),

CTM = 1

k0

[
sin(kz2d2) cos(kz1d1)

kz2

ε2

+ sin(kz1d1) cos(kz2d2)
kz1

ε1

]
,

DTM = cos(kz1d1) cos(kz2d2) − ε2kz1

ε1kz2
sin(kz1d1) sin(kz2d2),

(D6)

where kzj = k0

√
εj − b2 (j = 1,2) is the longitudinal compo-

nent of the wave vector in the j th layer. In order to change the
order of layers [as in Fig. 7(b)] one just has to interchange A

and D.
Two quantities, A and C, define the simplified Bloch wave

impedances for the three-layer unit cell

Z±
m = ± C̃m

i

√
Ã2

m − 1
. (D7)

Dealing with the configuration in Fig. 7(c), one finds the
following expressions:

ÃTE = cos(kz1d1) cos(kz2d2) − k2
z1 + k2

z2

2kz1kz2
sin(kz1d1) sin(kz2d2),

C̃TE = k0

[
sin (kz1d1) cos (kz2d2)

kz1
+ sin (kz2d2)

[
k2
z1 − k2

z2 + (
k2
z1 + k2

z2

)
cos (kz1d1)

]
2k2

z1kz2

]
, (D8)

ÃTM = cos(kz1d1) cos(kz2d2) − 1

2

(
ε2kz1

ε1kz2
+ ε1kz2

ε2kz1

)
sin(kz1d1) sin(kz2d2),

C̃TM = 1

k0

[
kz1

ε1
sin (kz1d1) cos (kz2d2) + sin (kz2d2)

[
ε2

1k
2
z2 − ε2

2k
2
z1 + cos (kz1d1)

(
ε2

2k
2
z1 + ε2

1k
2
z2

)]
2ε2

1ε2kz2

]
. (D9)

For the unit cell in Fig. 7(d) one should interchange indices 1 and 2 in the above equations.
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