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Numerical study of cross-polarized plasmons in doped carbon nanotubes
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Excited states in doped carbon nanotubes are numerically studied in an effective-mass approximation and
the random-phase approximation. For both metallic and semiconducting nanotubes, plasmons excited by light
polarized perpendicular to the nanotube axis appear in a high doping region where the Fermi energy reaches the
second lowest conduction band or the second highest valence band, while in no and lower doping regions, they
do not exist. The appearance of the plasmons is related to the disappearance of excitons, bound states of electrons
and holes. The excitation energy of the plasmons depends on the Fermi energy, which is typically of the order of
one electron volt. Our results are in good agreement with recent experimental results.
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I. INTRODUCTION

Energy dispersion relations of plasmons in one and two
dimensions are gapless because divergent behavior of the
Coulomb interaction in the long-wavelength limit is weaker
than that in three dimensions [1,2]. Thus, as the norm of the
wave vector decreases near zero, the excitation energy of the
plasmons decreases. In recent years, these plasmons have been
intensively studied in metal nanowires [3–8] and graphene
[9–15]. Nagao et al. observed plasmons in Au-induced one-
dimension chains on Si(111) surfaces with electron-energy-
loss spectroscopy and showed that the energy dispersion
relations of the plasmons are consistent with a theory of
plasmons in one dimension, where the excitation energy of
the plasmons is about 100 millielectron volts for the wave
number of about 0.2 nm−1 [3]. Wunsch et al. performed similar
experiments for graphene, where the energy of plasmons is
about 100 millielectron volts for the wave number of about
0.5 nm−1 [9]. For carbon nanotubes, plasmons have been
reported in many studies as will be mentioned below.

The dependence of the optical absorption spectra of carbon
nanotubes on the polarization of light was theoretically shown
by Ajiki and Ando [16,17]. For light polarized parallel to the
nanotube axis, the wave vector of the light is perpendicular
to the nanotube axis and the electric field on the nanotube
surface is homogeneous and along the nanotube-axis direction.
Thus, electronic states with zero wave vector are excited. For
cross-polarized light, which is light polarized perpendicular to
the nanotube axis, the wave vector of the light is perpendicular
or parallel to the nanotube axis. The electric field projected onto
the nanotube surface is along the circumference direction and
has the wave vectors in the circumference direction, whose
component in this direction is ±2π/L, with L being the
circumference length, since the wave vector of light in which
we are interested is negligibly small as compared to those of
electrons. Thus, electronic states with the wave vectors whose
components are about zero and ±2π/L in the nanotube-axis
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and circumference directions, respectively, are excited. In
this case, strong depolarization effects suppress the optical
absorption. Excitation of excitons can be understood in this
theory [18–20]. As mentioned above, external light does not
cause purely transverse electromagnetic waves on carbon-
nanotube surfaces due to the cylinder shape. Thus, plasmons
in nanotubes can be excited by light with parallel polarization
and that with cross polarization, where finite nanotube length
is needed for the former, although plasmons are longitudinal
waves.

Many experimental [21–27] and theoretical [28–33] studies
have reported plasmons in carbon nanotubes, whose typical
energy is of the order of 10 millielectron volts. Akima et al.
observed peak structure at about 10 millielectron volts for
aligned nanotubes in polymers in optical absorption spec-
troscopy [22]. They indicated that the peaks can arise from
plasmons because the insensitivity of the peaks to carrier
doping excludes the other possible origin, narrow energy gap
of metallic nanotubes [34–40], which is beyond the scope of
this paper and we do not describe in detail. Nakanishi and
Ando theoretically studied plasmons in finite-length metallic
nanotubes with edges, where the effect of charges induced
at the edges is self-consistently calculated with the classical
electromagnetic theory [30]. They showed that plasmons with
the wave vector π/A in the nanotube-axis direction, where A is
the nanotube length, mainly contribute to the optical absorption
spectra, and the effect of the edges is negligible because electric
fields caused by the charges at the edges are screened to
rapidly decay inside the nanotubes. They also showed that the
excitation energy of the plasmons in nanotubes almost linearly
depends on the wave vector in the long-wavelength limit
because of the weak logarithmic dependence of the Coulomb
interaction on the wave vector [30].

It has been known that in the optical absorption spectra of
doped carbon nanotubes, peaks different from those originating
from the above-mentioned plasmons appear [41,42]. Recently,
Igarashi et al. indicated that these peaks come from plasmons
excited by cross-polarized light, which we call the cross-
polarized plasmons [43]. The result has two features: one is
that the plasmons appear only for high doping levels where the
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Fermi energy reaches the second lowest conduction band or the
second highest valence band; the other is that the excitation
energy of the plasmons is around one electron volt. For the
latter, Wei and Wang calculated energy dispersion relations of
plasmons with finite wave vectors in the circumference direc-
tion by using the classical electrodynamic theory and electronic
excitations calculated with the hydrodynamic theory, which
show that the excitation energies of the plasmons are finite [32].
Sasaki et al. reported a numerical value of the excitation
energy of the cross-polarized plasmons, which is consistent
with the experimental one, by calculations with the classical
electromagnetic theory and the Drude conductivity [33]. On
the other hand, the former feature still remains unclarified.

The excitation energies of about one electron volt for
the cross-polarized plasmons are in a frequency range from
infrared to visible, where excitons, bound states of electrons
and holes, appear in semiconducting and metallic carbon
nanotubes [18,19,44–53]. Excitons play important roles in
the optical properties of carbon nanotubes because they
cause peaks with large intensity in the optical absorption
and photoluminescence spectra [18,19,44–47,49,50] and
have been used to identify the chiralities of nanotubes [50].
In the experiments of the cross-polarized plasmons, the
doping-level dependence of the optical absorption spectra
showed that the appearance of the cross-polarized plasmons
follows the disappearance of the excitons excited by light
polarized parallel to the nanotube axis [43]. This suggests
that comparative studies of the plasmons and excitons are
necessary to analyze the experimental results.

The purpose of this study is to numerically clarify the cross-
polarized plasmons. To this end, we use the random-phase
approximation (RPA) for calculations of excited states based
on one-particle states in an effective-mass approximation.
The RPA enables simultaneous calculations of plasmons and
excitons. In fact, plasmons and excitonic states in graphene are
well described with this method [54].

The paper is organized as follows: In Sec. II, an effective-
mass approximation and the RPA are presented to describe
one-particle electronic states and many-body excited states,
respectively, in carbon nanotubes. A formulation of optical
absorption spectra is also mentioned. In Sec. III, numerical
results in the lowest-order effective-mass approximation are
shown to clarify the fundamental properties of the cross-
polarized plasmons. In Sec. IV, results calculated in the
effective-mass approximation with higher-order corrections
are quantitatively compared with the experimental results. A
summary and conclusions are mentioned in Sec. V.

II. MODEL AND METHOD

A. Effective-mass approximation

In carbon nanotubes, electronic states near the Fermi energy
are described in an effective-mass approximation. For each of
two valleys, K and K ′ points, electronic states are described by
a k · p equation HF(r) = εF(r) [55,56], where H is a Hamilto-
nian matrix, F(r) is an envelope function at position r = (x,y)
with x and y being the coordinates in the circumference and
nanotube-axis directions, respectively, and ε is an eigenenergy.

For the K point, the Hamiltonian is given by [55–59]

HK =
(√

3aγ Sk̂2/2 h(k̂)
h†(k̂)

√
3aγ Sk̂2/2

)
, (1)

where γ is a band parameter, k̂ = (k̂x,k̂y) ≡ −i �∇, a is the
lattice constant, h(k̂) = γ (k̂x − ik̂y) + (βaγ/4

√
3)e3iη(k̂x +

ik̂y)2 with η being a chiral angle, β and S are dimensionless
parameters characterizing the trigonal warping of energy bands
and the electron-hole (e-h) asymmetry, respectively, and the
energy origin is set at the Fermi energy for no doping.

A boundary condition in the circumference direction for the
K point is F(r + L) = F(r) exp[2πi(ϕ − ν/3)] [56,58] with
L being the chiral vector, ν = 0 for metallic nanotubes and
±1 for semiconducting nanotubes, and ϕ being an effective
magnetic flux threading the nanotube cross section due to
the curvature and lattice distortion. The phase is given by
ϕ = −(2π/4

√
3)(a/L)p cos 3η [60–65], where p is a dimen-

sionless parameter.
An eigenfunction for a state, which we denote as t , is

a plain wave F(r) = Ft e
iκt x+ikt y/

√
AL, with κt and kt be-

ing the components of the wave vector in the circumfer-
ence and nanotube-axis directions, respectively, where κt =
(2π/L)(n + ϕ − ν/3) with n being a band index. The vector
Ft and the eigenenergy εt are given by [59]

Ft = 1√
2

(
h(pt )
|h(pt )|
st

)
, εt = st |h(pt )| +

√
3aγ S

2
p2

t , (2)

with pt = (κt ,kt ) and st = {±1}, where +1 and −1 indicate the
conduction and valence bands, respectively. States for the K ′
point are similarly obtained. Therefore, the one-particle state
is characterized by (vt ,st ,pt ) with vt = {K,K ′}.

In the lowest-order approximation with β = S = p = 0, we
have for the state denoted by t for the K point [56]

Ft = 1√
2

(
κt−ikt√
κ2

t +k2
t

st

)
, εt = stγ

√
κ2

t + k2
t , (3)

with κt = (2π/L)(n − ν/3). In this case, the e-h symmetry
exists. In metallic nanotubes with ν = 0, energy bands with
indices ±n are degenerate. The bottoms of the degenerate
second lowest conduction bands with n = ±1 are located
at εt (2πγ/L)−1 = 1. In semiconducting nanotubes, the bot-
toms of the lowest (n = 0) and second lowest (n = 1 for
ν = 1 and −1 for ν = −1) conduction bands are located at
εt (2πγ/L)−1 = 1

3 and 2
3 , respectively. Because of the e-h

symmetry, the energies at the tops of the valence bands are
given by the energies at the conduction-band bottoms with the
same band indices where the signs of the energies are reversed.
The energy bands for the K ′ point are given by those for the
K point where the signs of the band indices are changed.

The Hamiltonian with the Coulomb interaction is written
as

H =
∑

t

εt c
†
t ct + 1

4

∑
r,s,t,u

v̄rstuc
†
r c

†
s cuct , (4)

where r, s, t , and u specify one-particle states, cr is an
annihilation operator of a state r , and cs, ct , and cu are similarly
defined. The matrix elements of the Coulomb interaction are
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given by v̄rstu = v(r;t)(s;u) − v(r;u)(s;t), where [18]

v(r;t)(s;u) = δvr ,vt
δvs ,vu

δpr−pt ,pu−ps

2e2

κA

× I|�|
(L|kr − kt |

2π

)
K|�|

(L|kr − kt |
2π

)
× (F†

rFt )(F†
sFu), (5)

with e being the elementary charge, κ being a dielectric con-
stant resulting from the surrounding environment and electrons
far away from the Fermi energy, � = (2π/L)−1(κr − κt ), and
Im(z) and Km(z) being the modified Bessel functions of the first
and second kind, respectively. The factor 1

4 instead of 1
2 on the

right-hand side of Eq. (4) comes from the antisymmetrization
of the matrix elements of the Coulomb interaction.

According to earlier studies [19,59,66,67], we use the
parameters in numerical calculations γ = 5.8 eVÅ, β =
1.5, p = −0.2, and S = 0.2. For a nanotube with a typical
diameter of 1.4 nm, a typical kinetic energy is 2πγ/L ≈
0.8 eV. The dimensionless parameter of the Coulomb inter-
action is chosen as e2/2πκγ = 0.15 (κ ≈ 2.4) [19,66], which
is at most ∼0.35 for κ = 1, unless otherwise specified. The
parameter γ is related to a resonance integral −γ0 for nearest-
neighboring π orbitals in a tight-binding model through γ =√

3γ0a/2 [56,58] leading to γ0 ≈ 2.7 eV.

B. Random-phase approximation

We consider excited states given by |ν〉 = Q†
ν |G〉, where

|G〉 is the ground state and Q†
ν denotes creation operators

for the excited states. The ground state is defined as the
state satisfying Qν |G〉 = 0 for all Qν . The RPA equation is
derived from the equation of motion for Q†

ν as follows [68,69].
From the equation HQ†

ν |G〉 = EνQ
†
ν |G〉 with Eν being the

eigenenergy of the excited states, we have the equation

[H,Q†
ν]|G〉 = h̄�νQ

†
ν |G〉, (6)

where h̄�ν = Eν − E0 is the excitation energy for |ν〉 with
h̄ being the Planck constant divided by 2π and E0 being the
energy of the ground state. On multiplying from the left by an
arbitrary state 〈G|δQ, we have

〈G|[δQ,[H,Q†
ν]]|G〉 = h̄�ν〈G|[δQ,Q†

ν]|G〉. (7)

In the RPA, electron correlation is considered in the ground
state |G〉 [68,69]. Therefore, it consists of various states with
multiple electrons and holes in addition to the ground state
without the correlation |g〉, where one-particle states with
energies below and above the Fermi energy are fully occupied
and unoccupied, respectively. Low-lying excited states are
assumed to be described by linear combinations of e-h pair
states a

†
mb

†
i |G〉, where m and i denote states for an electron and

hole, respectively, and a
†
m and b

†
i are creation operators of the

states m and i, respectively. In addition, linear combinations of
states given by biam|G〉, where an e-h pair is annihilated from
the ground state, are considered. Thus, a creation operator Q†

ν

is written as [68,69]

Q†
ν =

∑
m,i

X′
mia

†
mb

†
i −

∑
m′,i ′

Y ′
m′i ′bi ′am′ , (8)

where m′ (i ′) denotes an electron (hole) state and X′
mi and

Y ′
m′i ′ are expansion coefficients. When we choose δQ as δQ =

{biam,a
†
mb

†
i } in Eq. (7) for the excited states given by Eq. (8),

we have the equations [68,69]

〈G|[biam,[H,Q†
ν]]|G〉 = h̄�ν〈G|[biam,Q†

ν]|G〉, (9)

〈G|[a†
mb

†
i ,[H,Q†

ν]]|G〉 = h̄�ν〈G|[a†
mb

†
i ,Q

†
ν]|G〉. (10)

SubstitutingH in Eq. (4) andQ†
ν in Eq. (8) into Eqs. (9) and (10)

and assuming that |G〉 does not differ very much from |g〉 and
|G〉 may be replaced by |g〉 in Eqs. (9) and (10), we have the
RPA equation [68,69](

A′ B ′
−B ′∗ −A′∗

)(
X′
Y′

)
= h̄�ν

(
X′
Y′

)
, (11)

with (X′)mi = X′
mi, (Y′)mi = Y ′

mi, A′
mim′i ′ = δm,m′δi,i ′εmi +

v̄(m;i)(i ′;m′), and B ′
mim′i ′ = v̄(m;i)(m′;i ′), where εmi is the

one-particle energy of an e-h pair state for an electron
state m and hole one i, and

v̄(r;t)(s;u) = gsv
(1)
(r;t)(s;u) + v

(2)
(r;t)(s;u), (12)

with gs = 2 being the spin degeneracy and

v
(1)
(r;t)(s;u) = v(r;t)(s;u), v

(2)
(r;t)(s;u) = − v(r;u)(s;t)

ε(pr − pu)
, (13)

where ε(pr − pu) is a static dielectric function and the wave
vectors of holes are defined as those of the corresponding
electron states. From Eq. (5), v

(2)
(r;t)(s;u) vanishes for the valleys

vr �= vu or vt �= vs . The static dielectric function is given
by [18]

ε(pr − pu) = 1 + 2e2

κ
I|�|

(L|kr − ku|
2π

)
K|�|

(L|kr − ku|
2π

)
×[

�K
�(kr − ku) + �K ′

� (kr − ku)
]
, (14)

where � = (2π/L)−1(κr − κu) is an integer because of vr =
vu and the static polarization function for electrons near the
valley vr = vu = {K,K ′} becomes [18]

�
vr

� (kr − ku) = − 2

A

∑
r ′,u′

δvr′ ,vr
δvu′ ,vr

δ�′,�δkr′ −ku′ ,kr−ku

× |F†
u′Fr ′ |2g0(εr ′ )g0(εu′)

fr ′ − fu′

εr ′ − εu′
, (15)

with r ′ and u′ being indices of one-particle states, �′ =
(2π/L)−1(κr ′ − κu′), fr ′ (fu′) being the Fermi-Dirac distribu-
tion function for εr ′ (εu′), and g0(ε) being a cutoff function
defined asg0(ε) = εαc

c /(|ε|αc + εαc
c ), where εc is a cutoff energy

and an exponent αc is chosen such that g0(ε) decays sufficiently
fast. In the following, we consider 0 K in Eq. (15). In v

(2)
(r;t)(s;u)

in Eq. (13), the screening effects are necessary to be included
for proper description of excited states as shown by Sham and
Rice [70] and by many others for various systems [18,19,71–
78]. In this study, we approximately use the above static
dielectric function because it works well for energy bands
of semiconducting and metallic nanotubes [79,80] and for
excitons in nanotubes without doping [18,19]. The effects of
the dynamical screening on the present system, which might
especially modify excitons [81,82], remain as a future issue.
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FIG. 1. Graphical representation of the matrix elements of the
Coulomb interaction in the RPA equation. Panels (a) and (b) show
v

(1)
(m;i)(i′;m′) and v

(2)
(m;i)(i′;m′), respectively, in A′ and panels (c) and (d)

show v
(1)
(m;i)(m′;i′) and v

(2)
(m;i)(m′;i′), respectively, in B ′. Panel (e) shows an

example of a part of the effective two-body interactions in the ring
approximation. In panels (a), (c), and (e), dashed lines indicate the
Coulomb interaction and in panels (b) and (d), double-dashed lines
indicate the screened Coulomb interaction.

Figures 1(a)–1(d) show graphical representation of the
matrix elements of the Coulomb interaction in A′ and B ′ in the
RPA equation (11). Graphical representation of those in A′∗
and B ′∗ is given by the diagrams for A′ and B ′, respectively,
which are placed upside down. The matrix elements in A′
and A′∗ denote processes where the numbers of electrons
and holes do not change and those in B ′ (B ′∗) indicate
processes where the number of electrons and that of holes
increase (decrease) by two. The matrix elements v

(1)
(r;t)(s;u)

describe depolarization effects and cause plasmons. In fact,
connection of the diagrams for v

(1)
(r;t)(s;u) leads to effective

two-body interactions, which include the polarization of the
medium, in the ring approximation in the calculation of the
correlation energy [see Fig. 1(e)] [69]. The depolarization
effects described by v

(1)
(r;t)(s;u) in A′ were discussed for cross-

polarized excitons, excitons excited by cross-polarized light,
in carbon nanotubes [20,83,84]. The matrix elements v

(2)
(r;t)(s;u)

in A′ are attractive interactions, thus leading to excitons. It
should be noted that in this study, the approximation in Eq. (11),
which includes v

(1)
(r;t)(s;u) and v

(2)
(r;t)(s;u), is referred to as the RPA

although the RPA usually means the approximation in Eq. (11)
where v

(2)
(r;t)(s;u) is eliminated.

In A′ in Eq. (11), v
(1)
(m;i)(i ′;m′) indicates a part of the ma-

trix elements of the Coulomb interaction between the basis
states a

†
mb

†
i |G〉 and a

†
m′b

†
i ′ |G〉. From Eqs. (5) and (13), this is

proportional to (F†
mFi)(F

†
i ′Fm′). The factor F†

mFi is the matrix

element of the density operator between a
†
mb

†
i |G〉 and |G〉,

where |G〉 is replaced by |g〉 in the calculation, and F†
i ′Fm′

is the complex conjugate of that between a
†
m′b

†
i ′ |G〉 and |G〉.

Thus, e-h pair states a
†
mb

†
i |G〉 for which F†

mFi does not vanish
only contribute to the plasmons. The same applies for the basis
states biam|G〉. Plasmons usually appear in energy above a
one-particle excitation continuum or in energy gaps between
continuums. Thus, we have two conditions for the existence of
stable plasmons. One is that continuums have upper limits in
energy and the other is that the matrix elements of the density
operator for e-h pairs in the continuums are nonzero.

Since the wave vector of the ground state is assumed to
be zero, the center-of-mass wave vectors of the basis states
a
†
mb

†
i |G〉 and bi ′am′ |G〉 are given by pm − pi and −pm′ + pi ′ ,

respectively. The center-of-mass wave vector is conserved in
infinitely long carbon nanotubes and carbon nanotubes with pe-
riodic boundaries. In this case, excited states with a center-of-
mass wave vector d, which are denoted by |ν,d〉, are expanded
by the basis states with the same center-of-mass wave vector
a
†
mb

†
i |G〉 and bi ′am′ |G〉, where pm − pi = −pm′ + pi ′ = d.

In the following, we consider intravalley excited states,
where the electron and hole of each e-h pair belong to the
same valley, because they contribute to optical absorption.
The details of the RPA equation for doped carbon nanotubes
are given in Appendix A. Since Eq. (11) is an eigenvalue
equation for the non-Hermitian matrix, it is not guaranteed
that the excitation energy is real. This is closely related to the
stability of the ground state [68,69]. In the following numerical
calculations, it was carefully confirmed that the ground states
are stable.

Since the cutoff energy is given by the half of the π band-
width, ∼3γ0, we have εc(2πγ/L)−1 = √

3L/πa [19]. Thus,
for a typical nanotube diameter of 1.4 nm, εc(2πγ/L)−1 ≈ 10.
In numerical calculations, the component of the wave vector
in the axis direction is discretized with the width 2π/A,
implying finite-length nanotubes with periodic boundaries. For
example, A/L = 100 with εc(2πγ/L)−1 = 10 corresponds to
A ∼ 450 nm. For doped nanotubes, we only consider electron
doping, i.e., εF (2πγ/L)−1 > 0 with εF being the Fermi energy
because the e-h symmetry is not severely broken due to the
higher-order corrections.

C. Dynamical conductivity

The optical absorption spectra of carbon nanotubes are
given as follows [16,17]: For the μ component of an external
electric field Eμ(p,ω), with μ = {x,y}, p being a wave vector,
and ω being a frequency, an induced current jμ(p,ω) is given by
jμ(p,ω) = σμμ(p,ω)Eμ(p,ω), where σμμ(p,ω) is the Fourier
transform of the diagonal component of the dynamical conduc-
tivity tensor in the μ direction. Since optical absorption in a unit
area is proportional to Re[jμ(p,ω)Eμ(p,ω)∗], Re[σμμ(p,ω)]
characterizes optical absorption spectra. For parallel polariza-
tion, the electric field is along the nanotube-axis (y) direc-
tion and homogeneous on the nanotube surface. Thus, the
absorption spectra are characterized by Re[σyy(p,ω)] with
p = (0,0). For cross polarization, the electric field projected
onto the nanotube surface is along the circumference (x)
direction and has the wave vectors (±2π/L, ≈0). Thus,
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FIG. 2. Real part of the conductivity for cross polarization
σxx(p,ω) with p = (2π/L,0), for metallic (ν = 0) and semicon-
ducting (ν = 1) nanotubes with carrier doping in the lowest-order
approximation. Solid and dotted lines denote results calculated in
the RPA and with a self-consistent method [16,17] including exciton
effects [20], respectively (see the main text). The Fermi energy is
εF (2πγ/L)−1 = 1.5 for ν = 0 and 1.0 for ν = 1. εc(2πγ/L)−1 = 10
and A/L = 100.

optical absorption spectra are characterized by Re[σxx(p,ω)]
with p = (±2π/L,0). The dynamical conductivity is given
from the Kubo formula by [85]

σμμ(p,ω) = − ie2gs

h̄AL

∑
ν

2ω|〈ν,p|v̂μ,p|G〉|2
�ν

(
�2

ν − ω2 − 2iω�/h̄
) , (16)

where v̂μ,p is the μ component of the velocity operator with the
wave vector p, and � is phenomenological energy broadening.
The detail of the calculations of the velocity matrix elements
is given in Appendix B.

Since the excited states in the RPA include the depolariza-
tion effects as mentioned in Sec. II B, the dynamical conductiv-
ity calculated with these excited states describes the response
not to the self-consistent electric field, which electrons actually
feel, but to the external electric field. To illustrate this, in Fig. 2,
we compare the dynamical conductivity calculated in the RPA
with that calculated with another method [16,17,20] where the
self-consistent electric field is calculated from the dynamical
conductivity without the depolarization effects and then the
conductivity with the depolarization effects is obtained from
the self-consistent electric field. Peaks of the optical absorption
spectra for doped metallic (ν = 0) and semiconducting (ν = 1)
nanotubes come from cross-polarized plasmons. The results
calculated with the two methods are in good agreement with
each other. Slight deviation comes from the fact that the
two methods are inequivalent because at least v

(2)
(m;i)(i ′;m′) and

v
(2)∗
(m;i)(i ′;m′) in B ′ and B ′∗, respectively, in the RPA equation are

not included in the other method.
Since the conductivities σxx(p,ω) with p = (2π/L,k) and

(−2π/L,k), where k is the component in the nanotube-axis di-
rection, are the same in our systems, results for p = (2π/L,k)
are shown in the following. To detect the conductivity for finite
k, it is needed to use nanotubes with short length [30] or

near fields localized in nanometer scale regions [86]. In the
following numerical calculations, we choose �(2πγ/L)−1 =
0.01 as a typical value [87–91].

III. NUMERICAL RESULTS

In this section, results calculated in the lowest-order ap-
proximation are shown. In Fig. 3, the excitation energy of
states with the center-of-mass wave vector d = (2π/L,q) with
q being the component in the nanotube-axis direction is shown
as a function of q. On the background, the real part of the
dynamical conductivity σxx(p,ω) with p = d is shown. Fig-
ures 3(a), 3(c), and 3(e) show the results of metallic nanotubes
and Figs. 3(b), 3(d), and 3(f) show those of semiconducting
nanotubes with ν = 1. Figures 3(a) and 3(b) are for no doping,
Figs. 3(c) and 3(d) are for low-doping levels where the Fermi
energy only crosses the lowest conduction band, and Figs. 3(e)
and 3(f) are for high-doping levels where the Fermi energy
reaches the second lowest conduction bands (see insets).

For metallic nanotubes in the no- and low-doping regimes
in Figs. 3(a) and 3(c), continuums range from their lower
boundaries to high energy without gaps. This is because the
continuum in the high-energy region h̄�ν(2πγ/L)−1 � 1,
which arises from one-particle transitions between the valence
band with n = 0 and the conduction band with n = 1, has
large bandwidth and, in Fig. 3(c), it is connected to the
continuum located in the lower energy h̄�ν(2πγ/L)−1 � 1
for transitions within the conduction bands. In this situation,
plasmons are not expected to appear because they usually
appear above continuums and decay in continuums. In fact,
there are no dispersions of plasmons and no peak structures of
the conductivity.

In Fig. 3(e) for the high-doping level, two gaps open at
q ∼ 0 above the two continuums for one-particle transitions
in the conduction bands between n = 1 and 2 and between
n = 0 and 1. The inset schematically shows the transitions.
The continuum above the upper gap comes from transitions
between the valence band with n = 0 and the conduction
band with n = 1. The dispersion of a cross-polarized plasmon
appears at h̄�ν(2πγ/L)−1 ∼ 1.8 in the upper gap, along which
the conductivity has large intensity. Thus, the plasmon energy
is approximately given by the separation ∼2πγ/L between
the conduction-band bottoms for n = 1 and 2 plus an energy
shift due to the depolarization effects. When the Fermi energy
is just above the bottom of the second lowest conduction band,
the plasmon energy is ∼2πγ/L because the energy gap where
the plasmon exists is closed at ∼2πγ/L by the lowering of the
upper continuum.

A short energy dispersion for another cross-polarized plas-
mon exists at h̄�ν(2πγ/L)−1 ≈ 0.46 in the lower gap as
denoted by an arrow, for which the conductivity peak is small.
This is because the lower-energy gap is narrow and the plasmon
is suppressed by the upper continuum. This suppression could
be understood in a similar way to that for cross-polarized
excitons in carbon nanotubes [20]. When the energy of an
excited state shifts upward due to the depolarization effects,
the shifted energy is given by a zero point of the dielectric
function describing the depolarization effects and the intensity
of the peak of the optical absorption spectrum for the state
is proportional to the inverse of the energy derivative of
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FIG. 3. Energy of excited states with the center-of-mass wave vector d = (2π/L,q) as a function of q in the lowest-order approximation.
On the background, the real part of σxx(p,ω) with p = d is shown. Panels (a), (c), and (e) show results for metals and panels (b), (d), and (f) show
those for semiconductors with ν = 1. εF (2πγ/L)−1 = 0 in panels (a) and (b), 0.5 in panels (c) and (d), and 1.5 and 1.0 in panels (e) and (f),
respectively. Solid and dotted lines denote the energy dispersions of plasmons and excitons, respectively. Hatched regions indicate continuums
and dashed lines are their boundaries. Characters n-n′ and n-n′ (v) with n and n′ being band indices and v = {K,K ′} specify continuums which
come from transitions from the conduction band with n to that with n′ (at the valley v). εc(2πγ/L)−1 = 10 and A/L = 100. An arrow in panel
(e) indicates the energy dispersion of a plasmon. Insets show the energy bands [at the K (left) and K ′ (right) points], where dashed lines denote
the Fermi energy and arrows show one-particle transitions for the continuums with n-n′ and n-n′ (v).

the dielectric function at the energy. The dielectric function
changes from minus infinity to plus infinity between two
neighboring excitation energies without the depolarization
effects. Thus, when an upper continuum is located near the
plasmon energy, the energy shift is limited by the lower
boundary of the continuum and the energy derivative of the
dielectric function increases, leading to the suppression of the
energy shift and the peak intensity for the excited state. This
suppression will be explicitly demonstrated at the end of this
section.

For nondoped semiconducting nanotubes in Fig. 3(b),
there is no plasmon because of no energy gap above the
continuum. There exist excitons, where optical transitions
to the lowest and second lowest excitons are forbidden and
allowed, respectively, and the latter is a bright cross-polarized
exciton [20,45,47,92,93]. In Fig. 3(d) for the low-doping
level, an energy gap opens at q ∼ 0 above the continuum for
transitions between the conduction bands with n = 0 and 1 at
the K point. However, no plasmon exists in the gap. This is
because for e-h pairs where electron states m and hole states i
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FIG. 4. Fermi-energy dependence of the real part of the conductivity for metallic nanotubes [(a) and (b)] and for semiconducting nanotubes
with ν = 1 [(c) and (d)] in the lowest-order approximation. Panels (a) and (c) show results for cross polarization and panels (b) and (d) show
those for parallel polarization. The results with different values of the Fermi energy are vertically shifted for clarity. εc(2πγ/L)−1 = 10 and
A/L = 100.

are in the conduction bands with n = 1 and 0, respectively, for
the K point, F†

mFi is negligible for |km|,|ki |  2π/L as can
easily be shown from Eq. (3).

In Fig. 3(f) for the high-doping level, a plasmon appears
in an energy gap above the continuum for transitions from
n = 1 to 2 at the K point and from n = 0 to 1 at the K ′
point in the conduction bands. Therefore, the plasmon energy is
approximately given by the separation ∼2πγ/L between the
bottoms of these conduction bands with an energy shift due
to the depolarization effects. For the Fermi energy just above
the bottom of the second lowest conduction band, the plasmon
energy is ∼2πγ/L because the gap where the plasmon exists
closes at the energy by the lowering of the upper continuum.
This is similar to the case of the metallic nanotubes. The energy
dispersion of the plasmon was calculated with the classical
electrodynamic theory by Wei and Wang [32]. In contrast to
their result, the dispersion in our result is considerably small
because of the suppression by the upper continuum in energy,
which was mentioned above.

The Fermi-energy dependence of the conductivity for
cross polarization, σxx(p,ω) with p = (2π/L,0), is shown for

metallic nanotubes in Fig. 4(a). Peaks arising from the plas-
mons appear when the Fermi energy reaches the second lowest
bands εF (2πγ/L)−1 � 1 because of the opening of the
energy gap above the continuum. With the increase of the
Fermi energy, the plasmon energy and the peak intensity
increase partly because the number of e-h pairs contributing
to the plasmons increases and partly because the energy gap
increases to decrease the suppression of the plasmon by the
upper continuum. Slight peaks for h̄�ν(2πγ/L)−1 � 0.8 and
εF (2πγ/L)−1 � 1.1 come from the plasmon associated with
transitions between the conduction bands with n = 0 and 1,
which was shown in Fig. 3(e). The Fermi-energy dependence
of the conductivity for parallel polarization, σyy(p,ω) with
p = (0,0), is shown for metallic nanotubes in Fig. 4(b). Exciton
peaks arise from transitions between the valence and conduc-
tion bands with n = ±1 in the no- and low-doping regimes,
εF (2πγ/L)−1 � 1 and disappear for εF (2πγ/L)−1 � 1
because the one-particle transitions associated with the exci-
tons are partially blocked in the latter case. The appearance
of the plasmon in Fig. 4(a) follows the disappearance of the
exciton because the one-particle transitions associated with
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the excitons and the plasmons start to be blocked and occur,
respectively, at the same time.

Figures 4(c) and 4(d) are similar plots for semiconducting
nanotubes to Figs. 4(a) and 4(b), respectively. In Fig. 4(c),
the plasmon appears for εF (2πγ/L)−1 � 2

3 because the
Fermi energy reaches the second lowest conduction bands.
For εF (2πγ/L)−1 � 2

3 , a cross-polarized exciton exists at
h̄�ν(2πγ/L)−1 ≈ 1.45 because associated one-particle tran-
sitions near the band bottoms occur. This energy is close to the
plasmon energy at the Fermi energy where the plasmon starts
to appear because the energies of the one-particle transitions
associated with the plasmon and exciton are around 2πγ/L.
In Fig. 4(d), two exciton peaks appear, where the peaks at
the lower and higher energies arise from the exciton ground
states associated with one-particle transitions between the
highest valence and the lowest conduction bands and between
the second highest valence and the second lowest conduction
bands, respectively. The former and latter are called E11 and
E22 excitons, respectively. The peaks for the E11 and E22

excitons disappear for εF (2πγ/L)−1 � 1
3 and 2

3 , respectively,
because the associated one-particle transitions are blocked.
The appearance of the plasmon in Fig. 4(c) follows the
disappearance of the E22 exciton because of the same reason
as that for the metallic nanotubes.

The Coulomb-interaction dependence of the peaks of the
conductivity arising from the cross-polarized plasmons is
shown in Figs. 5(a) and 5(b) for metallic and semiconducting
nanotubes, respectively, at typical doping levels. Results cal-
culated without the continuums above the plasmon energies
are also plotted. With the increase of the interactions, the
plasmon energies increase and the peak intensities decrease
in the results calculated with the continuums above the plas-
mon energies. This is because the increase of the Coulomb
interaction enhances the upward shift of the plasmon energies
due to the depolarization effects, leading to the increase of the
interaction between the plasmons and the continuums above
the plasmon energies, which suppresses the plasmons. In fact,
when the continuums above the plasmon energies are absent,
the energies and intensities for the peaks substantially increase

as compared to those calculated with the upper continuums,
with the strength of the Coulomb interaction, indicating the
validity of the explanation.

IV. DISCUSSIONS

We compare results calculated including the higher-order
corrections with the experimental results [43]. In the experi-
ments, the diameter of the used metallic nanotubes is about
1.4 nm, whose chiralities are not separated, and the used
semiconducting nanotubes are (11, 10) and (6, 5) nanotube.

Figures 6(a) and 6(b) are the calculated Fermi-energy
dependences of the conductivities for cross polarization and
parallel polarization, respectively, for metallic (18, 0) nanotube
with a diameter of about 1.4 nm. In Fig. 6(b), each calculated
exciton peak splits into two because of the higher-order effects.
An exciton peak in the experiments, whose position is shown
by a dashed-dotted line, is single probably because the peak is
an average over various chiralities. The experimental exciton
energy reasonably agrees with the calculated ones although the
former is slightly smaller than the average of the split exciton
energies. This indicates that the parameters of our model are
reasonable.

The unknown experimental Fermi energy can be estimated
from plasmon peaks in Fig. 6(a). The calculated plasmon
energies are slightly higher than the experimental one, where
the deviation increases with the Fermi energy. Thus, the
experimental Fermi energy is considered to be around that
for the onset of the plasmon, εF ∼ 1 eV, where the calculated
plasmon energy is ∼1.4 eV. The energy ∼1.4 eV, is of the same
order as but slightly larger than that calculated with the Drude
conductivity, 1.027 eV, by Sasaki et al. [33]. The discrepancy
is considered to arise partly from the chirality dependence of
our results and partly from the difference between the models.

Figures 6(c)–6(f) are the conductivities for cross polariza-
tion [Figs. 6(c) and 6(e)] and parallel polarization [Figs. 6(d)
and 6(f)] for semiconducting nanotubes, where Figs. 6(c)
and 6(d) are results of (11, 10) nanotube and Figs. 6(e) and 6(f)
are those of (6, 5) nanotube. For (11, 10) nanotube, the E11
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FIG. 6. Fermi-energy dependence of the real part of the conductivity with the higher-order corrections for (18, 0) metallic nanotube [(a) and
(b)], and for (11, 10) [(c) and (d)] and (6, 5) [(e) and (f)] semiconducting nanotube. Panels (a), (c), and (e) show results for cross polarization
and panels (b), (d), and (f) show those for parallel polarization. Vertical dashed-dotted lines in panels (a) and (c) indicate the experimental
energies of cross-polarized plasmons and those in panels (b), (d), and (f) denote the experimental exciton energies [43]. In panels (a) and (b),
A/L = 80 and in panels (c)–(f), A/L = 70.

and E22 exciton energies in Fig. 6(d) are in good agreement
with the experimental ones. The experimental Fermi energy
is estimated from the plasmon peaks in Fig. 6(c) in the same
way as for the metallic nanotube and we have εF ∼ 0.7 eV,
where the plasmon energy is ∼1.25 eV. For (6, 5) nanotube,
the E11 and E22 exciton energies in Fig. 6(f) reasonably agree
with the experimental results. Clear peaks for the plasmon do
not appear for εF � 1.35 eV in Fig. 6(e) because the bottom
of the second lowest conduction band for (6, 5) nanotube is
higher than that for (11, 10) nanotube. In fact, the plasmon

peak appears for (11, 10) nanotube but not for (6, 5) nanotube
in the experiments, suggesting the validity of our estimation of
the Fermi energy.

V. SUMMARY AND CONCLUSIONS

In conclusion, we have numerically studied cross-polarized
plasmons in doped carbon nanotubes in an effective-mass
approximation and the random-phase approximation. For both
metallic and semiconducting nanotubes, the cross-polarized
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plasmons appear for high-doping level where the Fermi energy
reaches the second lowest conduction band or the second
highest valence band. In the Fermi-energy dependence of
excited states, the appearance of the plasmons follows the dis-
appearance of excitons. The excitation energy of the plasmons
depends on the Fermi energy. For the Fermi energy just above
the bottom of the second lowest conduction band or just below
the top of the second highest valence band, the plasmon energy
approximately becomes 2πγ/L, which is typically of the order
of one electron volt. Our results are in good agreement with
recent experimental results.

APPENDIX A: RPA FOR DOPED CARBON NANOTUBES

For doped carbon nanotubes, excited states are expanded by
four types of basis states a

†
mb

†
i |G〉 and biam|G〉 with sm = si

and a
†
mb

†
i |G〉 and biam|G〉 with sm = −si , where sm = {±1}

indicates the conduction (+1) and valence (−1) bands to which
an electron state m belongs and si is that for a hole state i.
Since the center-of-mass wave vector is conserved, all the
basis states for excited states |ν,d〉, with a center-of-mass
wave vector d, have the same center-of-mass wave vector. We
consider intravalley excited states, which contribute to optical
absorption. Thus, creation operators Q†

ν for the excited states
are given by [54,68,69]

Q†
ν =

∑
m,i

δvm,vi

[
δsm,si

(
δpm−pi ,dUmia

†
mb

†
i

− δpi−pm,dVmibiam

) + δsm,−si

(
δpm−pi ,dXmia

†
mb

†
i

− δpi−pm,dYmibiam

)]
, (A1)

where vm and vi indicate the valleys to which an electron state
m and hole one i, respectively, belong and Umi, Xmi, Vmi ,
and Ymi are expansion coefficients. In Eq. (A1), Umi and Vmi

are expansion coefficients for e-h pairs where electrons and
holes belong to the conduction or valence band, and Xmi and
Ymi are those for e-h pairs where electrons and holes are
in the conduction and valence bands, respectively. For each
expansion coefficient, m is uniquely determined by i or vice
versa.

The excited states with d are separately determined from
those with the other center-of-mass wave vectors. Calculating
the matrix elements in the RPA equation in Eq. (11), the
RPA equation for the excited states with d in doped carbon
nanotubes is given by [54,68,69]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

KK ′ KK ′ K ′K K ′K
K

K ′ Auu Aux Buv Buy

K

K ′ Axu Axx Bxv Bxy

K ′
K

−Buv −Buy −Auu −Aux

K ′
K

−Bxv −Bxy −Axu −Axx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U

X

V

Y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= h̄�ν

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U

X

V

Y

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A2)

where (U)i = Umi, (X)i = Xmi, (V)i = Vmi, (Y)i = Ymi , and

(Auu)i,j = δi,j

(
ε

vi

si ,pi+d − εvi

si ,pi
+ �

vi

si ,pi+d − �vi

si ,pi

)
+ v̄

vivivj vj

(si ,pi+d;si ,pi )(sj ,pj ;sj ,pj +d), (A3)

(Aux)i,j = v̄
vivivj vj

(si ,pi+d;si ,pi )(sj ,pj ;−sj ,pj +d), (A4)

(Axu)i,j = v̄
vivivj vj

(−si ,pi+d;si ,pi )(sj ,pj ;sj ,pj +d), (A5)

(Axx)i,j = δi,j

(
ε

vi

−si ,pi+d − εvi

si ,pi
+ �

vi

−si ,pi+d − �vi

si ,pi

)
+ v̄

vivivj vj

(−si ,pi+d;si ,pi )(sj ,pj ;−sj ,pj +d), (A6)

(Buv)i,j = v̄
vivivj vj

(si ,pi+d;si ,pi )(sj ,pj −d;sj ,pj ), (A7)

(Buy)i,j = v̄
vivivj vj

(si ,pi+d;si ,pi )(−sj ,pj −d;sj ,pj ), (A8)

(Bxv)i,j = v̄
vivivj vj

(−si ,pi+d;si ,pi )(sj ,pj −d;sj ,pj ), (A9)

(Bxy)i,j = v̄
vivivj vj

(−si ,pi+d;si ,pi )(−sj ,pj −d;sj ,pj ) (A10)

with j being the index of a hole state,

v̄
vr vt vsvu

(sr ,pr ;st ,pt )(ss ,ps ;su,pu) = v̄(r;t)(s;u), (A11)

and �vr
sr ,pr

being the self-energy given by [18]

�vr

sr ,pr
=

∑
i

v
(2)
(r;r)(i;i)gc(εi), (A12)

where the cutoff function is introduced in the summation. In
Eqs. (A3)–(A10), the subscripts i and j only indicate holes of
e-h pairs with d for the corresponding expansion coefficients.
In Eq. (A2), we arrange the elements of U, V, X, and Y in
such a way that the order of Vm′i ′ at the K (K ′) point in V
is the same as that of Umi at the K ′ (K) point in U where
pm = −pm′ and pi = −pi ′ and the same is applied for Y and
X. The matrix on the left-hand side of Eq. (A2) is a different
form from that in Eq. (11) because the former is for the equation
only for the basis states with d. If the basis states with −d are
included, the matrix becomes the same form as that in Eq. (11).
Since Eq. (A2) is an eigenvalue equation for the non-Hermitian
matrix, the orthonormalization condition for the eigenvectors
for Eq. (A2) is different from that for the eigenvectors of
Hermitian matrices [68,69]. The normalization condition is
given by [68,69]∑

〈m,i〉
|Umi |2 +

∑
〈m,i〉

|Xmi |2 −
∑
〈m,i〉

|Vmi |2 −
∑
〈m,i〉

|Ymi |2 = 1,

(A13)
where the summations run over possible e-h pairs for the
corresponding expansion coefficients.

APPENDIX B: VELOCITY MATRIX ELEMENTS

The velocity operator for a wave vector p is given by

v̂μ,p = 1
2 [vμ(k̂)eip·r̂ + eip·r̂vμ(k̂)], (B1)

where μ = {x,y}, r̂ = (x̂,ŷ) is the position operator, and
vμ(k̂) = h̄−1∂H/∂k̂μ. For the K point, we have

vK
μ (k̂) = γ

h̄

(√
3aSk̂μ Vμ(k̂)

Vμ(k̂)†
√

3aSk̂μ

)
(B2)
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with

Vx(k̂) = 1 + βa

2
√

3
e3iη(k̂x + ik̂y), (B3)

Vy(k̂) = −i + iβa

2
√

3
e3iη(k̂x + ik̂y). (B4)

The velocity operator for the K ′ point is obtained in the same
way. Assuming that |G〉 does not differ very much from |g〉,
velocity matrix elements between the excited states |ν,d〉 and

the ground state |G〉 are given by [54,68,69]

〈ν,d|v̂μ,d|G〉 =
∑
〈m,i〉

U ∗
mi(vμ,d)mi +

∑
〈m,i〉

V ∗
mi(vμ,d)im

+
∑
〈m,i〉

X∗
mi(vμ,d)mi +

∑
〈m,i〉

Y ∗
mi(vμ,d)im,

(B5)

where (vμ,d)rs = F†
rv

vs
μ (ps + d/2)Fs and |G〉 is replaced by |g〉

in the calculation.
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