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The nonlinear magneto-optic responses are investigated for gapped graphene and doped graphene in a
perpendicular magnetic field. The electronic states are described by Landau levels, and the electron dynamics
in an optical field is obtained by solving the density matrix in the equation of motion. In the linear dispersion
approximation around the Dirac points, both linear conductivity and third-order nonlinear conductivities are
numerically evaluated for infrared frequencies. The nonlinear phenomena, including third harmonic generation,
Kerr effects, and two-photon absorption, and four-wave mixing, are studied. All optical conductivities show strong
dependence on the magnetic field. At weak magnetic fields, our results for doped graphene agree with those in
the literature. We also present the spectra of the conductivities of gapped graphene. At strong magnetic fields,
the third-order conductivities show peaks with varying the magnetic field and the photon energy. These peaks are
induced by the resonant transitions between different Landau levels. The resonant channels, the positions, and
the divergences of peaks are analyzed. The conductivities can be greatly modified, up to orders of magnitude.
The dependence of the conductivities on the gap parameter and the chemical potential is studied.
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I. INTRODUCTION

Graphene offers many advantages for applications in pho-
tonics and optoelectronics [1–5], due to tunable optical re-
sponse and plasmonic excitations in the mid-infrared to the
visible, originating from the gapless linear dispersion for the
low-energy excitations. This also leads to its very large optical
nonlinearity [6–9], which was first predicted in theory [10] and
then demonstrated in experiments [11]. Considering the easy
integration into silicon-based photonic circuits, it has been sug-
gested as an ideal material to provide nonlinear functionality
in photonic devices [12], and the physical origin of its optical
nonlinearities has attracted a lot of attention. Most applications
require an efficient way to tune or control the optical nonlin-
earities. Recently, it has been proposed that this can be done
by using a strong perpendicular magnetic field [13–16].

Due to the linear dispersion, the Landau levels (LLs)
of graphene show properties different from those in con-
ventional two-dimensional electron gas, among which two
are especially interesting. One is that the energies of LLs
are not equally spaced, and the energy difference between
adjacent levels decreases with the level index. The energy
of LL at Landau index n = . . . , − 2, − 1,0,1,2, . . . follows
εn = sgn(n)

√|n|h̄ωc where the cyclotron energy is h̄ωc =√
2h̄evF

√
B ≈ 36

√
B(Tesla) meV with the electron charge

−e and the Fermi velocity vF = 106 m/s. One of the ad-
vantages of the nonequidistant spectrum of LL is that elastic
carrier-carrier scattering can be effectively quenched [17]. The
other is that the cyclotron energy can be as large as a few tens
of meV at several Tesla for magnetic fields. This suggests
the possibility of applications in the infrared and the LLs
of graphene as an excellent platform for many fundamental

physical phenomena, even at room temperature [18]. Aside
from many investigations devoted to the understanding of the
linear optical response in magnetic fields [19–21], the study
of nonlinear optical effects in LLs of graphene starts from
the theoretical illustrations of two-color coherent control of
injection currents by Rao and Sipe [16] and of four-wave
mixing (FWM) by Yao and Belyanin [13,15]. In the latter
work, a giant bulk effective optical susceptibility χ

(3)
eff ∼ 5 ×

10−9/B(T ) m2/V2 was predicted in full resonant conditions;
it was recently experimentally demonstrated by König-Otto
et al. in the far infrared [22]. The use of the strong optical
nonlinearity of such systems has been suggested for generating
entangled photons [14], for constructing all-optical switches
[23] and tunable lasers [22], for the dynamic control of coherent
pulses [24], and for the demonstration of optical bistability and
optical multistability [25,26].

Theoretical treatments in literature include Fermi’s golden
rule [16], dynamics in the framework of equation of motion
[13–15,22–26], and direct solutions of the Schrödinger equa-
tion [27] by using numerical simulation or by employing the
rotating-wave approximation. These studies focus mostly on
the transitions between the lowest few LLs, and ignore the
contributions from other LLs, because the photon energies are
close to the resonant transition energies. The predicted optical
susceptibility ∝1/B can not be general at small magnetic
field. In addition, there are several other aspects not well
studied in this topic. First, towards a full understanding of
the optical nonlinearity for LLs of graphene, it is necessary
to provide a systematic consideration of dependence on the
magnetic field, photon energy, chemical potential, and so
on. Standard perturbative calculations of third-order optical
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nonlinearities, that usually lead to a preliminary understanding
of the electronic and optical properties, are still lacking,
especially for high photon frequencies. Second, with the
increasing interests on the third harmonic generation (THG) of
graphene [28,29], it is also important to show how the magnetic
field affects THG responses. Considering the emergence of
many other two-dimensional materials, some of which can be
approximately described by a massive Dirac fermion similar
to a gapped graphene, it is of great interests to understand
how the LLs in gapped graphene affect the optical nonlinearity
[30,31] and whether or not the gap can provide an additional
level of control, with respect to opening a gap in graphene for
further electronic and photonic applications. Lastly, the light-
matter interaction used in published works is mostly described
in the velocity gauge (the p · A interaction). Without any
approximation, the velocity gauge is equivalent to the length
gauge (the r · E interaction) for homogeneous fields. However,
this equivalence may be broken with adopting approximations
of truncated bands and finite region in the Brillouin zone;
then, the calculation of optical response in the velocity gauge
requires a very careful treatment due to the appearance of
unphysical “false” divergences [32], which can be fixed by
additional efforts of employing the sum rules or conservation
laws. Besides, when the linear dispersion approximation is
used for graphene, Wang et al. [33] identified and solved a
different divergent problem for the linear conductivity, where
the integration over wave vector becomes divergent for all
photon energies. It is widely accepted that the calculation in
the length gauge can avoid all these problems without any
additional effort. Although it is not clear what problem might
be induced in discrete level systems from the velocity gauge,
benchmark calculations in the length gauge [34], which do not
lead to such difficulties, would be helpful.

In this work, we present perturbative expressions for the
linear conductivity and third-order conductivity of gapped
graphene (GG) and doped graphene (DG) subject to a per-
pendicular magnetic field, where the light-matter interaction is
treated in the length gauge r · E to avoid the use of sum rules
and conservation laws. We focus on the spectrum of the linear
conductivity and those of the third-order conductivities for
different nonlinear phenomena, including THG, Kerr effects,
and two-photon absorption (or nonlinear corrections to the
linear conductivity, NL), and FWM. We consider the limit as
the magnetic field goes to zero, and compare the conductivities
of doped graphene with those obtained without the presence
of the magnetic field. Furthermore, we present the nonlinear
conductivities of gapped graphene, which has only been the
subject of a few studies. At a strong magnetic field, we show
resonances between discrete LLs and identify the condition for
the resonances to arise.

We organize this paper as follows: In Sec. II, we present a
model Hamiltonian, the matrix elements of the optical dipoles,
the equation of motion involving external optical fields, and the
perturbative expressions for optical conductivities. In Sec. III,
we discuss the limits of the optical conductivity at weak mag-
netic field, and compare with the well-known conductivities at
zero magnetic field. In the same framework we also present
the conductivity for gapped graphene. In Sec. IV, we consider
the magnetic field dependence of the optical conductivities

and discuss the conditions for resonant transitions. In Sec. V,
we show the spectra of the optical conductivities at a strong
magnetic field. We conclude in Sec. VI.

II. MODEL

Under a perpendicular magnetic field B = B ẑ, the elec-
tronic states around the Dirac points of graphene are deter-
mined by an effective Hamiltonian [13]

H 0 =
(

H+; p+eA(r) 0

0 H−; p+eA(r)

)
(1)

with taking the electron charge as −e, the vector potential

A(r) = Bx ŷ, (2)

and the Hamiltonian in each valley

H 0
ν; p = vF (pxσx + νpyσy) + �σz. (3)

Here, ν is the valley index taking a value ν = + for the K
valley or ν = − for the K ′ valley, vF is the Fermi velocity,
� is a mass parameter to induce an energy gap 2� in the
absence of a magnetic field, and σi (i = x,y,z) are the Pauli
matrices. The mass parameter, corresponding to asymmetric
onsite energies, could be induced by a Si-terminated SiC
substrate [35] or a BN substrate. We use H 0(B,�) to explicitly
show the magnetic field and mass parameter dependence. By
using the transformation

H 0(−B, − �) = T −1H 0(B,�)T ,

H 0(B, − �) =
(

0 σx

σx 0

)
H 0(B,�)

(
0 σx

σx 0

)
,

where T = iσyK is similar to a time-reversal operator and K

is the complex-conjugation operator, we only need to discuss
the parameter domain B � 0 and � � 0.

Obviously, the K and K ′ valleys are not coupled in this
model, but they are connected through

H+; p = −σyH−; pσy. (4)

Thus, we can obtain the electronic states in the K ′ valley from
those in the K valley by utilizing this transformation.

A. Eigenstates and eigenenergies

We first solve the electronic states in the K valley for the
parameter domain B � 0 and � � 0. For the chosen vector
potential in Eq. (2), there exists translation symmetry along
the y direction, thus, the eigenstates can be written as �(r) =

1√
2π

eiky
(x + l2
c k). Here, k is a quasi-wave vector along the y

direction, lc = √
h̄/(eB) is the magnetic length, and 
(x) is a

spinor envelope wave function, which satisfies(
� vF (px − ieBx)

vF (px + ieBx) −�

)

(x) = E
(x). (5)

This eigenequation is solved by employing creation and anni-
hilation operators for LLs

â = lc√
2h̄

(px − ieBx), â† = lc√
2h̄

(px + ieBx), (6)
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with [â,â†] = 1. The eigenstates of the particle-number oper-
ator â†â are harmonic oscillator states φn(x) (n = 0,1,2, . . . ),
which are determined from

âφ0(x) = 0 =⇒ φ0(x) = 1

(
√

πlc)1/2
exp

(
− x2

2l2
c

)
,

â†φn(x) = √
n + 1φn+1(x), âφn(x) = √

nφn−1(x). (7)

Then, Eq. (5) becomes(
� h̄ωcâ

h̄ωcâ
† −�

)

(x) = E
(x),

with the cyclotron energy h̄ωc = √
2h̄vF / lc. By expanding

the eigenstates in the basis of {φn(x), n = 0,1,2, . . . }, 
(x) =∑
n (ϕ1;n

ϕ2;n
)φn(x), all eigenstates and eigenenergies can be iden-

tified as

εsn = sεn, εn =
√

�2 + n(h̄ωc)2, (8)


sn(x) = 1√
2

(
s
√

1 + sαnφn−1(x)√
1 − sαnφn(x)

)
. (9)

Here, s is a band index taking a value from + for the upper
band or − for the lower band; n is a Landau index for LLs
taking a value from n = 0,1,2, . . . for s = − or n = 1,2, . . .

for s = +; and αn = �/εn. We have α0 = 1 for � > 0,
and we use the convention φ−1(x) ≡ 0. The level n = 0 is
special.

We use an additional band index s to label the LLs, which is
different from the conventional label used in the literature [13].
However, our notation provides an easy classification of the
optical transitions, including intraband transitions, occurring
inside one band, and interband transitions, occurring between
these two bands. This is very useful for understanding the
results at weak magnetic fields. In the limit of B → 0, the
energy of LLs becomes continuous, but they can still be treated
as an orthogonal and complete basis.

To summarize, all eigenstates and eigenenergies in the K
valley can be labeled by indices {νsnk} with ν = +, and are
given as

�+snk(r) = 1

2
√

π
eiky

(
s
√

1 + sαnφn−1(x + l2
c k)√

1 − sαnφn(x + l2
c k)

)
, (10)

E+snk = sεn. (11)

Using Eq. (4), we can obtain all eigenstates and eigenenergies
in the K ′ valley as

�−snk(r) = σy�+s̄nk(r), (12)

E−snk = −E+s̄nk, (13)

where the band index s is reversed by hand. They can be
organized into a unified form as

Eνsnk = sεn, �νsnk(r) = 1√
2π

eiky
νsn

(
x + l2

c k
)
,


νsn(x) = 1√
2

(
s
√

1 + sαnφn−(ν+1)/2(x)√
1 − sαnφn+(ν−1)/2(x)

)
,

−− 3
−− 2

−− 1

− + 0

− + 1

− + 2
− + 3+ + 3

+ + 2

+ + 1

+ − 0

+ − 1
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FIG. 1. Illustrations of Landau levels in both valleys for (a) � = 0
and (b) � 
= 0. The black curves are the band structures for zero
magnetic field. The Landau levels in K (K ′) valley are given as red
(blue) horizontal lines with level indices νsn aside. (c) The energies of
Landau levels for (red square) � = 0 and (blue circle) � = 0.1 eV.

ν = ±, s = ±,

n ∈ integers and n � 1 + νs

2
.

The parameter space of n depends on both s and ν. The
eigenenergy Eνsnk depends only on the band index s and
Landau level index n, and each of them has a degeneracy
induced by k as D = 1

2πl2
c
gs with gs = 2 for spin degeneracy

[36]. Figure 1 illustrates the LLs in both valleys for � = 0 and
� = 0.1 eV. For nonzero �, the Landau level n = 0 in the K
valley is at the top of the lower band, while the one in the K ′

valley is at the bottom of the upper band; as � goes to zero,
both of them are at the Dirac points. In this work, we take the
Fermi velocity as vF = 106 m/s, then the cyclotron energy is
h̄ωc ≈ 36.3

√
B/1T meV. In Fig. 1(c), we show the energies

of εn for � = 0 and 0.1 eV.

B. Equation of motion and perturbative optical conductivity

When a uniform electric field E(t) is applied, the total
Hamiltonian is

Hν = H 0
ν;p+eA(r) + eE(t) · r. (14)

In the second quantization form, the total Hamiltonian becomes

Ĥ (t) =
∑
νsn

sεn

∫
dk ĉ

†
νsnk(t)ĉνsnk(t) + eE(t) · r̂(t). (15)

Here, ĉνsnk(t) is the annihilation operator in Heisenberg
picture for the state �νsnk(r), and it satisfies the
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anticommutator {ĉν1s1n1k1 ,ĉ
†
ν2s2n2k2

} = δν1,ν2δs1,s2δn1,n2δ(k1 −
k2) and {ĉν1s1n1k1 ,ĉν2s2n2k2} = 0; r̂(t) is the position operator in
the second quantization form, which is given by

r̂(t) =
∑
νs1s2
n1n2

ξ ν;s1n1,s2n2

∫
dk ĉ

†
νs1n1k

(t)ĉνs2n2k(t)

+
∑
νsn

∫
dk ĉ

†
νsnk(t)

(
−l2

c k x̂ − i ŷ
∂

∂k

)
ĉνsnk(t). (16)

The term ξ ν;s1n1,s2n2
is the Berry connection between states

�νs1n1 (r) and �νs2n2 (r). In the presence of magnetic field,
it is convenient to calculate the circularly polarized compo-
nents ξ δ defined from a vector ξ = ∑

τ=± ξ τ êτ with ξ± =
1√
2
(ξx ± iξ y) and ê± = 1√

2
(x̂ ± i ŷ). Here, τ is an index for the

circularly polarization direction with taking value from ±, and
the notation τ means τ = − (+) for τ = + (−). The calculation
of Berry connections is listed in Appendix A, which gives

ξ τ
ν;s1n1,s2n2

= −iτw
(ντ )
s1(n2+τ ),s2n2

δn1,n2+τ ,

w(+)
s1n1,s2n2

= lc

2

(
s1s2

√
1 + s1αn1

√
1 + s2αn2

√
n2

(17)
+√

1 − s1αn1

√
1 − s2αn2

√
n1

)
,

w(−)
s1n1,s2n2

= w(+)
s2n2,s1n1

.

Here, (ντ ) = (+) for ν = τ and (−) for ν = τ . The selection
rules for ξ τ

ν;s1n1,s2n2
between different LLs n1 and n2 are

n1 = n2 + τ , which is independent of the band index.
The velocity operator is v̂(t) = [r̂(t),Ĥ (t)]/(ih̄), and the

current density operator Ĵ(t) = −ev̂(t) is

Ĵ(t) = −e
∑
νs1s2
n1n2

vν;s1n1,s2n2

∫
dk ĉ

†
νs1n1k

(t)ĉνs2n2k(t) (18)

with the matrix elements

vν;s1n1,s2n2 = ih̄−1(s1εn1 − s2εn2 )ξ ν;s1n1,s2n2
.

Because the eigenenergies and the velocity matrix elements
do not depend on k, the dynamics of the current density relies
on the dynamics of the effective density matrix operator ρ̂ν(t),
which is defined as

ρ̂ν;s1n1s2n2 (t) = D−1
∫

dk ĉ
†
ν;s2n2k

(t)ĉν;s1n1k(t), (19)

withD = 1/(πl2
c ) being the LL degeneracy. The time evolution

of ρ̂ν(t) is determined by the Heisenberg equation

ih̄
∂ρ̂ν(t)

∂t
= [Hν,ρ̂ν(t)] + ih̄

∂ρ̂ν(t)

∂t

∣∣∣∣
scat

, (20)

where the last term ∂ρ̂ν (t)
∂t

|
scat

is the scattering term. By taking
the expectation value on both sides of the above equation with
respect to the equilibrium state, we get the matrix elements of
ρν;s1n1s2n2 (t) = 〈ρ̂ν;s1n1s2n2 (t)〉 satisfying the equation of motion

ih̄
∂ρν;s1n1,s2n2 (t)

∂t
= (

s1εn1 − s2εn2

)
ρν;s1n1,s2n2 (t)

+ eE(t) ·
∑
sn

[
ξ ν;s1n1,sn

ρν;sn,s2n2 (t)

− ρν;s1n1,sn(t)ξ ν;sn,s2n2

]
− i�

[
ρν;s1n1,s2n2 (t) − ρ0

ν;s1n1,s2n2

]
. (21)

Here, we describe the scattering by phenomenological re-
laxation processes with only one relaxation parameter �,
ρ0

ν;s1n1,s2n2
= δs1,s2δn1,n2fs1n1 is the density matrix element at the

equilibrium, fsn = [1 + e(sεn−μ)/(kBT )]−1 is the Fermi-Dirac
distribution with a chemical potential μ and temperature T .
Note that the k derivative appearing in the Hamiltonian H (t) in
Eqs. (15) and (16) does not contribute to the equation of motion
because both the current operator and the density matrix are
only related to a term like

∫
dk ĉ

†
kĉk .

After some algebra listed in Appendix B, we get the pertur-
bative linear and third-order conductivities. Using the selection
rules of ξ and v, the condition for nonzero components of
σ (1);τα is τ = α, and that of σ̃ (3);ταβγ is τ = α + β + γ . Thus,
the possible nonzero components of third-order conductivity
are σ̃ (3);ττττ , σ̃ (3);ττττ , and σ̃ (3);ττττ . The linear conductivity is
expressed as

σ (1);ττ (ω)

= − ie2

h̄
D

∑
νs1s2

∑
n

× (s2εn+τ − s1εn)
[
w

(ντ )
s2(n+τ ),s1n

]2(
fs2(n+τ ) − fs1n

)
h̄ω + i� − (s1εn − s2εn+τ )

.

(22)

Although the inversion symmetry is broken for a nonzero mass term �, the second-order response of optical current is still
zero in our approach because the linear dispersion approximation in H 0

ν; p includes an additional inversion symmetry; the nonzero
second-order response can be obtained beyond the linear dispersion approximation. The third-order conductivities are

σ (3);ταβγ (ω1,ω2,ω3) = 1
6

[
σ̃ (3);ταβγ (w,h̄(ω2 + ω3) + i�,h̄ω3 + i�) + σ̃ (3);ταγβ(w,h̄(ω2 + ω3) + i�,h̄ω2 + i�)

+ σ̃ (3);τβαγ (w,h̄(ω1 + ω3) + i�,h̄ω3 + i�) + σ̃ (3);τβγα(w,h̄(ω1 + ω3) + i�,h̄ω1 + i�)

+ σ̃ (3);τγ αβ (w,h̄(ω1 + ω2) + i�,h̄ω2 + i�) + σ̃ (3);τγβα(w,h̄(ω1 + ω2) + i�,h̄ω1 + i�)
]
, (23)

with w = h̄(ω1 + ω2 + ω3) + i� and

σ̃ (3);ταβγ (w,w0,w3) = − ie4

h̄
D

∑
νs1s2
s3s4

∑
n

(s2εn − s1εn−τ )w(ντ )
s2n,s1(n−τ )

w − (s1εn−τ − s2εn)

w
(να)
s1(n−τ ),s3(n−γ−β)

w0 − (s3εn−γ−β − s2εn)

×
⎡⎣w

(νβ)
s3(n−γ−β),s4(n−γ )w

(νγ )
s4(n−γ ),s2n

(fs2n − fs4(n−γ ))

w3 − (s4εn−γ − s2εn)
− w

(νγ )
s3(n−β−γ ),s4(n−β)w

(νβ)
s4(n−β),s2n

(fs4(n−β) − fs3(n−β−γ ))

w3 − (s3εn−β−γ − s4εn−β)

⎤⎦
125417-4
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+ ie4

h̄
D

∑
νs1s2
s3s4

∑
n

(s2εn − s1εn−τ )w(ντ )
s2n,s1(n−τ )

w − (s1εn−τ − s2εn)

w
(να)
s4(n−α),s2n

w0 − (s1εn−τ − s4εn−α)

×
⎡⎣w

(νβ)
s1(n−τ ),s3(n−γ−α)w

(νγ )
s3(n−γ−α),s4(n−α)(fs4(n−α) − fs3(n−γ−α))

w3 − (s3εn−γ−α − s4εn−α)

−w
(νγ )
s1(n−τ ),s3(n−α−β)w

(νβ)
s3(n−α−β),s4(n−α)(fs3(n−α−β) − fs1(n−τ ))

w3 − (s1εn−τ − s3εn−α−β )

⎤⎦. (24)

It is constructive to give the tensor components in Cartesian
coordinates. The independent Cartesian components of the
linear conductivity are σ (1);xx(ω) = σ (1);yy(ω) and σ (1);yx(ω) =
−σ (1);xy , which can be expressed as

σ (1);xx(ω) = 1

2

∑
τ

σ (1);ττ (ω),

σ (1);yx(ω) = − i

2

∑
τ

τσ (1);ττ (ω). (25)

The independent Cartesian components of the third-order
conductivity are σ (3);dxyy , σ (3);dyxy , and σ (3);dyyx with d =
x,y. The other components can be obtained by σ (3);dxxx =
σ (3);dxyy + σ (3);dyxy + σ (3);dyyx and by the symmetry {x ↔ y}.
In this work, we are interested in σ (3);dxxx , which can be
expressed as

σ (3);xxxx = 1

4

∑
τ

(σ (3);ττττ + σ (3);ττττ + σ (3);ττττ ),

σ (3);yxxx = − i

4

∑
τ

τ (σ (3);ττττ + σ (3);ττττ + σ (3);ττττ ). (26)

Obviously, the independent components σ (1);xx , σ (3);xxyy ,
σ (3);xyxy , and σ (3);xyyx are nonzero regardless of the value of
the magnetic field, while those of σ (1);xy , σ (3);xyxx , σ (3);xxyx ,
and σ (3);xxxy are not zero only at nonzero magnetic field.

C. Resonance and electron-hole symmetry

Here, we discuss two general properties of the conductivity.
The first is related to the resonant transitions. At a finite mag-
netic field, all electronic levels are discrete, and both the linear
conductivity and the nonlinear conductivity possess many
resonant peaks. As an example, the transition diagrams for the
unsymmetrized third-order conductivity σ̃ (3);ταβγ (w,w0,w3) in
Eq. (24) are shown in Fig. 2. Because the indices ταβγ can
only take the values ±1, each transition involves three photon
energies, four band indices, and at most three and at least two
Landau indices. Three arrows associated with w, w0, and w3

correspond to the three energy factors, in a form

Es1s2 (w,n,m) = w − (s1εn+m − s2εn), (27)

appearing in the denominator of the expression in Eq. (24).
When Es1s2 (w,n,m) = 0, the optical transitions are in res-
onance, and third-order nonlinear conductivity may di-
verge. The condition Ess(w,n,m) = 0 determines the resonant

intraband transition, while the condition Ess̄(w,n,m) = 0 de-
termines the resonant interband transition. The expression of
σ̃ (3);ταβγ (w,w0,w3) includes four full denominators:

Es1s2 (w,n,τ )Es3s2 (w0,n,β + γ )Es4s2 (w3,n,γ ),

Es1s2 (w,n,τ )Es3s2 (w0,n,β + γ )Es3s4 (w3,n − β,γ ),

Es1s2 (w,n,τ )Es1s4 (w0,n − α,β + γ )Es3s4 (w3,n − α,γ ),

Es1s2 (w,n,τ )Es1s4 (w0,n − α,β + γ )Es2s3 (w3,n − α − β,γ ).

Each of them is composed of three energy factors, depending
on field frequency ωi , magnetic field B, gap parameter �, the
Landau indices, and the polarization of the incident light. By
varying these parameters, one or more E can be zero and lead
to a resonance. Usually, each energy factor contributes one
Lorentz-type divergence as (δE + i�)−1. Two energy factors
in the denominator may be the same, which could lead to a
higher-order divergence as (δE + i�)−2. Also, it can not be
excluded that for some special parameters (n, si , μ, �, B, and
ωi) all three energy factors simultaneously satisfy the resonant
conditions, and lead to a higher-order divergence [13]. We will
use this analysis for understanding the peaks in the spectra of
the conductivities.

The second is a chemical potential dependence of the
conductivity that is related to the electron-hole symmetry. For

FIG. 2. Optical transitions for σ̃ (3);ταβγ
ν (w,w0,w3) with w3 =

h̄ω3 + i�, w0 = h̄(ω2 + ω3) + i�, and w = h̄(ω1 + ω2 + ω3) + i�.
(a), (b), (c), and (d) correspond to the four terms in Eq. (24),
respectively. The horizontal lines indicate the LLs, where the indices
“sn” are labeled at the right; the dashed lines mean the virtual states,
while the two solid lines stand for a pair of occupied and unoccupied
states; the red arrows indicate the optical transitions with the involved
photon frequency ωi labeled aside; the blue arrows stand for the
energies involved in the denominators.
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convenience, we explicitly show the chemical potential de-
pendence as σ (1);τα

ν (ω,μ), σ (3);ταβγ
ν (ω1,ω2,ω3,μ), and fνsn(μ),

where the subscript ν indicates the contribution from each
valley. We use the relations in Eqs. (A3) and (A4), as well as

fνsn(μ) = 1 − fνs̄n(−μ), (28)

where the energy relations between two valleys Eνsn = −Eνsn

are used. Checking the expressions in Eqs. (22) and (24) we
can directly obtain

σ (1);δα
τ (ω,μ) = σ

(1);δα
τ (ω, − μ), (29)

σ (3);δαβγ
τ (ω1,ω2,ω3,μ) = σ

(1);δαβγ

τ (ω1,ω2,ω3, − μ). (30)

Using these relations and from Eqs. (25) and (26), the indepen-
dent components σ (1);xx , σ (3);xxyy , σ (3);xyxy , and σ (3);xyyx are
even functions of the chemical potential, while the other inde-
pendent components σ (1);xy , σ (3);xyxx , σ (3);xxyx , and σ (3);xxxy

are odd functions of the chemical potential. Therefore, for
intrinsic graphene μ = 0 or GG, all transverse optical conduc-
tivities are zero, e.g., σ (1);xy(μ = 0) = 0, for all temperature.

In the following sections we discuss the linear conduc-
tivity and nonlinear conductivities associated with nonlinear
phenomena including THG, NL, and FWM. For an incident
light E(t) = Eωe−iωt + c.c., the generated nonlinear current
for THG is

JTHG(t) = e−i3ωt Eω · Eω

[
σ (3);xxxx(ω,ω,ω)Eω + σ (3);yxxx(ω,ω,ω) ẑ × Eω

] + c.c.

= e−i3ωtE+
ω E−

ω

[
3σ (3);+++−(ω,ω,ω)E+

ω ê− + 3σ (3);−−−+(ω,ω,ω)E−
ω ê+] + c.c.; (31)

for incident light E(t) = Eωp
e−iωpt + E−ωs

eiωs t + c.c., the nonlinear current for FWM is

JFWM(t) = e−(2ωp−ωs )t
{[

2σ (3);xxyy(ωp,ωp, − ωs)Eωp
+ 2σ (3);xyxx(ωp,ωp, − ωs)Eωp

× ẑ
]
Eωp

· E−ωs

+ [
σ (3);xyyx(ωp,ωp, − ωs)E−ωs

+ σ (3);xxxy(ωp,ωp, − ωs)E−ωs
× ẑ

]
Eωp

· Eωp

} + c.c.

= e−(2ωp−ωs )t
∑

τ

êτ
[
σ (3);ττττ (ωp,ωp, − ωs)E

τ
ωp

+ 2σ (3);ττττ (ωp,ωp, − ωs)E
τ
ωp

]
Eτ

ωp
Eτ

−ωs
+ c.c. (32)

By setting ωs = ωp = ω, we can get the nonlinear current for
the NL process. Due to the symmetry of graphene, there is no
THG for single circularly polarized incident light. We focus on
the longitudinal current for incident light along the x direction,
and note

σxxxx
THG (ω) = σ (3);xxxx(ω,ω,ω),

σ xxxx
NL (ω) = σ (3);xxxx(ω,ω, − ω), (33)

σxxxx
FWM(ωp,ωs) = σ (3);xxxx(ωp,ωp,ωs).

The transverse conductivities are about two orders of magni-
tude smaller than the longitudinal ones for most parameters,
and are ignored in this work.

III. OPTICAL CONDUCTIVITIES AT
WEAK MAGNETIC FIELD

We first consider the conductivities in a weak magnetic field,
where h̄ωc is much smaller than the relaxation parameters, the
thermal energy, and the involved photon energies. The optical
transitions between Landau levels can not be resolved, and it is
natural to treat the discrete LLs as continuous levels. As B →
0, the sum over the Landau level index n in Eqs. (22) and (24)
can be transformed into an integration over x by the substitu-
tion εn → x, εn+τ → x + τ (h̄ωc)2F0(x), and w

(ντ )
s1n+τ1;s2n+τ2

→
F (x) + τ1(h̄ωc)2F1(x) + τ2(h̄ωc)2F2(x), where the explicit
expression of Fi(x) are not important for our next discussion.
For linear conductivity σ (1);ττ (ω), the contribution from the
weak magnetic field depends on τ (h̄ωc)2 ∝ τB, thus, we get

σ (1);ττ (ω) = S
(1)
0 (ω) − iS

(1)
1 (ω)Bτ + S

(1)
2 (ω)B2 + · · · .

(34)

At weak magnetic field, the leading term of the linear conduc-
tivity is

σ (1);xx(ω) ≈ S
(1)
0 (ω), (35)

σ (1);xy(ω) ≈ S
(1)
1 (ω)B. (36)

Similarly, the third-order conductivities can be approximated
as

σ (3);xxxx(ω1,ω2,ω3) ≈ S
(3)
0 (ω1,ω2,ω3), (37)

σ (3);yxxx(ω1,ω2,ω3) ≈ S
(3)
1 (ω1,ω2,ω3)B. (38)

The study of this limit has two aims. One is a validity
check by comparing our conductivities of doped graphene at
very weak magnetic field with those at zero magnetic field,
which are already presented in the literature. The other is to
approach the third-order conductivities for gapped graphene at
zero magnetic field.

A. Comparison with literature

In the absence of the magnetic field, the optical conduc-
tivities of DG have been systematically studied both analyt-
ically [7–9] and numerically [30]. In the linear dispersion
approximation and describing the relaxation in a phenomeno-
logical way, analytic expressions are found for linear [37],
second-order [33,38,39], and third-order conductivities [8,9].
For GG, the linear conductivity has analytic expression for
transitions around the Dirac points, and some of the non-
linear conductivities have been numerically extracted [30].
All those conductivities are based on a plane-wave basis. In
this work, these conductivities are considered from a different
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FIG. 3. Spectra of optical conductivities for DG at μ = −0.3 eV (blue thin curves) and GG at � = 0.3 eV (red thick curves). (a) σ (1);xx(ω),
(b) σ xxxx

THG (ω), (c) σ xxxx
NL (ω), (d) σ xxxx

FWM(ωp,ω). The solid (dashed) curves are for the real (imaginary) parts, respectively. The insets in (b) and
(c) show the details in given range of the photon energies. Other parameters are B = 0.05 T, T = 10 K, and � = 10 meV.

approach, based on the LLs, and it is interesting to compare
them.

Our calculations are done for parameters B = 0.05 T. Here,
the treatment of 0.05 T as weak field can be clearly seen in
Sec. IV. Other parameters are � = 10 meV, the temperature
T = 10 K, and the Landau index n is taken as n < Nc with
a cutoff Nc. For high photon energy, large Nc is required
for the convergence of the conductivities. Because the photon
energy can be as high as around 1 eV, we choose Nc = 2 × 106

(corresponding to an energy cutoff ∼11 eV) for the calculation
of linear conductivity, and Nc = 106 (the energy cutoff is
∼8 eV) for the nonlinear conductivities. The spectra of the
conductivities of DG are plotted in Fig. 3 as thin curves for
σ (1);xx , σxxxx

THG , σxxxx
NL , and σxxxx

FWM; and the linear conductivity of
GG σ (1);xx is shown in Fig. 3(a) as thick curves. The obtained
curves overlap with those from analytic expressions [8,30],
confirming the equivalence between the LL basis and the
plane-wave basis.

The comparison can be further extended to the linear
conductivity σ (1);xy(ω) or S

(1)
1 (ω), which is related to the

second-order conductivities induced by magnetic dipole inter-
actions. In DG, the second-order current [38] can be expressed
as

J (2)(r,t) = 2
∫

dq1dq dω1dω

(2π )6
e−i(ω1+ω)t+i(q1+q)·r

× {
S

xxyy

M (ω1,ω)[q1 × E(q1ω1)] × E(qω)

+ S
xyxy

Q (ω1,ω)q1 · E(q1ω1)E(qω)

+ S
xxyy

Q (ω1,ω)[E(q1ω1)q1 · E(qω)

+ q1 E(q1ω1) · E(qω)]
}
. (39)

In the linear dispersion approximation, the coefficients S
xxyy

M ,
S

xyxy

Q , and S
xxyy

Q have analytic expressions [38], where the
term involving S

xxyy

M gives the contribution induced by the
magnetic dipole interaction. Using the relation B(q1ω1) =
1
ω1

q1 × E(q1ω1) and taking the limit q1,ω1,q → 0, we can
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recover the uniform magnetic field, and obtain

S
(1)
1 (ω) = lim

ω1→0

[
2ω1S

xxyy

M (ω1,ω) − 2ω1S
xxyy

M (−ω1,ω)
]

= − sgn(μ)σ0
2e(h̄vF )2

πh̄

1

(h̄ω)2

(
8μ2

w2 − 4μ2

+ 8μ2

�2 + 4μ2

2w − i�

w

)
, (40)

with w = h̄ω + i� and the universal conductivity σ0 =
e2/(4h̄). In the absence of the relaxation, S

(1)
1 (ω) agrees with

the calculated σ (1);xy(ω) very well.
These two approaches show excellent agreement, which

provide a good validity check of the approach based on the LLs.
Furthermore, the nonlinear conductivities of GG in the absence
of the magnetic field, which has not been systematically studied
before, can be obtained from Eqs. (22) and (24) at very weak
magnetic field B = 0.05 T.

B. Third-order conductivities of GG

We calculate the optical conductivity of GG for a gap pa-
rameter � = 0.3 eV and a chemical potential μ = 0 eV. Other
parameters are B = 0.05 T, T = 10 K, and � = 10 meV,
which are the same as those in previous section. The largest
energy difference between adjacent Landau levels is ε1 − ε0 ∼
0.1 meV, which is much smaller than the relaxation parameter
�, and the discreteness of the levels can be smeared out by
the relaxation parameters. In Fig. 3 we show the calculated
conductivities of GG in thick curves. Because the system has a
nonzero gap 2� = 0.6 eV and it is not doped, both the linear
and nonlinear conductivities are insensitive to temperature. In
DG, the chemical potential μ can be used to tune the optical
nonlinearity because it acts like a chemical potential induced
gap for interband transitions, and leads to resonant responses.
Analogically, the real gap 2� in GG is expected to play similar
role. Here, we discuss their similarities and differences.

For simplicity, we first look at the linear conductivity. As
we discussed in the previous section, our calculations are in
agreement with the analytic expressions [30]. Our numerical
results are shown in Fig. 3(a). With photon energy increasing
from 0.1 to 1 eV, the real part of the linear conductivity
is zero for about h̄ω < 2�, quickly turns on for h̄ω ∼ 2�,
and then decreases with photon energy to σ0 = e2/(4h̄). The
imaginary part is negative for all photon energies, which shows
the dielectric properties of a gapped graphene. Its magnitude
increases from zero at h̄ω = 0 (from the analytic expression)
to a maximum value around h̄ω ∼ 2�, and then decreases.
Compared to the conductivity of DG at μ = �, there are
two main differences: (i) The Drude conductivity disappears
because the thermal excited carriers can be ignored, and thus
the gapped graphene acts as a dielectric material. (ii) The value
of the real part at the photon energy around the gap is larger
than that of DG, which can be attributed to the larger values of
the dipole matrix elements shown in Fig. 8; similarly, the peak
value of its imaginary part is also larger than that of DG.

Now, we turn to the nonlinear conductivities of GG.
The spectra of σxxxx

THG (ω) for THG, σxxxx
NL (ω) for NL, and

σxxxx
FWM(ωp,ωs) for FWM are plotted in Figs. 3(b)–3(d),

respectively. All spectra show complicated dependence on

the photon energy, and they include many resonant peaks.
For σxxxx

THG (ω) in Fig. 3(b), its value is almost zero at h̄ω =
0.1 eV. With increasing the photon energy, its magnitude
increases and reaches a resonant value around 2 × 10−16 ×
σ0 m2/V2 at photon energy h̄ω = 0.2 eV. Then, its magnitude
generally decreases with the photon energy, and shows two
more resonant features around h̄ω = 0.3 and 0.6 eV, but with
smaller peak values. The fine structures of σxxxx

THG are located
at h̄ω ∼ 0.2, 0.3, and 0.6 eV. For σxxxx

NL (ω) in Fig. 3(c), we
first look at the real part Re[σxxxx

nl (ω)]. Its value remains close
to zero for photon energies h̄ω < 0.3 eV, increases quickly
to reach a peak value ∼0.3 × 10−16 × σ0 m2/V2 around
h̄ω ∼ 0.35 eV, and then decreases to cross zero around h̄ω ∼
0.53 eV. For greater photon energies, the real part reaches a
valley with a negative value ∼−140 × 10−16 × σ0 m2/V2 at
h̄ω ∼ 0.61 eV. At higher photon energies, its value increases
monotonically towards zero. The imaginary part Im[σxxxx

nl (ω)]
decreases from ∼0.07 × 10−16 × σ0 m2/V2 at h̄ω = 0.1 eV to
a value ∼−0.15 × 10−16 × σ0 m2/V2 at h̄ω ∼ 0.31 eV, then
it increases to a peak with value ∼50 × 10−16 × σ0 m2/V2 at
h̄ω ∼ 0.6 eV, and finally decreases to small values for higher
photon energy. The fine structures are located at h̄ω ∼ 0.3 and
0.6 eV. The spectrum of σxxxx

FWM(ωp,ωs) in Fig. 3(d) shows even
more complicated structures, which are separated by photon
energies at h̄ω ∼ 0.4, 0.5, 0.6, and 1.0 eV. The values are also
at the order of magnitude of 10−16 × σ0 m2/V2.

All these features can also be found in the spectra of
conductivities of DG (thin curves in the same figure), and are
all induced by the resonant interband transitions. Some of them
are related to the energy of the gap (Eg = 2� for GG or Eg =
2|μ| for DG), with matching the involved photon energies
or their sum with the gap energy. For THG, the conditions
are Eg = h̄ω, 2h̄ω, or 3h̄ω; for NL, they are Eg = h̄ω or
Eg = 2h̄ω; and for FWM, they are Eg = 2h̄ωp − h̄ωs and
h̄ωs . The other two resonant features in FWM occur at the
conditions h̄ωs = h̄ωp and 2h̄ωp. They arise from the optically
excited free carriers. In fact, for h̄ωs = h̄ωp, FWM reduces to
NL σxxxx

NL (ωp) = σxxxx
FWM(ωp,ωp). In our calculation, the NL is

finite and the corresponding structure in the spectra of FWM
does not change too much. The other condition h̄ωs = 2h̄ωp

corresponds to two-color coherent current injection, which
show a Lorentz-type divergence as (h̄δω + i�)−1 for small
h̄δω = 2h̄ωp − h̄ωs . We conclude that these fine structures
of the spectra in GG also come from the interband resonant
transitions, and the chemical potential in DG and the gap
parameter in GG do have similar role for the interband
transition. The values of the resonant peaks of DG and GG
are of the same order of magnitude, but differ by a factor of 2
or 3. Some of them are larger and sharper for DG than those for
GG, such as the resonance at 0.2 eV for THG, that at 0.3 eV
for NL, and that at 0.4 eV for FWM. In general, other peaks
for DG are lower than those for GG, similar to that of the linear
conductivity.

The differences between the conductivities of DG and GG
are also obvious, especially around the zero photon energies.
All conductivities of DG show a Drude-type contribution,
which tends to diverge for zero photon energy (or large finite
value with the inclusion of relaxation). In the relaxation-free
case, the third-order nonlinear conductivities of DG behave
as σxxxx ∝ ω−4. However, all conductivities of GG at low
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FIG. 4. The |μ| (�) dependence of optical conductivities of DG (GG). (a) |σ (1);xx(ω)|, (b) |σ xxxx
THG (ω)|, (c) |σ xxxx

NL (ω)|, (d) |σ xxxx
FWM(ωp,ωs)|.

The photon energies are chosen as h̄ω = h̄ωs = 0.3 eV, h̄ωp = 0.5 eV. Other parameters are B = 0.05 T and � = 10 meV.

photon energies give small values; this is consistent with a
general conclusion for cold and clean dielectric materials.
Aversa and Sipe [34] have theoretically shown that for a cold
and clean dielectric material, the value of χ (3) should be zero
as all frequencies go to zero, which means σxxxx

THG (0) = 0 and
σxxxx

NL (0) = 0.
This distinction can be further understood from the peaks in

Fig. 4, where the absolute values of conductivities are plotted
with varying μ for DG or � for GG. The photon energies
are chosen as h̄ω = h̄ωs = 0.3 eV and h̄ωp = 0.5 eV, the
magnetic field is B = 0.05 T, and the temperature is T =
10 K as well as 300 K. Note that for a finite gap � � kBT ,
all conductivities of GG are insensitive to the temperature;
however, temperature remarkably affects those of DG, even
smearing out some peaks, as shown in Fig. 4 for T = 10 and
300 K.

IV. MAGNETIC FIELD DEPENDENCE OF
OPTICAL CONDUCTIVITIES

In this section we examine how the magnetic field af-
fects optical conductivities σ (1);xx(ω), σxxxx

NL (ω), σxxxx
THG (ω), and

σxxxx
FWM(ωp,ωs). The calculations are performed for different

gap parameters for GG and chemical potential for DG at a
relaxation parameter � = 10 meV, temperature T = 10 K, and
fixed photon energies h̄ω = h̄ωs = 0.3 eV and h̄ωp = 0.5 eV.
The cutoff of the Landau index Nc is chosen to satisfy the cutoff
energy to be at the order of 10 eV.

A. Results of GG

In Fig. 5, we present the absolute values of conductivities
σ (1);xx(ω), σxxxx

NL (ω), σxxxx
THG (ω), and σxxxx

FWM(ωp,ωs) of a gapped
graphene with varying the magnetic field B ∈ [0.05,10] T for
gap parameters � = 0, 0.1, 0.2, and 0.3 eV. We note that
the transverse components of σ (1);xy , σ (3);xyxx , σ (3);xxyx , and
σ (3);xxxy are all zero for GG (μ = 0).

At a magnetic field B = 0.05 T, all conductivities have been
discussed in the previous section, and the gap dependence
is shown in Fig. 4. In Figs. 5(a), 5(b), and 5(d), σ (1);xx(ω),
σxxxx

THG (ω), and σxxxx
FWM(ωp,ωs) show very weak dependence on

the magnetic field for B < Bc, where Bc depends on the optical

conductivity and the gap parameter. The value of Bc increases
with the increase of the gap parameter. For σ (1);xx(ω), Bc is
about 2 T for both � = 0 and 0.1 eV, while it is not less than
10 T for � = 0.2 and 0.3 eV. For σxxxx

THG (ω) and σxxxx
FWM(ωp,ωs),

Bc is about 1, 1.5, 2, and 3 T for � = 0, 0.1, 0.2, and 0.3 eV,
respectively. Obviously, for these three conductivities, the
coefficients of B2 term in Eq. (34) are negligible. However,
σxxxx

nl shows different behavior, where its absolute values for
� = 0 and 0.1 eV decrease obviously with increasing the
magnetic field. This implies the contribution from the B2

term has to be taken into account. However, for the other
two � = 0.2 and 0.3 eV, such dependence is very weak. By
checking the optical transitions in Eq. (24), B2 term may be
important in the interference process between two resonant
transitions induced by ω and ω + ω − ω [see Fig. 2(b) in
Ref. [7]), which exist only for � � 0.15 eV.

For B > Bc, the conductivities oscillate with the magnetic
field, and show the following features: (1) For each conductiv-
ity at a given �, the oscillations are not a periodic function
of magnetic field; instead, the change in the field between
neighboring oscillation peaks (hereafter noted as an oscillation
period) increases with the magnetic field. (2) When varying �,
both the period and the peak position of the oscillations change,
especially for the nonlinear conductivities. The oscillations
of σxxxx

THG and σxxxx
FWM at � = 0.3 eV are simpler than those at

the other three values of �. (3) The oscillations of σxxxx
THG and

σxxxx
FWM are more complicated than those of σ (1);xx and σxxxx

NL .
(4) However, σ (1);xx and σxxxx

NL show the same oscillatory
behavior (the peak position and the period) for � = 0, 0.1,
and 0.3 eV; they show different oscillatory behavior for � =
0.2 eV. (5) The peak value of each oscillation increases with
the magnetic field. For the magnetic field we calculated here,
they usually increase by a few times. But for σxxxx

THG at � = 0
and 0.1 eV, the peak values can increase by about 20 times. (6)
At strong magnetic fields, the magnitude of the conductivities
can be close for different gap parameters, and the strong gap
dependence of conductivities at weak magnetic field becomes
unimportant. These features are understood as follows.

The peaks of the conductivity are induced by the resonant
transitions. Based on the energy factor in Eq. (27), the resonant
conditions can be summarized as Es1s2 (ε,n,m) = 0, where ε

125417-9



J. L. CHENG AND C. GUO PHYSICAL REVIEW B 97, 125417 (2018)

0.3
0.2
0.1
0
Δ (eV)3

2

1

0
1050

�ω = 0.3 eV, μ = 0(a)

σ
−1 0
|σ

(1
);
x
x
(ω

)|

B (T)

1

0
1050

(b)

σ
−1 0
|σ

x
x
x
x

T
H

G
(ω

)|
(×

10
−1

6
m

2
/V

2
)

B (T)

10

5

0
1050

(c)

×1000

×100

σ
−1 0
|σ

x
x
x
x

n
l

(ω
)|

(×
10

−1
4
m

2
/V

2
)

B (T)

1

0
1050

�ωp = 0.5 eV, �ωs = 0.3 eV(d)

σ
−1 0
|σ

x
x
x
x

F
W

M
(ω

p
,ω

s
)|

(×
10

−1
6
m

2
/V

2
)

B (T)

FIG. 5. Magnetic field dependence of the absolute values of optical conductivities of GG. (a) |σ (1);xx)ω)|, (b) |σ xxxx
THG (ω)|, (c) |σ xxxx

NL (ω)|,
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FWM(ωp,ωs)|. The parameters are h̄ω = h̄ωs = 0.3 eV, h̄ωp = 0.5 eV, � = 10 meV, μ = 0, and T = 10 K. In (b), the curves for � = 0.2
and 0.3 eV are scaled by 100 and 1000 times, respectively.

is a transition energy. Around the resonance, the conduc-
tivity behaves as a Lorentz-type divergence [Es1s2 (ε + δE +
i�,n,m)]−1 with respect to δE. For GG, we find that only the
interband transitions lead to resonances, under the condition

εn+m + εn = ε . (41)

Here, n is a Landau index varying freely, (m,ε) can be used to
identify channel for resonant optical transition. From Eq. (41)
the magnetic field can be solved as B = Be(ε,n,m) with

Be (ε,n,m) = ε2 − (2�)2

2eh̄v2
F

×
⎡⎣(2n + m) + 2

√
n(n + m) + m2

(
�

ε

)2
⎤⎦−1

. (42)

This solution exists only for w > 2�, where the photon energy
is higher than the energy gap and the interband transitions could
be in resonance. The function Be(ε,n,m) decreases with n, m,
and �, but increases with ε. For a fixed channel (m,ε), the
resonant transitions induced by the Landau index n occur at
the field Be(ε,n,m). For large n or m = 0, [Be(ε,n,m)]−1 ∝ n

indicates that the conductivities are approximately periodic in
B−1, similar to that of de Haas–van Alphen effect; but for
the resonance occurring between the lowest several Landau
levels, the period is also affected by m and �/ε, deviating from
the periodicity with respect to B−1. The neighboring resonant
peaks in the same channel occur between the Landau indices n

and n + 1. The period is then �Bn = Be(ε,n,m) − Be(ε,n +
1,m). At a large n � m, the period �Bn ≈ −∂nBe(ε,n,m) ≈
Be(ε,n,m)/n ∝ n−2 decreases quickly with n. Therefore, at
weak magnetic field, the resonance occurs at large n, and it is
easier to smear out the oscillations, as shown in the region
for B < Bc. However, when there exist multiple resonant
channels, their oscillations are mixed and complicated.

We identify the resonant channels. For the linear conductiv-
ity, there is only one channel as (m,ε) = (1,h̄ω). The resonant
magnetic field is given by B1 = Be(h̄ω,n,1). In Table I we
list the values for first several n at � = 0 and 0.1 eV. These
values agree with the peak positions shown in Fig. 5(a). For
� � 0.15 eV, there is no interband resonant transitions and
thus no oscillations, as shown in Fig. 5(a).

For the nonlinear conductivities, each denominator includes
three energy factors, and there are multiple resonant channels.
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TABLE I. Magnetic field Be(0.3,n,1) for different n.

n 0 1 2 3 4 5

� = 0 eV 68.3 11.7 6.9 4.9 3.8 3.1
� = 0.1 eV 22.8 6.4 3.8 2.7 2.1 1.7

In some special conditions, it is possible to have more than
one of these channels occurring simultaneously. For THG,
these channels include (m,ε) = (1,h̄ω), (0,2h̄ω), (2,2h̄ω), and
(1,3h̄ω). They lead to the following types of divergences:

[E+−(h̄ω + i0+,n,1))]−1, [E+−(2h̄ω + i0+,n,0)]−1,

[E+−(2h̄ω + i0+,n,2)]−1, [E+−(3h̄ω + i0+,n,1)]−1.

The magnetic fields for these four channels are B1 =
Be(h̄ω,n,1), B2 = Be(2h̄ω,n,0), B3 = Be(2h̄ω,n,2), and
B4 = Be(3h̄ω,n,1). For � = 0.3 eV, only the channel B4

exists. Because the relevant energy is 3h̄ω, the resonant levels
have larger index n than those of the linear conductivity. Inside
[0,10] T, the resonant magnetic fields are 9.0, 8.2, 7.4, 6.8,
6.3 T, . . . for n = 8, 9, 10, 11, 12, . . . , respectively. The
periods of this channel are shorter than that of the channel
(m,ε) = (1,h̄ω) in linear conductivity. For � = 0.2 eV, the
extra channels B2 and B3 are added, and lead to the complicated
resonances. The fields for resonant transitions can be easily
identified by using Eq. (42) and we do not present them
here. Similar results are found for � = 0.1 eV and � = 0,
where all channels are possible. Interestingly, at weak mag-
netic field, these resonant transitions contribute to the THG
conductivity destructively, where the two-photon resonant
transitions contribute with a sign opposite to those from one-
and three-photon resonant transitions. Their cancellation leads
to a small THG conductivity for cases � = 0.0 and 0.1 eV.
When the magnetic field is strong, the nonequidistant LLs
affect the electronic states at low energies more than those at
high energies. Therefore, the magnetic field affects one-photon
resonant transition more than the other two transitions, and
breaks the cancellation to induce an increment up to 20 times
for the THG conductivity.

For NL, the possible resonant channels are (m,ε) = (1,h̄ω),
(0,2h̄ω), and (2,2h̄ω). They lead to the following divergences:

[E+−(h̄ω + i0+,n,1)]−2, [E+−(h̄ω + i0+,n,1)]−1,

[E+−(h̄ω − i0+,n,1)]−1, [E+−(2h̄ω + i0+,n,0)]−1,

[E+−(2h̄ω + i0+,n,2)]−1.

There also exists energy factors like (i0+)−1 and (2h̄ω +
i0+)−1. However, neither of them lead to any divergence.
There exist several resonant channels, but the one involving
Be(h̄ω,n,1) leads to resonances with higher-order divergence
([E+−(h̄ω + i0+,n,1)]−2) and is dominant. Thus, at � = 0 and
0.1 eV, although all channels are possible, the higher-order
divergence dominates, which is induced by the same resonant
channel as that of linear conductivity. It is not surprising that
these spectra have the same oscillations as those of linear
conductivity. For � = 0.2 eV, the linear conductivity does not
have an available channel, and this higher-order divergence
channel for NL is also forbidden. However, for NL the other
two channels are available. For magnetic field in the range

of [0,10] T, the resonant magnetic fields for the channel
(m,ε) = (0,2h̄ω) are 9.5, 7.6, 6.3, 5.4, 4.7, 4.2 T, . . . for n = 4,
5, 6, 7, 8, 9, . . . , respectively; those for the channel (m,ε) =
(2,2h̄ω) are 9.6, 7.6, 6.3, 5.4, 4.7, 4.2 T, . . . for n = 3, 4, 5,
6, 7, 8, . . . , respectively. The period for � = 0.2 eV is shorter
than those of � = 0 and 0.1 eV. For � = 0.3 eV, no channel
is available, and the conductivity shows no oscillations.

For FWM, two frequencies ωp and ωs can result in more
channels (m,ε) = (1,h̄ωs), (1,h̄ωp), (0,εa), (2,εa), (0,2h̄ωp),
(2,2h̄ωp), and (1,εb) with εa = h̄ωp − h̄ωs and εb = 2h̄ωp −
h̄ωs . They lead to the following divergences:

[E+−(h̄ωs − i0+,n,1]−1, [E+−(h̄ωp + i0+,n,1)]−1,

[E+−(εa + i0+,n,0)]−1, [E+−(εa + i0+,n,2)]−1,

[E+−(2h̄ωp + i0+,n,0)]−1, [E+−(2h̄ωp + i0+,n,2]−1,

[E+−(εb,n,1)]−1.

In the limit ωs = ωp, the FWM conductivity is reduced to
that of the NL conductivity, and the higher-order divergence
(δE + i0+)−2 is a combination of two energy factors. We
take the case � = 0.3 eV as an example. The resonances
can be induced by the energy factors E+−(2h̄ωp + i0+,n,0),
E+−(2h̄ωp + i0+,n,0), and E+−(εb + i0+,n,1)]−1. For B ∈
[0,10] T, the resonant magnetic field Be(εb,n,1) is 9.9, 7.1,
5.5, and 4.5 for n = 2, 3, 4, and 5, respectively. These field
values determine the main peaks. The fields Be(2h̄ωp,n,0)
and Be(2h̄ωp,n − 1,2) are very close with values around 9.35,
8.68, 8.1, and 7.6 for n = 13, 14, 15, and 16, respectively.
These field values determine the small changes on both sides
of the main peaks. Other peaks can be understood in a similar
fashion.

B. Results of DG

In Fig. 6, we present the absolute values of conductivities
σ (1);xx(ω), σxxxx

NL (ω), σxxxx
THG (ω), and σxxxx

FWM(ωp,ωs) of DG at
the chemical potential μ = 0, −0.1, −0.2, and −0.3 eV, by
varying the magnetic field B from 0 to 10 T. Because of the
finite doping, the transverse conductivity components σ (1);xy ,
σ (3);xyxx , σ (3);xxyx , and σ (3);xxxy are nonzero.

In the limit of zero magnetic field, the chemical potential
dependence of the conductivities has been discussed in liter-
ature and also shown in Fig. 4. The effect of the chemical
potential is very similar to an energy gap, but they also have
essential differences. With increasing the magnetic field, the
conductivities at all chemical potentials oscillate. Compared
to the conductivities of GG, the optical response of DG shows
some different magnetic field dependence: (1) As opposed to
the gap parameter dependence, the conductivities have little
difference for μ = 0 and −0.1 eV. All the photon energies we
calculated are away from resonance for these two chemical
potentials. (2) It can be seen that for a given resonant channel
the oscillation period does not depend on the chemical poten-
tial. (3) At μ = −0.2 and −0.3 eV, σ (1);xx and σxxxx

NL show
additional fluctuations. They are induced by the difference
between the left and right circularly polarized components.
In the dc limit, σ (1);xy is induced by quantum Hall effects,
and its value is determined by the number of doped LLs and
shows one plateau for each LL. Similar natures also exist
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FIG. 6. Magnetic field dependence of the absolute values of optical conductivities of DG (a) |σ (1);xx(ω)|, (b) |σ xxxx
THG (ω)|, (c) |σ xxxx

NL (ω)|, (d)
|σ xxxx

FWM(ωp,ωs)|. The parameters are h̄ω = h̄ωs = 0.3 eV, h̄ωp = 0.5 eV, � = 10 meV, � = 0, and T = 10 K. In (c), the curves for μ = −0.2
and −0.3 eV are scaled by 10 and 100 times, respectively.

in the longitudinal components and lead to such plateaulike
fluctuations.

In contrast to the undoped case in GG, where the resonance
occurs only between the interband transitions, here resonant
intraband transitions are also possible. For DG, the values for
all possible magnetic fields are given by

Bs(ε,n,m) = ε2

2eh̄v2
F

1

(
√

n + m + s
√

n)2

≈ 760
( ε

eV

)2 1

(
√

n + m + s
√

n)2
, (43)

with s = −1 for resonant intraband transitions and s = 1 for
resonant interband transitions. A simple calculation shows
that there is no resonant intraband transition for the photon
frequencies considered and the magnetic field in the range
of [0,10] T. Thus, only the resonant interband transitions are
possible in our parameters. The chemical potential does not
affect the value of the resonant magnetic field, but it can block
some channels for a number of Landau index n. This can be
clearly seen from the conductivity σ (1);xx(ω) at μ = 0, −0.1,
and −0.2. The energy of involved electron/hole in the resonant
transition can be approximated as ±h̄ω/2 ∼ ±0.15 eV. At

room temperature T = 300 K, both the electron and hole are
almost empty for the case μ = −0.3 eV, which lead to the
vanishing of the resonant interband transition. Similar results
can be found for σxxxx

NL (ω). For the nonlinear conductivities,
the occupation of levels only affects the transition involving
w3 in Fig. 2. Because some channels are determined by more
than one resonant transition, it is not a surprise that the resonant
peaks of σxxxx

THG and σxxxx
FWM are so complicated.

V. OPTICAL CONDUCTIVITIES AT STRONG
MAGNETIC FIELD

In this section we present the conductivities at a strong mag-
netic field B = 5 T. The cyclotron energy is h̄ωc = 81 meV,
from which the lowest several energy levels are εn = 0, 81, 114,
140, 162, 181 meV at n = 0,1,2,3,4,5 for � = 0 and εn = 0.2,
0.216, 0.230, 0.244, 0.257 at n = 0,1,2,3,4,5 for � = 0.2.
Both cases show explicit discrete levels. Our numerical results
are shown in Fig. 7 for σ (1);xx(ω), σxxxx

THG (ω), σxxxx
NL (ω), and

σxxxx
FWM(ωp,ωs) at three different chemical potentials and gap

parameters (�,μ) = (0,0), (0.2,0), and (0, − 0.2) eV, which
are noted as intrinsic graphene (IG), GG, and DG in the
following.
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FIG. 7. Spectra of absolute values of optical conductivities of GG and DG at B = 5 T for different chemical potential and gap parameter
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(0.2,0), and (0, − 0.2) eV. Other parameters are h̄ωp = 0.5 eV, � = 10 meV, and T = 10 K. The inset in (b) gives the details at low photon
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of the main diagrams of (b), (c), and (d) are in logarithmic scale.

The linear conductivity is plotted in Fig. 7(a). All spectra
show oscillations. For photon energies h̄ω > 0.4 eV, the oscil-
lations are similar for all three cases. With the increase of the
photon energy, the oscillation period and amplitude decrease.
From our results in previous sections, we understand these
oscillations from the resonant interband transitions for h̄ω >

Eg , which occur between the electronic state “sn”=“−n”
and the state “+(n + 1)” or between “−(n + 1)” and “+n.”
The peak positions are determined by the transition energy
h̄ω = εn+1 + εn, with n � 0 for GG and n � 6 for IG and
DG. In this region, the conductivity oscillates around the value
of conductivity at zero magnetic field. Furthermore, the cases
for IG and DG are almost identical because they have the same
optical resonant transitions between the same LLs. When the
photon energy h̄ω < 0.4 eV, the conductivities show different
behavior. For the case of IG, the interband resonant transitions
can be extended to n = 1; while the special case at n = 0,
corresponding to a transition energy h̄ω = 81 meV, includes
both intraband and interband transitions. For the case of DG,
the interband transitions are blocked; however, there is one
extra peak at 18 meV. This peak results from the intraband
transition between LLs of “−(n + 1)” and “−n” at n = 6. It

is the modified Drude contribution for LLs. For the case of
GG, all interband transitions are forbidden, and they result
in a smooth linear conductivity. The spectrum of σxxxx

NL (ω) in
Fig. 7(c) shows dependence on photon energy similar to that
of the linear conductivity.

The spectra of THG conductivity σxxxx
THG (ω) are shown in

Fig. 7(b). For h̄ω less than about 0.15 eV, the spectra of the
conductivity include a few peaks for IG and DG, and the values
can be as large as 5 × 10−13σ0 V2/m2. The peaks locate at
around 8, 27, and 64 meV for IG, and 4 and 14.5 meV for DG.
By checking the energies for interband resonant transitions and
possible intraband resonant transitions, the peak at 64 meV
is induced by the three-photon resonant interband transitions
between “−1” and “+2” or between “−2” and “+1”; the
peaks at 27 or 8 meV are induced by resonant intraband
transitions, between the LLs around the Fermi surface. From
the illustration diagrams listed in Fig. 2, the resonant transitions
can occur at any stage of the three transitions; some of them
have no requirement for the occupation of the initial and final
states. However, the dominant contributions are still from the
resonant transitions from an occupied state to an empty state. A
similar analysis can be applied to the case of DG, where the first
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two peaks come from the intraband transitions around n = 6.
For higher photon energies, many oscillations appear; they
are induced by interband transitions, as discussed in previous
section. Even at very high photon energies, the conductivity can
be tuned by about two orders of magnitude in one oscillation.
Because LLs are nonequidistant, the resonant transitions at
high photon energies involve very high LL indices, where
the magnetic field only modulates the original band structure
slightly. Therefore, similar to that of graphene without the
presence of a magnetic field, the conductivity decreases as
power law of frequency for high photon energies [7], but
modulated by oscillations from the LLs.

The spectra of the conductivity of FWM process
σxxxx

FWM(ωp,ωs) are plotted in Fig. 7(d). It keeps the features of
the results at zero magnetic field, and it shows three resonant
peaks at h̄ωs = 0, h̄ωp, and 2h̄ωp. The first is induced by the
Drude-type contributions. At the second one, the FWM process
is reduced to NL process. Because the one-photon absorption
exists in our parameters, the two-photon absorption process
diverges, and the conductivity exhibits a divergent peak. At the
third one, the FWM process corresponds to a current injection
process, which diverges too. However, although the magnetic
field modulates the conductivity, the changes are smaller than
those in the conductivities for THG and NL processes.

Here, we note that the resonant intraband transitions give
huge responses, similar to their contributions at zero magnetic
field. However, the magnetic field brings an advantage for
controlling the position of resonant peak, from h̄ω = 0 at zero
magnetic field to a nonzero value for nonzero magnetic field.

VI. CONCLUSION

In this work, we have investigated the perturbative linear
and third-order conductivities of gapped graphene and doped
graphene in the presence of a perpendicular magnetic field. The
electron dynamics is solved from the equation of motion using
Landau levels. The light-matter interaction is described in the
length gauge and the scattering is included in a phenomeno-
logical way with only one relaxation parameter. We discuss
the nonlinear processes for third harmonic generation, the
nonlinear corrections to the linear conductivity, and four-wave
mixing.

We first show that the Landau levels form a good basis
function even at very weak magnetic field, which can be used
to calculate the conductivities of systems without magnetic
field. We apply this approach to a doped graphene and the
results agree with the calculation from an analytic expression
in literature. Using the same approach, we present the optical
conductivities of a gapped graphene. Similar to the chemical
potential related resonant transition in doped graphene, there
exist energy gap related resonant transitions, occurring when
any of the involved photon energies match the band gap. The
main difference lies in the absence of the Drude contribution in
a gapped graphene, which leads to its temperature insensitivity
and dielectric nature below the band gap.

At strong magnetic fields, the Landau levels are discrete and
there exist many resonant transitions. Varying the magnetic
field in the range of [0,10] T, the nonlinear conductivity can
be tuned up to 1–2 orders of magnitude. There exist different
resonant channels, especially in the nonlinear optical response.

Some of them can be turned on and off by tuning the the
gap parameter and the chemical potential, leading to different
oscillation features. We also present a simple condition to
identify these resonant transitions. We calculate the spectra of
these conductivities at strong magnetic field. The spectra show
oscillations, which are induced by the resonant transitions
between different Landau levels. At small photon energies, the
conductivity of DG shows peaks due to the resonant intraband
transitions, corresponding to a modified Drude contribution.

In our calculations, the phenomenological relaxation time
approximation is a very rough treatment, which is intended
to describe all microscopic relaxation processes, many-body
effects, and thermal effects in just one parameter. For optical
properties in most materials, such treatment will not lead to
difficulties because the time scale of optical field is much faster
than the scattering processes, and such a treatment is mostly
used to remove the divergence in the calculation. Although it
is not clear whether or not this is still the case for graphene in
a strong magnetic field, the calculation presented here can at
least indicate interesting qualitative behavior at the considered
frequencies and field strengths, such as the oscillations and
the dependence on the gap parameter and chemical potentials.
These properties are likely to remain in more sophisticated
calculations. Because all these oscillations can be tuned by the
strength of the magnetic field, these calculations indicate a new
way to control the optical response in the terahertz to the far
infrared.

To connect with experiments like four-wave mix-
ing and third harmonic generation, it might be con-
venient to estimate the output intensity from the in-
put ones. For free-standing graphene, the radiated elec-
tric field can be calculated [13,40] by Ex(2ω1 + ω2)| ≈
σ (3);xxxx(ω1,ω1,ω2)/(2cε0)[Ex(ω1)]2Ex(ω2), and then the out-
put intensity I (2ω1 + ω2) is given by

I (2ω1 + ω2) ≈ |σ (3);xxxx(ω1,ω1,ω2)|2
(2cε0)4

[I (ω1)]2[I (ω2)]

≈ 46.6

∣∣∣∣σ (3);xxxx(ω1,ω1,ω2)

10−14σ0

∣∣∣∣2

×
[

I (ω1)

1 GW/m2

]2[
I (ω2)

1 GW/m2

]
. (44)

The output intensity is directly determined by the square of the
conductivity. For fixed input laser pulse, the maximal output
intensity can be found when the conductivities are maximized
by tuning the magnetic field and the gap parameter/chemical
potential. If the graphene is inside a complicated structure, the
output can be strongly modified by the design of the structure.
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APPENDIX A: MATRIX ELEMENTS OF POSITION AND
VELOCITY OPERATORS

Because there is no coupling between different valleys,
the position and velocity operators only have matrix elements
between the electronic states in the same valley. The matrix
elements of position operators are given as∫

d r �
†
νs1n1k1

(r)x�νs2n2k2 (r)

= δ(k1 − k2)
(
ξx
ν;s1n1,s2n2

− l2
c k2δs1,s2δn1,n2

)
, (A1)∫

d r �
†
νs1n1k1

(r)y�νs2n2k2 (r)

= δ(k1 − k2)ξy
ν;s1n1,s2n2

− i
∂δ(k1 − k2)

∂k2
δs1,s2δn1,n2 , (A2)

with

ξx
ν;s1n1,s2n2

=
∫

dx 
†
νs1n1

(x)x
νs2n2 (x),

ξ y
ν;s1n1,s2n2

= − l2
c

h̄

∫
dx 
†

νs1n1
(x)px
νs2n2 (x).

Further, the circularly polarized components are

ξ+
ν;s1n1,s2n2

= −ilc

∫
dx 
†

νs1n1
(x)â†
νs2n2 (x) ,

ξ−
ν;s1n1,s2n2

= ilc

∫
dx 
†

νs1n1
(x)â
νs2n2 (x)

= (
ξ+
ν;s2n2,s1n1

)∗
. (A3)

Using the properties of the operator in Eq. (7), we can get
Eq. (17). Using the symmetry between two valleys in Eq. (4),
we verify

ξ τ
ν;s1n1,s2n2

= s1s2ξ
τ
ν;s1n1,s2n2

. (A4)

Therefore, the values of all ξ τ
ν;s1n1,s2n2

can be generated from
ξ+
+;s1(n+1),s2n

by Eqs. (A3) and (A4).
The velocity operator is vν = [r,Hν;p+eA(r)]/(ih̄). Because

the level energy is independent of k, it is calculated directly to
give∫

d r �
†
νs1n1k1

(r)vν�νs2n2k2 (r) = δ(k1 − k2)vν;s1n1,s2n2

with

vν;s1n1.s2n2 = ih̄−1
(
s1εn1 − s2εn2

)
ξ ν;s1n1,s2n2

.

In Fig. 8 we give iξ+
+;s1(n+1),s2n

and v+
+;s1(n+1),s2n

for different
n and si . For the special term n = 0, we have ξ+

+;s11,s20 =
−ilc

√
1 − s1α1/

√
2δs2,−1. The optical dipole matrix elements

between the same bands (s1s2 = 1) have larger values which
increase with n. The interband matrix elements (s1s2 = −1)
have smaller values: ξ+

+;+(n+1),−n decreases with n; ξ+
+,−(n+1),+n

first increases then decreases, where there exists a max-
imum value depending on the ratio �/h̄ωc. For the ve-
locity matrix elements, both intraband and interband terms
have similar amplitude. For graphene, they have the val-
ues v+

+;+(n+1),sn = −v+
+;−(n+1),sn = vF /

√
2 for all n � 1 and

v+
+;s11,s20 = s1vF δs2,−1.

FIG. 8. The Landau level index dependence of (a) iξ+
+;s1(n+1),s2n

and (b) v+
+;s1(n+1),s2n for B = 1 T and � = 0 (red symbols) and � =

0.1 eV (blue symbols).

APPENDIX B: PERTURBATIVE OPTICAL
CONDUCTIVITIES

For a weak electric field, Eq. (21) can be solved perturba-
tively by expanding ρν(t) up to the third order of the electric
field as

ρν(t) = ρ0
ν +

∫
dω3

2π
P̃ (1);γ

ν (w3)Eγ (ω3)e−iω3t

+
∫

dω2dω3

(2π )2
P̃ (2);βγ

ν (w0,w3)Eβ(ω2)

×Eγ (ω3)e−i(ω2+ω3)t

+
∫

dω1dω2dω3

(2π )3
P̃ (3);αβγ

ν (w,w0,w3)Eα(ω1)Eβ(ω2)

×Eγ (ω3)e−i(ω1+ω2+ω3)t + · · · , (B1)

where Eα(ω) = ∫
dt Eα(t)eiωt is the Fourier transform of

the field Eα(t), w3 = h̄ω3 + i�, w0 = h̄(ω2 + ω3) + i�, w =
h̄(ω1 + ω2 + ω3) + i�; the dependence on w3, w0, and w is
clear from the following expressions. Substituting the expan-
sion above into Eq. (21) and comparing the terms with the same
order of electric field at both sides, we get

P̃ (1);γ
ν;s1n1,s2n2

(w3) = eξ
γ
ν;s1n1,s2n2

(
fs2n2 − fs1n1

)
w3 − (

s1εn1 − s2εn2

) , (B2)

P̃ (2);βγ
ν;s1n1,s2n2

(w0,w3) =
[
eξβ

ν ,P̃ (1);γ
ν (w3)

]
s1n1,s2n2

w0 − (
s1εn1 − s2εn2

) , (B3)

P̃ (3);αβγ
ν;s1n1,s2n2

(w,w0,w3) =
[
eξα

ν ,P̃ (2);βγ
ν (w0,w3)

]
s1n1,s2n2

w − (
s1εn1 − s2εn2

) . (B4)
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The total current density is given as J(t) = 〈 Ĵ(t)〉 = J α êα

with

J α(t) = −eD
∑
τs1s2
n1n2

vα
τ ;s2n2,s1n1

ρτ ;s1n1,s2n2 (t). (B5)

Correspondingly, the optical current can be expanded as
J δ(t) = J (1);δ(t) + J (3);δ(t) + · · · with

J (1);τ (t) =
∫

dω3

2π
σ (1);τγ (ω3)Eγ (ω3)e−iω3t , (B6)

J (3);τ (t) =
∫

dω1dω2dω3

(2π )3
σ̃ (3);ταβγ (w,w0,w3)Eα(ω1)

×Eβ(ω2)Eγ (ω3)e−i(ω1+ω2+ω3)t , (B7)

where

σ (1);τα(ω) = −eD
∑
τs1s2
n1n2

vτ
ν;s2n2,s1n1

× P̃ (1);α
ν;s1n1,s2n2

(h̄ω + i�), (B8)

σ̃ (3);ταβγ (ω1,ω2,ω3) = −eD
∑
τs1s2
n1n2

vτ
ν;s2n2,s1n1

×P̃ (3);αβγ
ν;s1n1,s2n2

(w,w0,w3). (B9)

By substituting Eqs. (B2)–(B4), we obtain Eqs. (22) and (24)
in the main text.

The independent Cartesian components of the third-order
conductivity σ̃ (3);dabc(ω1,ω2,ω3) are expressed from the circu-

larly polarized components σ̃ (3);δαβγ (ω1,ω2,ω3) as

σ (3);xxyy = σ (3);yyxx

= 1

4

∑
τ

(σ (3);ττττ + σ (3);ττττ − σ (3);ττττ ),

σ (3);xyxy = σ (3);yxyx

= 1

4

∑
τ

(σ (3);ττττ − σ (3);ττττ + σ (3);ττττ ),

σ (3);xyyx = σ (3);yxxy

= 1

4

∑
τ

(−σ (3);ττττ + σ (3);ττττ + σ (3);ττττ ),

and

σ (3);xyxx = −σ (3);yxyy

= i

4

∑
τ

τ (σ (3);ττττ + σ (3);ττττ − σ (3);ττττ ),

σ (3);xxyx = −σ (3);yyxy

= i

4

∑
τ

τ (σ (3);ττττ − σ (3);ττττ + σ (3);ττττ ),

σ (3);xxxy = −σ (3);yyyx

= i

4

∑
τ

τ (−σ (3);ττττ + σ (3);ττττ + σ (3);ττττ ).
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