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Dephasing of Majorana-based qubits
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We analyze charging-energy-protected Majorana-based qubits, focusing on the residual dephasing that is
present when the distance between Majorana zero modes (MZMs) is insufficient for full topological protection.
We argue that the leading source of dephasing is 1/f charge noise. This noise affects the qubit as a result of the
hybridization energy and charge distribution associated with weakly overlapping MZMs, which we calculate
using a charge-conserving formalism. We estimate the coherence time to be hundreds of nanoseconds for
Majorana-based qubits whose MZM separation is L ∼ 5ξ (with ξ being the coherence length). The coherence
time grows exponentially with MZM separation and eventually becomes temperature limited for L/ξ ∼ 30.
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I. INTRODUCTION

Topological phases offer the promise of qubits that are
insensitive to local sources of noise, provided that the relevant
distance and time scales are sufficiently large [1,2]. When
qubit operations are done too rapidly, however, diabatic errors
can occur [3–6]. Furthermore, as the separation between
topological excitations is decreased, eventually approaching
and then falling below the coherence length, topological qubits
evolve smoothly into more conventional (local) qubits and are
susceptible to the same noise sources [7–9]. At present, the
most promising approach to topological quantum computing
encodes the qubit in the joint parity state of Majorana zero
modes (MZMs), exotic defects of topological superconductors
that obey non-Abelian statistics [10–12]. A one-dimensional
topological superconductor can be engineered out of a semi-
conductor nanowire with strong spin orbit coupling, prox-
imitized by an s-wave superconductor and subjected to a
magnetic field [13–15]. Motivated by the strong experimen-
tal evidence for the observation of MZMs in such systems
[16–24], there is a growing interest in moving beyond de-
tection of MZMs to their application in topological quantum
computing [24,25]. In particular, recent theoretical work has
proposed qubits comprised of four or six MZMs on an island
with substantial charging energy [26,27]. In this paper, we
analyze the dephasing of such qubits that occurs when two
of the MZMs on such an island approach each other.

The MZM qubits of Refs. [26,27] have a fixed electric
charge, which protects them from poisoning by excited
quasiparticles originating elsewhere in the device. However,
they are still vulnerable to two types of errors. (1) An excited
fermionic quasiparticle on the island can be absorbed or
emitted by a MZM. If this happens once, it takes the qubit out
of the computational subspace; if it happens twice, it causes
a bit or phase error, depending on which two MZMs are
affected. (2) When the separation between MZMs is not large
compared to the coherence length, the overlap between MZMs
causes a redistribution of the electric charge in the island. The
resulting charge distribution (which will, in general, have a
nonvanishing line dipole moment between the semiconductor

and superconductor) couples to phonons and the electrostatic
environment of the island. These low-energy degrees of
freedom cause the qubit to decohere.

In this paper, we give quantitative estimates for both types of
errors mentioned in the previous paragraph. Type (1) depends
on the density of excitations, and therefore is small when this
density is small. In thermal equilibrium, these errors are expo-
nentially suppressed in the product of the gap � and the inverse
temperature β. The main focus of the paper is to quantify type
(2) errors by computing the hybridization energy and charge
distribution associated with MZMs using a charge-conserving
formalism. We show how a dipole moment develops between
a semiconductor nanowire and its superconducting shell. This
dipole formation is analogous to the situation that occurs in a
double quantum dot charge qubit, except that the transferred
charge is much less than the charge of an electron. We give
quantitative estimates of the resulting dephasing using mea-
surements of the electrostatic noise spectrum in similar devices
and the electron-phonon coupling and phonon spectrum of
InAs. Very similar physics applies to the measurement process
proposed in Ref. [27]: when a quantum dot is coupled to a
MZM, a dipole moment develops between the quantum dot
and the qubit. We report the corresponding dephasing times
which quantify how fast the environment reads out the parity
of a pair of MZMs during the measurement process.

The remainder of this paper is organized as follows. In
Sec. II, we develop the basic setup of the qubit-environment
coupling. In Sec. III, we calculate the hybridization energy
and charge distribution associated with the overlap of a pair
of MZMs. We estimate qubit dephasing times due to several
different noise sources in Sec. IV. In Sec. V, we discuss
additional effects of charge noise on the qubit system. We
conclude in Sec. VI. Details of the various discussions are
relegated to the Appendixes.

II. BASIC SETUP

Consider a two-level system with density matrix ρ(t),
described by a Hamiltonian HS = �σz. We assume that the
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system interacts weakly with its environment, described by
a Hamiltonian HE , and that the environment is in thermal
equilibrium at inverse temperature β. The density matrix
ρ(t) undergoes a particularly simple time evolution when the
system-environment interaction is diagonal in the system’s
energy basis,

HSE = az

2
σ z ⊗ �, (1)

where � acts on the environment degrees of freedom. The
diagonal elements of ρ(t) have constant magnitude and the
off-diagonal elements decay according to [28]

|ρ01(t)| = e−B2(t)|ρ01(0)|, (2)

where

B2(t) ≡ a2
z

∫ ∞

0
dω S(ω)

sin2(ωt/2)

(ω/2)2
. (3)

Here, the noise spectral function of � is given by

S(ω) ≡
∫ ∞

−∞
dt

eiωt

2π

( 〈�(t)�(0)〉 + 〈�(0)�(t)〉
2

)
, (4)

where 〈�(t)�(0)〉 ≡ tr(e−βHE�(t)�(0)).
We use Eq. (3) to analyze dephasing times in charge-

protected MZM qubits. In Fig. 1, we depict two possible
geometries of such qubits. The common elements of both
geometries are two topological sections built from a semicon-
ductor wire (light orange) proximitized by a superconductor
(dark blue), connected by a trivial s-wave superconductor
[labeled (s)] to form a Coulomb-blockaded superconducting
island hosting four MZMs. We call the trivial superconducting
region the “backbone.” The qubit is encoded according to
σ z ≡ iγ1γ2 (note that in the ground state, iγ1γ2 = iγ3γ4). The
main difference between the two geometries is that the upper
design (a) requires at least two semiconducting nanowires,
while the lower design (b) can be realized with a single
nanowire and a loop-shaped backbone.

We consider the limit in which the energy gap in the su-
perconducting backbone is much larger than in the topological
sections. Then, the amplitude for a fermion to tunnel from γ1 or
γ2 to γ3 or γ4 will be very small. The dominant error mechanism
will be dephasing from the coupling of the electromagnetic
environment to the charge shared by γ1 and γ2 (and shared by
γ3 and γ4). This assumption simplifies our calculations, but
does not change our main results.

The qubit states stored in iγ1γ2 are slightly split in energy
by εhyb, resulting from overlap of the MZM wave functions.
This hybridization energy fluctuates with the electromagnetic
environment, resulting in the dephasing of the qubit. The qubit-
environment coupling can be modeled by the simple Taylor
expansion:

HMZM-E = 1

2

(
∂εhyb

∂Ez

)
iγ1γ2 ⊗ δEz(t), (5)

where Ez is the electric field component perpendicular to the
semiconductor-superconductor interface, as shown in Fig. 1.
This interaction can equivalently be understood as the electro-

FIG. 1. Two charge-protected MZM qubit geometries: (a) two-
sided tetron and (b) loop qubit. Each design has two topological
sections, labeled (1) and (2), consisting of a semiconducting nanowire
(orange) proximitized by a superconducting wire (blue), and tuned
into the topological phase so that MZMs (red stars) are localized at
either end. The two topological sections are connected by a trivial
superconductor, the “superconducting backbone,” labeled by (s). The
superconducting backbone ensures that the device acts as a single
superconducting island, thereby allowing superpositions of all (total
fermion parity even) MZM states. When the superconducting island
has appreciable charging energy, extrinsic quasiparticle poisoning is
strongly suppressed, hence the designation that these are “charging-
energy protected MZM qubits.” MZMs belonging to the same wire (γ1

and γ2 or γ3 and γ4) will slightly overlap, resulting in a relative charge
distribution between the semiconductor and superconductor in the
topological sections. This charge buildup results in a dipole moment,
�ptop, oriented perpendicular to the semiconductor/superconductor
interface. Provided the lengths of the topological wires are equivalent
in the two designs, �ptop will be the same. A measurement of the
fermion parity iγ2γ3 is performed by tunnel coupling MZMs 2 and 3
to an auxiliary quantum dot (yellow), located in the semiconducting
region connecting wires (1) and (2). The qubit-quantum dot system
also forms a dipole moment, �pdot, whose magnitude and direction
depends on the device geometry. We assume an essentially vanishing
screening length so that the displacement vector entering �pdot points
from the quantum dot to the surface of the superconductor: note that
this results in �ptop and �pdot being parallel in (b), provided topological
sections (1) and (2) are equidistant from the quantum dot. Coupling of
�ptop to the environment sets the dephasing time of the qubit; coupling
of �pdot to the environment sets how fast the environment measures
iγ2γ3.

static environment coupling to the dipole moment

�ptop = ∂εhyb

∂Ez

ẑ, (6)

whose sign depends on the parity of MZMs γ1 and γ2. We
calculate the hybridization energy and the charge distribution
in the topological wire leading to this dipole moment in Sec. III.

For both qubit designs shown in Fig. 1, a measurement
is performed by coupling two of the MZMs to an auxiliary
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quantum dot (yellow) [27]. This coupling can be achieved by
lowering tunnel barriers (not shown) in the semiconducting
region neighboring MZMs γ2 and γ3, so that an electron can
tunnel into MZM γj with amplitude tj . We always work
in the weak coupling limit, |tj | 	 EC , where EC is the
charging energy of the MZM island. When the combined MZM
qubit-quantum dot system is in its ground state, the charge
distribution on the quantum dot becomes parity dependent [27];
see Appendix B for further details. Measuring the quantum dot
charge thus allows one to infer the MZM parity.

When the system is tuned into a measurement configuration
with a single electron able to tunnel between the quantum dot
and MZM qubit, another dipole moment emerges. In the weak
coupling limit, when the quantum dot and MZM qubit are
off resonant, the dipole moment is (up to corrections of order
|tj |2/E2

C)

�pdot = e �dτ z, (7)

where �d is a displacement vector from the quantum dot to
the surface of the superconductor (we assume an essentially
vanishing screening length) and τ z = +1 if the electron is on
the quantum dot and −1 if the electron is on the qubit. The
qubit-dot dipole moment will couple to electromagnetic noise
via

HQD-E = 1
2 �pdot ⊗ δ �E(t). (8)

Unlike the case of the qubit, which we want to be able to stay in
a superposition for extended times, a successful measurement
relies on collapsing the quantum mechanical state of the MZM
island-quantum dot system. The corresponding dephasing time
therefore quantifies how fast the environment measures the
MZM parity p23. Moreover, if the combined MZM island-
quantum dot system populates the charge excited state during
the initialization process, a short relaxation time can help to
quickly return the system to its ground state.

Noise in the electromagnetic environment is given by

SE(ω) =
∫

dt
eiωt

2π

( 〈δEz(t)δEz(0)〉 + 〈δEz(0)δEz(t)〉
2

)
,

(9)

and is generally believed to be due to slow fluctuations of
two level states in the environment [28,29]. We do not have
a microscopic model of these processes, so we extract the
low-frequency form of these fluctuations, which are assumed
to have a 1/f frequency dependence, from experiments on
similar devices [30–34]:

SE(ω) = αE

ω
. (10)

Other noise sources affecting the MZM qubit are coupling
to phonons and finite temperature excitations of quasiparticles
in the superconductor. The former couples to the charge
distribution in the MZM qubit in much the same way as
1/f charge noise, but is predicted to have a smaller effect
that becomes negligible when the wires are sufficiently long;
see Sec. IV and Appendix D. Conversely, thermally excited
quasiparticles only become a relevant noise source compared
to 1/f charge noise when the wire is sufficiently long such that
eL/ξ � eβ�; see Sec. IV and Appendix E.

FIG. 2. Relevant geometry for the charge distribution calculation
in Sec. III with the same legend as in Fig. 1. Analogous to the qubit
designs, there are two topological segments (each hosting a MZM at
either end) of length L and a trivial superconducting region labeled
(s) of length �.

III. HYBRIDIZATION ENERGY AND CHARGE
DISTRIBUTION IN MZM QUBITS

In this section, we calculate the hybridization energy and
the charge distribution resulting from the overlap between
the MZMs γ1 and γ2 (or equivalently between γ3 and γ4)
in Fig. 2. We expect the essential physics of this simpli-
fied geometry to be the same as that of the MZM qubits
shown in Fig. 1 when the qubit is idle (i.e., the auxiliary
quantum dot is disconnected from the superconducting is-
lands). In order to avoid subtleties in the interpretation of the
charge distribution calculated with BCS mean-field theory,
we will use the explicitly charge-conserving formalism of
Refs. [35–37]. We compare our results with previous studies
of the hybridization energy [38,39] and charge distribution
[40–42] at the end of each subsection.

We model the topological segment (j ) of the device shown
in Fig. 2 as a one-dimensional spinless semiconducting wire
in contact with a quasi-one-dimensional algebraically ordered
superconductor. This model allows us to set up a controlled
theory to study how phase fluctuations couple to MZMs,
and ultimately to extract how the energy splitting and charge
distribution depend on the fermion parity. Electron operators
in the semiconductor can be bosonized as

ψ (j )
r (x) ∼ e−i(rφj (x)−θj (x)), (11)

where r = ±1 for right or left movers. The superconductor
electron operators are described in terms of spin (σ ) and charge
(ρ) modes

ψr,σ (x) ∼ e
− i√

2
(rφρ (x)−θρ (x)+σ (rφσ (x)−θσ (x)))

, (12)

where σ = ±1 for up or down spins and r = ± corresponds to
right and left movers. The fields φα(x),θβ(x ′) satisfy the usual
commutation relations

[∂xφα(x),θβ (x ′)] = iπδ(x − x ′)δαβ, (13)

for α,β ∈ {1,2,ρ,σ }.
The above definitions yield the bosonized effective La-

grangian introduced in Ref. [36],

L = L(1) + L(2) + L(s), (14)

where the trivial superconducting backbone is described by

L(s) = 1

2π

∫ L+�

L

dx

{
−2i(∂τ θρ)(∂xφρ) + Kρvρ(∂xθρ)2

+ vρ

Kρ

(
∂xφρ − k

(ρ)
F

)2
}
, (15)
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and the topological sections are described by

L(1) = 1

2π

∫ L

0
dx

{
−2i(∂τ θ1)(∂xφ1) + Kv(∂xθ1)2 + v

K
(∂xφ1 − kF )2 − 2i(∂τ θρ)(∂xφρ)

+ Kρvρ(∂xθρ)2 + vρ

Kρ

(
∂xφρ − k

(ρ)
F

)2 − �P

a
cos(

√
2θρ − 2θ1)

}
, (16)

L(2) =
∫ 2L+�

L+�

dx{(1) ↔ (2)}. (17)

The Luttinger parameter and Fermi velocity are K and v,
respectively, for the semiconducting wires, and Kρ and vρ

for the superconductor’s charge mode. The pairing term,
�P

2πa
cos(

√
2θρ − 2θj ), emerges from integrating out the gapped

spin degrees of freedom in the s-wave superconductor [36].
Here, �P and a are the Cooper-pair-hopping amplitude and
the theory’s short distance cutoff, respectively.

As follows from Eqs. (11) and (12), the fields ∂xφρ/j

represent the total particle number in the superconductor
and semiconductors, respectively. These field definitions lead
to periodic boundary conditions, thereby simplifying the in-
stanton calculation of the hybridization energy below (by
avoiding twisted boundary conditions due to phases of the form
exp {ikF L}). As such, the density of the wires is fixed explicitly
in the Hamiltonian by including shifts of ∂xφj by kF , and of
∂xφρ by k

(ρ)
F .

In order to obtain low-energy effective description, we first
run the renormalization group (RG) procedure. The supercon-
ducting pairing term is relevant and flows to strong coupling
according to

dy

dl
=

(
2 − 1

2Kρ

− 1

K

)
y, (18)

where y = �P a/ṽ, and the length scale l is defined in terms
of the short distance cutoff a0 as l = log(a/a0). We define
the coherence length ξ as the length scale for which y(l) = 1,
implying

ξ = a0

(
ṽ

�P a0

)(2−(2Kρ )−1−(K)−1)−1

, (19)

where the effective Fermi velocity is given by

ṽ = vρ/2Kρ + v/K. (20)

In the following, we will work in the strong-coupling limit,
for which the RG is carried out until the short distance cutoff
a → ξ . We take the mean field limit of this model to be when
the velocities v and vρ are unchanged, the semiconductor
is noninteracting (K → 1), and the superconductor has an
infinite number of channels (Kρ → ∞) [43,44]. Taking this
limit, we recover the mean field expressions: ṽ → v and
ξMF ≡ ξ (Kρ,K = 1)|Kρ→∞ = v/�P .

At this scale (a → ξ ), one can neglect spatial fluctuations
of the fields θj/ρ and take into account only uniform tem-
porally fluctuating modes. Integrating out the φj/ρ fields, we

have

L(j ) = L

2π

{
K

v

(
∂τ θj − i

v

K
kF

)2

+ Kρ

vρ

(
∂τ θρ − i

vρ

Kρ

k
(ρ)
F

)2

− �P

ξ
cos(

√
2θρ − 2θj )

}
. (21)

For the topological wire (j ), we define average and difference
fields between the nanowire and superconducting shell to be

θ+
j = 1

2

(
1√
2
θρ + θj

)
, (22)

θ−
j = 1√

2
θρ − θj . (23)

In terms of these fields, Eq. (21) becomes

L(j ) = L

2π

{
1

2

[
Kρ

vρ

+ K

2v

][
4(∂τ θ

+
j )2 + (∂τ θ

−
j )2

]

+ 2

[
Kρ

vρ

− K

2v

]
(∂τ θ

+
j )(∂τ θ

−
j ) − �P

ξ
cos(2θ−

j )

− 2i
(√

2k
(ρ)
F + kF

)
∂τ θ

+
j − i

(√
2k

(ρ)
F − kF

)
∂τ θ

−
j

}
.

(24)

Integrating out the quadratic fields θ+
j results in the effective

action for θ−
j :

Seff = L

2π

∫
dτ

{
1

ṽ
(∂τ θ

−
j + iμ−)2 − �P

ξ
cos(2θ−

j )

}
, (25)

where

μ− ≡ v

K
kF − vρ√

2Kρ

k
(ρ)
F . (26)

The quantity μ− can be understood as the Fermi energy of
the semiconductor measured relative to the Fermi energy of
the superconductor, we will henceforth refer to this as the
relative Fermi energy. We comment below on the role of μ− in
the dephasing of the topological qubit. In the mean field limit,
the superconductor’s Fermi energy is fixed; as such μ− is only
determined by the Fermi energy of the semiconductor. Recall
that we are working in the limit that the gap in the (trivial)
superconducting backbone is much larger than the gap in the
topological sections of the qubit, so that fermion tunneling
between the regions (1) and (2) is strongly suppressed. For
this reason, we have dropped an interwire coupling term,
δS(12) ∝ ∫

dτ1dτ2∂τ1θ
−
1 (τ1)∂τ2θ

−
2 (τ2), which we do not expect

to qualitatively change our results.
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The two ground states of the system are (θ−
1 ,θ−

2 ) = (0,0)
or (0,π ). The states (π,π ) and (π,0) are equivalent to, respec-
tively, (0,0) or (0,π ). As discussed in Ref. [36], symmetric and
antisymmetric superpositions of the two ground state config-
urations of (θ−

1 ,θ−
2 ) are associated with even and odd fermion

parity in the two topological wires. Therefore, all information
about the topological qubit (i.e., the MZM parity) is contained
in the configuration of the θ−

j fields. The splitting between the
two ground states can be obtained from an instanton calculation
in which θ−

1 winds by π while θ−
2 remains unchanged, or vice

versa. The two key features for the present purposes are (1)
an instanton event takes the system between the two fermion
parity states, as such the resulting degeneracy splitting can be
associated with the MZM hybridization energy;, and (2) there is
a relative charge density buildup associated with this instanton
and, therefore, with the MZM parity state.

A. MZM hybridization energy

In an instanton/anti-instanton solution, θ−
j (τ ) interpolates

between θ−
j (−∞) = 0 and θ−

j (∞) = ±π , e.g.,

θ−
1 (τ ) = ±π

2

(
1 + tanh

[√
�P ṽ

ξ
(τ − τ0)

])
. (27)

There are similar instantons in which the phase winds on
the other topological segment. We neglect multi-instanton
solutions, since they have larger action and are, therefore, ex-
ponentially suppressed compared to the single instanton/anti-
instanton solutions. There is a one-parameter family of such
instanton/anti-instanton solutions, parametrized by the mid-
point in imaginary time of the instanton, τ0. We must average
over τ0 to include the effect of the entire family. Instantons and
anti-instantons contribute with opposite phases (due to the μ−
term in the action) and have opposite charge [due to the ± sign
in Eq. (27)].

The instanton calculation results in the following expression
for the degeneracy splitting:

εhyb = A cos

(
Lμ−

ṽ

)
exp

{
− L

ξMF
f (Kρ,K)

}
, (28)

where the dimensionless function in the exponent is

f (Kρ,K) = 2
√

2
π

√
ξMF

ξ
. Up to numerical prefactors of order

one, the constant A is given by the attempt frequency
A = √

�P ṽ/ξ . Equation (28) is one of our main results of
this section and a reporting of the hybridization energy in a
charge conserving formalism that captures both the oscillatory
dependence and exponential suppression of the degeneracy
splitting with length. In the mean field limit (i.e., Kρ → ∞,

vρ = const), εMF
hyb ∼ cos (kF L)exp{− 2

√
2L

πξMF
}, which agrees with

previous mean field calculations of the degeneracy splitting in
a topological superconductor [38,39].

B. Charge distribution

To calculate the charge distribution associated with the
MZMs, we first consider the charge densities in one of the
semiconducting wires 〈ρj 〉 = 1

π
K
v
〈∂tθj 〉 and the neighboring

region of the trivial superconductor 〈ρρ〉 =
√

2
π

Kρ

vρ
〈∂tθρ〉. In

terms of θ− fields, one finds

〈ρj 〉 = − 1

πṽ
〈∂tθ

−
j 〉 + Kvρ

π

( √
2k

(ρ)
F + kF

2Kρv + vρK

)
, (29)

〈ρρ〉 = + 1

πṽ
〈∂tθ

−
j 〉 + 2Kρv

π

( √
2k

(ρ)
F + kF

2Kρv + vρK

)
. (30)

Only the first term on the right side of Eqs. (29) and (30) de-
pends on the field configuration of θ−

j and thus on the fermion
parity of wire (j ). As one can see, the total charge expectation
value of the system, 〈ρj 〉 + 〈ρρ〉 is independent of the θ−

j

field and thus does not encode any topological information.
Instead, the MZM parity is encoded in a line dipole moment
forming between the semiconductor and superconductor. Only
environmental degrees of freedom that resolve the charge
separation of this dipole moment couple to the MZM charge
distribution. We comment on the relevant distance scale for
this dipole moment at the end of this section.

Equations (29) and (30) hold even if we extend the triv-
ial superconducting region to infinity, corresponding to a
grounded superconductor. In the model presented in Ref. [35],
the topological wire is an intrinsic p-wave superconductor
with an odd number of channels. The role played here by
the semiconductor and superconductor is instead played by
different channels. As the corresponding wave functions will
have different transverse profiles, the MZM overlap will result
in some multipole charge distribution.

More explicitly, using the expression given in Eq. (27) for
the instanton contribution to θ−

1 , we can calculate the MZM
parity-dependent relative charge density 〈ρ−〉 = 1

πṽ
〈∂tθ

−
1 〉.

Approximating this charge as uniformly spread over the length
of the topological section, we find

�QMZM

e
= − L√

ξMFξ
sin

(
Lμ−

ṽ

)
exp

{
− L

ξMF
f

(
Kρ,K

)}
.

(31)

Ultimately, we are interested in how the charge distribution
associated with the MZMs couples to charge noise in the
topological qubit’s environment. We expect electric field fluc-
tuations to vary the parameters of the semiconductor (kF ,v)
relative to those of the superconductor (k(ρ)

F ,vρ), resulting in
noise in the relative Fermi energy μ−. One can verify that
�QMZM/e = ∂μ−εhyb; combining this expression with Eq. (6)
we have

�ptop = �QMZM
∂μ−
∂Ez

ẑ. (32)

Importantly, we see that charge noise only couples to the topo-
logical qubit through the relative Fermi energy μ− between
the semiconductor and superconductor; total charge does not
couple to the qubit state. Note that in the above argument
we have assumed that ξ and ξMF are parameters independent
of μ−. Since the leading order μ− dependence of �P and
v tends to cancel in ratios v/�P (see Appendix C), charge
fluctuations predominantly couple to the prefactor rather than
the exponential of the hybridization energy in Eq. (28).
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From Eq. (30), we see that including superconducting
fluctuations was essential to observing the formation of a
parity-dependent line dipole moment between the semiconduc-
tor and superconductor. We now compare our results with the
ones obtained using the BCS mean-field approximation, where
superconducting fluctuations are not considered. Previous
calculations using BCS mean-field theory concluded that there
is a parity-dependent charge correction in the semiconductor
only. Indeed, in the mean-field limit of our charge conserving
formalism, our expression for �QMZM agrees with the BCS
mean-field theory expressions in Refs. [40–42]. However,
the latter two papers do not take into account the screening
of charge by the superconducting condensate, which exactly
cancels the semiconducting contribution so that the total charge
is independent of θ−

j . Thus noise that couples to the total charge
of the island does not contribute to dephasing of the topological
qubit. Instead, we find that fluctuations in the electric field
that couple to the line dipole moment at the superconductor-
semiconductor interface contribute to dephasing. Previously,
based on BCS mean-field theory calculations, �QMZM was
either thought to be an absolute line charge [41,42], or the
relevant distance scale entering the line dipole moment was
assumed to be on the order of the semiconducting wire’s
diameter, w [40]. Although our calculation does not include an
estimation of the relevant length scale separating the charge in
the semiconductor and superconductor, simulations of Al-InAs
nanowires [45] indicate that there is an accumulation layer
at the superconductor-semiconductor interface, resulting in a
suppression of the dipole moment found in Ref. [40] by at
least a factor of r/w ∼ 0.1, where r is the separation between
the semiconductor and superconductor wave functions. We
therefore do not expect the charge �QMZM to be observable via
charge sensing for wires satisfying L/ξ > 5, as was suggested
in Refs. [41] and [40]. The combination of the MZM charge
distribution being interpreted as a dipole moment, and the
concentration of the charge near the interface, suppresses the
image charge effect discussed in Ref. [42] by a factor of
(r/w)2. As such, detecting the dielectric screening of the charge
buildup in the topological wire is beyond current experimental
reach.

IV. DEPHASING OF MZM QUBITS

We now use the charge distribution �QMZM derived in
the previous section to calculate the dephasing time of a
topological qubit. We define the pure dephasing time, T ∗

2 , of
the qubit to be the time scale over which off-diagonal elements
of the qubit density matrix decay: B2(T ∗

2 ) = 1, where B2(t) is
given in Eqs. (2) and (3). All qubit operations must occur on a
faster time scale than the dephasing time; thus understanding
the behavior of T ∗

2 is critical for designing and building a
working qubit.

Note that topological qubits are special in the sense that
ideally there is no energy splitting between the two qubit states;
thus which processes we call dephasing and which we call
relaxation amounts to a choice of basis. We start by choosing
the z basis of the qubit as the parity of iγ1γ2 and neglect fermion
tunneling between the two topological wires, thus reducing
the problem to pure dephasing. We comment on relaxation
processes at the end of this section.

The dephasing processes considered in this section are noise
in the electromagnetic environment (E), coupling to phonons
(ph), and finite temperature excitations (β). We make the
approximation that all noise sources are independent and write
the dephasing exponent as a sum of the dephasing exponents
from each noise source:

B2(t) = B2
E(t) + B2

ph(t) + B2
β(t). (33)

We do not take into account disorder in our estimates of the
different dephasing processes. Our results therefore represent
the unavoidable intrinsic dephasing that is left even if growth
and fabrication of the qubits is optimized. Given that topologi-
cal qubits will likely be built from epitaxially grown nanowires
with clean semiconductor-superconductor interfaces [24], we
expect that our estimates provide a good guideline for realistic
dephasing times.

We begin by considering the effect of the electromagnetic
environment on the qubit. From Eqs. (5) and (6), we see that
Eq. (2) becomes

B2
E(t) = | �ptop|2

∫ ∞

1/t

dω
αE

ω

sin2(ωt/2)

(ω/2)2 , (34)

where we have used Eq. (10) for the spectral function. This
expression is weakly dependent on the lower frequency cutoff,
which we have approximated as 1/t ; essentially this choice of
cutoff frequency amounts to only considering the noise remain-
ing after a “charge echo pulse” [30]. Solving for B2

E(T ∗
2,E) = 1,

we find

T ∗
2,E = (| �ptop|√αEκ)−1, (35)

where κ ≡ 1 − cos[1] + sin[1] − Ci[1] ≈ 0.96 [46]. We make
the approximation that electric field can be related to the gate
voltage (assumed to be applied directly at the side of the wire
opposite to the superconducting shell) by Ezw = Vg , where w

is the diameter of the topological wire [47]. We can then write
the topological dipole moment as

�ptop ∼ �QMZM

(
∂μ−
∂Vg

w

)
ẑ. (36)

Plugging Eq. (31) into Eqs. (35) and (36), we see that if
ξ ≈ ξMF, the pure dephasing time grows with L/ξ as

T ∗
2,E = c

ξ

L
exp

{
2
√

2

π

L

ξ

}
, (37)

where c = (w(∂Vg
μ−)

√
αEκ)−1. Simulation of a mean-field

InAs nanowire with radius w = 60 nm, proximity-coupled
to an Al superconducting shell, estimates the relative Fermi
energy to change with gate voltage as ∂Vg

μ− ∼ 0.1 [45].
Making the approximation that electric field noise will be
similar to the values reported in Refs. [31–34], we set αE =
10 (V/m)2 (see Appendix F), resulting in c ≈ 40 ns. Our
estimates for the dephasing time for different values of L/ξ

are reported in Table I. The dephasing times for long wires
are predicted to be orders of magnitude larger than dephasing
times of conventional charge qubits precisely because �QMZM

is a small fraction of an electron charge.
In addition to 1/f charge noise, we can also consider

dephasing from phonons coupling to the charge distribution
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TABLE I. Dephasing times for the parameters of bulk InAs
evaluated at different values of L/ξ for different noise sources. The
first row is the pure dephasing time due solely to 1/f charge noise,
T ∗

2,E , which grows exponentially with wire length; see Eq. (37). The
second row is the pure dephasing time due solely to thermally excited
quasiparticles in the superconductor, T ∗

2,β , which grows linearly with
L/ξ in thermal equilibrium. The latter only becomes relevant for long
wires. The last row is the pure dephasing time due to all three noise
sources discussed in Sec. IV. We do not define a dephasing time
due solely to coupling to phonons as B2

ph(t) < 1 for experimentally
reasonable time scales; see Eq. (40); coupling to phonons shifts the
dephasing time for short wires, L/ξ = 5, but has negligible effect
for longer wires. The time estimates in the table do not take into
account corrections due to disorder or nonequilibrium quasiparticles
in the superconductor. The asterisk on the last column, L/ξ ∼ 30,
indicates that these corrections are likely to become important once
the dephasing time estimate from intrinsic physics of the qubit (finite
size effects, phonons, thermal quasiparticle excitations) has reached
the order of minutes.

L/ξ 5 10 20 30∗

T ∗
2,E 600 ns 30 μs 100 ms 10 min

T ∗
2,β 2 min 4 min 8 min 12 min

T ∗
2 200 ns 30 μs 100 ms 7 min

in the MZM qubit:

B2
ph(t) =

∫ ωD

0
dω Sph(ω)

sin2(ωt/2)

(ω/2)2
, (38)

where ωD is the Debye frequency and the phonon spectral
function at zero temperature can be approximated by (see
Appendix D)

Sph(ω) =
(

�QMZM

e

)2 1

(2π )2ρv3

(
D2

v2
ω3 + (eh14)2Miiω

)
,

(39)

where ρ is the mass density of the semiconductor, v is the
average of the phonons’ longitudinal and transversal veloci-
ties, D is the deformation potential, h14 is the piezoelectric
coupling, and Mii is an order one numerical factor that depends
on the nanowire or quantum well geometry. At long times, for
ξ ≈ ξMF, the phonon contribution to Eq. (33) grows as

B2
ph(t � 1 s) ≈

(
L

ξ

)2

exp

{
−4

√
2

π

L

ξ

}
[a + b log(t)],

(40)

where, for the parameters of bulk InAs, a ≈ 300, b ≈ 0.1,
and t is measured in seconds; see Appendix D. Thus, for any
reasonable time scales, coupling to phonons only contributes
to the MZM qubit dephasing when the constant term is of order
one, i.e., L/ξ � 6.5. For longer wires, coupling of the MZM
qubit to phonons has a negligible effect on the dephasing time.

Yet another source of qubit dephasing is finite-temperature
excitations of quasiparticles in the superconductor. In ther-
mal equilibrium, finite-temperature dephasing is exponentially

suppressed in β� rather than in L/ξ (see Appendix E):

T ∗
2,β = τ0

L

ξ
exp{β�}. (41)

For the electron-phonon couplings in bulk InAs, τ0 ∼ 50 ns.
Using a typical value of β� ∼ 20, we estimate correspond-
ing dephasing times of the order of minutes; see Table I.
We therefore conclude that in equilibrium dephasing from
thermally excited quasiparticles can be neglected until the
system is deep inside the toplogical regime (L/ξ � 20). At
low enough temperatures, the superconductor may not reach
thermal equilibrium and exp{−β�} in Eq. (41) is replaced
by

√
2�β/πNqp, where Nqp is the number of nonequilibrium

quasiparticles. Given the small volume of the superconductor,
we expect Nqp 	 1, which still leads to long dephasing times.
The concentration of nonequilibrium quasiparticles is highly
system dependent and in most cases can be avoided by properly
shielding the superconductor from extrinsic excitations; as
such we do not attempt to estimate the correction to the finite-
temperature dephasing times from nonequilibrium effects here.

Finally, we note that throughout we assumed the limit of
large charging-energy protection and thus neglected extrinsic
quasiparticle poisoning as a noise source. The latter could take
the qubit from its ground state subspace with total fermion
parity even to an excited state subspace with total fermion
parity odd. Extrinsic quasiparticle poisoning is exponentially
suppressed in the ratio of charging energy to temperature,
∼exp{−βEC}, and can be ignored provided EC/T � 1. Note
that the charging energy decreases with qubit size (EC ∼ L−1

for nearly linear qubits); thus we need to use suitably designed
qubits to justify ignoring this contribution to the dephasing.

In the above discussion we focused on a situation for which
the qubits are susceptible to dephasing, but not to relaxation. If
we include interwire fermion tunneling, MZMs γi and γj will
in general be coupled by some hybridization energy εij and
the same noise sources responsible for dephasing will cause the
qubit to relax to its absolute ground state. The time scale of this
relaxation is roughly given by T1 ∼ (παE|ε23 + iε24|2/ε12)−1,
see Appendix A, which is longer than the dephasing time
provided ε12 > ε23,ε24.

V. OTHER EFFECTS OF CHARGE NOISE
ON THE MZM QUBIT SYSTEM

Both 1/f charge noise and phonons couple to the qubit
via a relative charge buildup between the semiconducting and
superconducting wires forming in the topological sections of
the qubit. This charge is exponentially suppressed in L/ξ ; thus
in the ideal limit of infinitely separated MZMs, the qubit would
be immune to such noise sources. Essentially, finite-sized wires
turn the MZM qubit into charge qubits, albeit with a much
weaker coupling to the environment because �QMZM is only
a small fraction of an electron charge. As such, the dephasing
times predicted in Table I are orders of magnitude larger than
typical nanosecond-scale dephasing times for conventional
charge qubits [29,30,32].

In addition to setting the qubit coherence times T1 and
T ∗

2 , one might wonder whether 1/f charge noise could
resolve the discrepancy between the predicted oscillatory
behavior of the MZM hybridization energy εhyb; see Eq. (28)
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and Refs. [40,41,48–50], and either the lack of oscillations
[16,18,19,51] or the decay of oscillations with magnetic field
[22] observed in Majorana nanowire experiments. This dis-
crepancy has been the subject of many studies [42,52–54], but
has not yet been resolved. If Eq. (28) is subject to a fluctuating
electric field, the argument of the cosine can be expanded as a
constant plus a fluctuating piece,

Lμ−
ṽ

∼ Lμ̄−
ṽ

+
(

L

ṽ

∂μ−
∂Vg

w

)
δEz, (42)

where we have written the average relative Fermi energy of the
topological wire as μ̄− and made the same approximation as
before that Ezw = Vg . The second term must be of order π to
wash out the cosine oscillations. For L = 1 μm, ṽ ∼ 105 m/s,
δEz ∼ √

10 V/m, and the parameter values used in Sec. IV,
the second term is too small by a factor of 10−4. We thus do not
believe that charge noise can explain the lack of oscillations in
present-day experiments.

Lastly, we note that 1/f charge noise will also couple to the
MZM qubit when it is tuned into a measurement configuration
involving the auxiliary quantum dot in Fig. 1. As reviewed
in Sec. II and Appendix B, an electron hopping between the
quantum dot and superconducting island forming the MZM
qubit will have a corresponding dipole moment �pdot, which
couples to 1/f charge noise in the same manner as does the
topological dipole moment �ptop. The two-level MZM island-
quantum dot system dephases on a time scale

τ ∗
2 ∼ (| �pdot|√αEκ

)−1
. (43)

Furthermore, since the system-environment Hamiltonian will
not be diagonal in the system’s energy basis, the dot-MZM
island system will relax to its ground state on a time scale
set by the MZM island charging energy EC and the parity-
dependent tunneling amplitude t̃ between the quantum dot and
MZM island:

τ1 ∼
(

4|t̃ |2
E2

C

| �pdot|2 παE

EC

)−1

. (44)

For |t̃ |/EC ∼ 0.1, EC ∼ 1 K, and d ∼ 100 nm, τ1 ∼ 5 μs
and τ ∗

2 ∼ 2 ns; see Appendix B for details. Converse to the
dephasing time T ∗

2 of the MZM qubit, which we want to
be as long as possible, it is beneficial for τ1 and τ ∗

2 to be
short. The time τ ∗

2 quantifies how quickly the environment
collapses the state during a measurement. Taking into account
the measurement apparatus this time scale will be even shorter.
Since the MZM parity measurement relies on the dot-MZM
island system being in its ground state, τ1 effectively sets a
lower bound on the measurement time if in the initialization
of the measurement the charge-excited state of the system is
significantly populated.

VI. CONCLUSIONS

In this paper, we investigated intrinsic contributions to
dephasing of charge-protected Majorana-based qubits built
from topological superconducting nanowires, shown in Fig. 1.
We calculated the hybridization energy between two MZMs
in a charge-conserving formalism, demonstrating that the
oscillatory behavior depends on the relative Fermi energy

between the semiconductor and superconductor comprising
the topological nanowire. Furthermore, we found the charge
distribution resulting from the MZM overlap is a dipole
moment between the line charges in the semiconductor and
superconductor; the relevant length scale entering into this
dipole moment is anticipated to be much smaller than the
wire radius due to an accumulation layer at the semiconductor-
superconductor interface. Thus our findings indicate that ex-
perimental detection of the charge distribution due to the MZM
overlap requires much greater sensitivity than was previously
suggested [40–42].

By estimating the electrostatic environment to be similar to
that in experiments on related devices [30–34], we calculated
dephasing times due to 1/f charge noise coupling to the dipole
moment discussed in the previous paragraph. We reported
these dephasing times in Table I for different values of MZM
separation. By comparing dephasing from 1/f charge noise to
dephasing from the dipole moment coupling to phonons and
from thermally excited quasiparticles in the superconductor,
we expect that 1/f charge noise will be the dominant noise
source for charge-protected MZM qubits. We neglected ex-
trinsic contributions to the dephasing times, such as disorder
in the superconductor, which are beyond the scope of this paper.
We also find that during a measurement of the qubits in Fig. 1,
1/f charge noise couples to a dipole moment formed between
the MZM island and the auxiliary quantum dot. The coherence
times associated with the combined quantum dot–MZM island
system describe how quickly the environment measures the
MZM parity.

Our results have important implications for future exper-
iments on Majorana-based qubits. In particular, in order to
observe Rabi oscillations in either of the qubit designs shown
in Fig. 1, for instance by coupling MZMs γ2 and γ3 for a fixed
amount of time, it is necessary that the energy splitting satisfies
ε23T

∗
2 > 1 so that multiple oscillations may be observed before

the qubit dephases. For L/ξ = 5, our estimate of T ∗
2 ∼ 200 ns

suggests that ε23 must be greater than 5 MHz.
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APPENDIX A: MASTER EQUATION DERIVATION

In this appendix, we derive explicit expressions for the
pure dephasing time T ∗

2 and the relaxation time T1. We begin
by assuming that a system with density matrix ρ(t) has a
weak interaction with the environment so that the Hamilto-
nian HSE = σ

2 ⊗ � can be treated perturbatively. We further
assume the environment is in thermal equilibrium, described by
density matrix ρE . The interaction picture Heisenberg equation
to second order in HSE is

ρ̇I (t) = −
∫ t

0
dt ′ trE([HSE(t),[HSE(t ′),ρI (t ′) ⊗ ρE]]).

(A1)
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We can expand the double commutator and trace over the environmental degrees of freedom, yielding

−ρ̇I (t) = 1

4

∫ t

0
dt ′{〈�(t)�(t ′)〉(σ (t)σ (t ′)ρI (t ′) − σ (t ′)ρI (t ′)σ (t)) + 〈�(t ′)�(t)〉(ρI (t ′)σ (t ′)σ (t) − σ (t)ρI (t ′)σ (t ′))}. (A2)

We have written 〈�(t)�(t ′)〉 = trE{�(t)�(t ′)ρE}. Provided the correlation time of the environment is short, we can approximate
ρI (t ′) ≈ ρI (t) and extend the lower limit of integration to −∞:

ρ̇I (t) = 1

4

∫ t

−∞
dt ′{〈�(t)�(t ′)〉(σ (t)σ (t ′)ρI (t) − σ (t ′)ρI (t)σ (t)) + 〈�(t ′)�(t)〉(ρI (t)σ (t ′)σ (t) − σ (t)ρI (t)σ (t ′))}. (A3)

Finally, we change variables so that t ′ → t − t ′ and rewrite our equation in the Schrödinger picture. Denote the energy basis of
the system Hamiltonian by {|m〉} such that HS |m〉 = εm|m〉. Inserting resolutions of identity and writing �mn ≡ εm − εn we have

ρ̇sr (t) + i(Es − Er )ρsr (t) = −1

4

∑
mn

∫ ∞

0
dt ′(〈�(t ′)�(0)〉[e−i�mnt

′
σsmσmnρnr (t) − e−i�smt ′σsmρmn(t)σnr ]

+〈�(0)�(t ′)〉[e−i�mnt
′
ρsm(t)σmnσnr − e−i�nr t

′
σsmρmn(t)σnr ]). (A4)

The master equation given in Eq. (A4) is generally hard
to solve. We focus on the special case for which we can
expand σ in terms of Pauli matrices, σ = ∑

j ajσ
j with

az � |ax + iay |. When considering the pure dephasing time,
we restore the original upper limit of integration to t rather
than +∞. Then, we can approximate the equation for the
off-diagonal density matrix elements as

ρ̇01(t) − i�10ρ01(t)

= −ρ01(t)
a2

z

2

∫ t

0
dt ′(〈�(t ′)�(0)〉 + 〈�(0)�(t ′)〉). (A5)

We are generally interested in understanding how the magni-
tude of the off-diagonal elements decay, given by

d

dt
|ρ01(t)| = d

dt

√
ρ01(t)ρ10(t)

= −|ρ01(t)|a
2
z

2

∫ t

0
dt ′(〈�(t ′)�(0)〉 + 〈�(0)�(t ′)〉).

(A6)

We define the spectral function by Eq. (4), which may be
equivalently written as

〈�(t)�(0)〉 + 〈�(0)�(t)〉 = 4
∫ ∞

0
dω cos(ωt)S�(ω). (A7)

Then, our expression for the off-diagonal density matrix
elements becomes

d

dt
|ρ01(t)| = −|ρ01(t)|2a2

z

∫ ∞

0
dω

sin(ωt)

ω
S�(ω). (A8)

Integrating both sides results in Eqs. (2) and (3).
The pure dephasing time is defined by B2(T ∗

2 ) = 1. In the
case of 1/f charge noise,

1 = a2
z αE

∫ ∞

2π/T ∗
2

dω
sin2(ωT ∗

2 /2)

ω(ω/2)2
= (

T ∗
2

)2
a2

z αEκ, (A9)

where κ = 1 − cos(1) + sin(1) − Ci(1) ≈ 0.96.
The relaxation time is the time scale on which the diagonal

density matrix element ρ11(t) decays. If we assume T1 � T ∗
2 ,

then we can consider Eq. (A4) on time scales for which the

off-diagonal density matrix elements are negligible:

ρ̇11(t) = − ρ11(t)
|ax + iay |2

4

∫ ∞

0
dt ′

× (〈�(t ′)�(0)〉e−i�01t
′ + 〈�(0)�(t ′)〉e−i�10t

′
)

+ ρ00(t)
|ax + iay |2

4

∫ ∞

0
dt ′

× (〈�(t ′)�(0)〉e−i�10t
′ + 〈�(0)�(t ′)〉e−i�01t

′
).

(A10)

Noting that ρ00(t) = 1 − ρ11(t), we can rewrite the above as

ρ̇11(t) = −ρ11(t)
|ax + iay |2

4

∫ ∞

0
dt ′2 cos(�10t

′)

× (〈�(t ′)�(0)〉 + 〈�(0)�(t ′)〉)

+ |ax + iay |2
4

∫ ∞

0
dt ′

× (〈�(t ′)�(0)〉e−i�10t
′ + 〈�(0)�(t ′)〉e−i�01t

′
).

(A11)

The last line just provides a constant term. Plugging the spectral
function into the first line, we find that the diagonal density
matrix element decays as

ρ11(t) = ρ11(0)exp(−π |ax + iay |2S�(�10)t). (A12)

Defining the relaxation time to be the value of t for which the
argument of the exponent equals −1, we have

(T1)−1 = π |ax + iay |2S�(�10). (A13)

APPENDIX B: TETRON MEASUREMENT

In this appendix, we review how a MZM parity measure-
ment is performed for the MZM qubits of Fig. 1. We then
discuss the effect of 1/f charge noise on the measurement
process.

To perform a two-MZM parity measurement, MZMs γ2 and
γ3 are tunnel coupled to an auxiliary quantum dot; see Ref. [27]
for full details. The idle qubit is described by

H0 = HBCS + EC(N̂S − Ng)2, (B1)
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where the first term is the BCS Hamiltonian and the second
term is the charging energy Hamiltonian protecting the qubit
from extrinsic quasiparticle poisoning. The charging energy
of the MZM qubit, EC , is assumed to be large so that in the
ground state the number of fermions in the island, counted by
the operator N̂S , is the integer closest to the dimensionless gate
voltage, Ng .

An effective Hamiltonian describing the auxiliary quantum
dot with a single spinless fermion level is

HQD = hn̂d + εC(n̂d − ng)2, (B2)

where h is an effective parameter coming from the orbital
energies of the dot, εC is the charging energy of the dot,
n̂d counts the electrons on the dot, and ng is the dot’s
dimensionless gate voltage. The two lowest energies of the
isolated quantum dot are

ε0(ng) = εCn2
g, (B3)

ε1(ng) = εC(1 − ng)2 + h. (B4)

To perform a measurement, tunnel barriers are lowered
so that the quantum dot and MZM qubit are coupled by a
Hamiltonian

Htunn = − i e−iφ/2

2
(t2d

†γ2 + t3d
†γ3) + H.c. (B5)

The operators eiφ/2 and d† add an electron to the MZM qubit
and quantum dot, respectively. Electrons can tunnel between
the quantum dot and MZM γj with amplitude tj . The system
Hamiltonian for the quantum dot–MZM island system is

HS = H0 + HQD + Htunn. (B6)

One can see that the energies of HS will depend on the
MZM parity iγ2γ3, with eigenvalue p23. More specifically, at
Ng = 0, to lowest order in |t̃ |/EC where t̃ = − i

2 (t2 − p23t3),
the ground-state energy is

ε−(ng) = ε1(ng) − |t̃ |2
EC + ε0(ng) − ε1(ng)

, (B7)

when the decoupled system (tj = 0) begins in the state
|NS = 0〉|nd = 1〉. The charge distribution of the quantum dot
can be understood as a first derivative of the ground-state
energy with respect to the gate voltage applied to the quantum
dot:

qdot(ng) = e

(
ng − 1

2εC

∂ε−
∂ng

)
. (B8)

Working for simplicity at the quantum dot’s charge degenerate
point [i.e., ε1(n∗

g) = ε0(n∗
g)], the above is given by

qdot(n
∗
g) = e

(
1 − |t̃ |2

E2
C

)
. (B9)

Therefore, the quantum dot’s charge distribution will depend
on the MZM parity; as such the two-MZM parity can be
measured by charge sensing. Importantly, we see this is a
measurement of a ground-state property of the combined MZM
island-quantum dot system.

An electron tunneling between the auxiliary quantum
dot and MZM island has a corresponding dipole moment

�pdot = qdot �d , which couples to electric field fluctuations via

HSE = 1
2 �pdotτ

z ⊗ δ �E. (B10)

The Pauli matrix τ z is written in the basis of an electron
being on the quantum dot or the MZM island. In order to
understand coherence times of the quantum dot–MZM island
system, we need to expand τ z in the energy basis of the system
Hamiltonian, HS .

For simplicity, we will assume ng is tuned to the quantum
dot’s charge-degenerate point and that Ng is tuned to the
bottom of a charging parabola (Ng = 0). For fixed MZM
parity iγ2γ3 = p23, the system has just two levels and it is
straightforward to solve for the energies and eigenstates:

ε± − ε0/1(n∗
g) = 1

2

(
EC ±

√
E2

C + 4|t̃ |2), (B11)

|±〉 = 1

N±

(
EC ∓

√
E2

C + 4|t̃ |2,−2t̃
)T

, (B12)

where t̃ = −i/2(t2 − p23t3) and N± is a normalization factor.
In this basis, we have

�pdotτ
z = �a · �σ , (B13)

where �σ is the vector of the identity and Pauli matrices and

a1 = pdot
τ z
++ + τ z

−−
2

, (B14)

az = pdot
τ z
++ − τ z

−−
2

, (B15)

|ax + iay | = pdot|τ z
+−|. (B16)

We have written τ z
ab to denote 〈a|τ z|b〉, where a,b = ±. After

some algebra, one finds

az = −qdotd
EC√

E2
C + 4|t̃ |2

, (B17)

|ax + iay | = 2qdotd
|t̃ |√

E2
C + 4|t̃ |2

. (B18)

Plugging these expressions into Eqs. (A9) and (A13), we have
expressions for τ1 and τ ∗

2 , which agree with Eqs. (43) and (44)
to lowest order in |t̃ |/EC .

In order to infer the MZM parity iγ2γ3 from the charge
distribution on the quantum dot, the combined MZM qubit-
quantum dot system must be (predominantly) in the ground
state. If in the initialization of the measurement process the
system transitions to an excited state, the measurement time
must be long enough that it relaxes back to the ground state.
Therefore, τ1 is a lower bound on the measurement time
if the process of tuning into and out of the measurement
configuration is done diabatically. Note that if the system
remains in the ground state at all times, the measurement time
could be shorter than τ1.
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APPENDIX C: CHARGE NOISE COUPLING TO v AND �P

We now treat the dependency of the parameters v and �P

on the mean-field level using

v = kF

⎛
⎝ 1

m
− α2√

V 2
Z + α2k2

F

⎞
⎠, �P = αkF �0√

V 2
Z + α2k2

F

.

(C1)

Here, m, α, and kF are, respectively, the effective mass, spin
orbit coupling, and Fermi momentum of the band that hosts the
MZMs. For the p-wave gap we assume that the system is well
inside the topological regime with Zeeman energy VZ � �P .
�0 denotes the induced s-wave pairing.

Since the chemical potential of the superconductor will
not be affected by charge fluctuations we can set ∂μ− =
ṽ−1∂kF

. Using Eq. (C1) the derivative ∂μ−εhyb now has three
contributions. (1) The derivative of the attempt frequency is
of the order ∂μ−�P and yields a contribution Q

(1)
MZM, which

is bounded by εhyb/εF , with εF being the Fermi energy of the
band. (2) The contribution from the derivative of the cosine that
was used for Eq. (31) is Q

(2)
MZM ∼ εhyb/δ, where δ = v/L is the

level spacing. (3) The derivative of the exponent contributes as
Q

(3)
MZM ∼ (εhyb/δ)∂kF

ξ−1. Since the leading order dependence
of v and �P on kF cancels in ξ = v/�P , we find ∂kF

ξ−1 ∼
�P /εF . We therefore conclude that unless the system is close
to the fine-tuned point sin(μ−/δ) = 0, the relevant charge
dipole can be estimated by Q

(2)
MZM as stated in Eq. (31).

APPENDIX D: PHONON DEPHASING

Coupling of the MZM qubit to phonons can be treated
in a similar way to the electromagnetic noise. For the sake
of concreteness, we will focus on InAs devices. We neglect
phonons in the superconductor, which are expected to have a
subleading contribution. The phonon spectrum and electron-
phonon coupling are reasonably well understood in bulk InAs,
which will allow us to place an upper bound on the dephasing
due to phonons, since the device geometry may place further
restrictions on the phonon spectrum. The qubit dephasing from
phonons results from the interactions

HMZM-ph = iγ1γ2

∫
d3q

(2π )3
ρMZM(−q)

×
[
Diqjuj (q) + eh14

∑
λ

Mλ(q)ελ
j (q)uj (q)

]
,

(D1)

where uj (q) is the Fourier transform of the displacement
in the j th direction, D = 5.1 eV is the conduction band
deformation potential of InAs [55], and h14 = 3.5 × 106 V/cm
is its piezoelectric coupling [56]. Note that as InAs is electron
doped we do not need to consider the valence band deformation
potential. The form factor Mλ(q) depends on the nanowire or
quantum well geometry and is bounded from above by one; ελ

j

are the polarization vectors. This coupling is also of the form
of Eq. (1), where now σ = iγ1γ2 and the environment operator
� is dependent on the charge distribution ρMZM(q) associated
with overlapping MZMs.

The noise due to phonons coupling to the MZM charge
distribution is

a2
z Sph(ω) =

∫
d3q

(2π )3
|ρMZM(q)|2 〈ui(−q,−ω)uj (q,ω)〉

[
D2q2δij + (eh14)2

∑
λ,λ′

Mλ(−q)Mλ′ (q)ελ
i (−q)ελ′

j (q)

]
. (D2)

The correlation function 〈ui(−q,−ω)uj (q,ω)〉 is obtained from the fluctuation-dissipation theorem,

〈ui(−q,−ω)uj (q,ω)〉 = χij (q,ω)(1 − e−βω)−1, (D3)

where

χij (q,ω) = δij δ
(
ω2 − v2

l q
2
)/

ρ

+ (δij − qiqj /q
2) δ

(
ω2 − v2

t q
2
)/

ρ. (D4)

The longitudinal and transverse phonon velocities are vl ≈ 4.7 km/s and vt ≈ 3.3 km/s, respectively. The density of InAs is
ρ ≈ 5.7 g/cm3.

We approximate the charge density in the semiconducting nanowire ρMZM as

ρMZM(x) = QMZM

e

δ(x)δ(y)

L
, (D5)

with Fourier transform

ρMZM(q) = �QMZM

e
sinc

(
qxL

x

)
. (D6)

We are interested in an upper bound on the dephasing from phonons, so we approximate sinc(qxL/x) by 1. Thus the coupling
constant az can be identified as the dimensionless charge QMZM/e. We ignore the difference between longitudinal and transverse
phonon velocities and replace vl and vt by their average, v = 4 km/s. Then, the spectral function of phonons coupled to the
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MZMs can be bounded by the expression

Sph(ω) =
[
D2 ω2

v2
+ (eh14)2Mii

]
1

ρ

1

(2π )2

ω

v3
(1 − e−βω)−1, (D7)

where we have written the form factor–dependent sum in Eq. (D2) as Mij . Then, dephasing from phonons is described by

B2
ph(t) =

∫ ωD

0
dω

�Q2
MZM

e2
Sph(ω)

sin2(ωt/2)

(ω/2)2

= �Q2
MZM

(2π )2e2v5ρ
(1 − e−βω)−1

(
D2 [2 + (ωDt)2 − 2 cos(ωDt) − 2ωDt sin(ωDt)]

t2

+ 2v2(eh14)2Mii[γ − Ci(ωDt) + log(ωDt)]

)
, (D8)

where the Debye frequency in InAs is ωD = 3.3 THz. In the
zero temperature, long time limit, B2

ph(t) grows in time as a
logarithm,

B2
ph(t → ∞) = �Q2

MZM

(2π )2e2v5ρ

(
D2ω2

D + 2(eh14)2

× Miiv
2[γ + log(ωDt)]

)
. (D9)

Using the upper bound Mii = 3, the above expression for the
parameters of InAs is roughly

B2
ph(t → ∞) ≈ e

− 4
√

2
π

L
ξ

(
L

ξ

)2

(300 + 0.1 log[t(1 Hz)]).

(D10)

The logarithmic term only becomes important on astronom-
ically long time scales; thus we can judge whether phonons
contribute to MZM qubit dephasing by how close the constant
in time term gets to unity. When L/ξ > 6, B2

ph(t) < 0.1, and
we conclude that coupling to phonons has a negligible effect
on the MZM qubit dephasing.

APPENDIX E: DEPHASING DUE TO FINITE
TEMPERATURE EXCITATIONS

In contrast to the discussion in Appendix D where phonons
couple to the exponentially small dipole moment �ptop, at
finite temperature phonons can also lead to dephasing that is
not exponentially suppressed in L/ξ . Here we consider the
emission of a quasiparticle from the MZMs into the continuum
by absorbing a phonon from the finite-temperature bath. Such
a process would take the qubit outside of its Hilbert space and
would contribute to dephasing. The corresponding time scales
T ∗

2,β will in general be exponential in the ratio of the topological
superconducting gap to the temperature, β�.

Similar to Appendix D we first consider the effect of
phonons in InAs. The relevant part of the electron-phonon
Hamiltonian that describes excitations of a MZM γ to the
continuum modes ck (with energy εk > �) is

Hex,ph =
∫

d3q

(2π )3

∑
k

mk(−q)(c†k + ck)γφph(q). (E1)

Here mk(−q) = ∫
d3x ψ∗

k (x)ψ0(x) exp(−iqx) is the matrix
element in terms of the (3D) wave function of the excited quasi-

particle ψk(x) and MZM ψ0(x), respectively. From Eq. (D1),
we have φph(q) = [Diqjuj (q) + eh14

∑
λMλ(q)ελ

j (q)uj (q)].
To estimate an upper bound on the excitation rate, we assume
mk(q) = mk ∼ √

ξ/L. The golden rule expression for the rate
of exciting a quasiparticle ck then takes the form

�γ→ck
= |mk|2

∫
dt e−iεk t 〈�ph(t)�ph(0)〉, (E2)

where �ph = ∫
d3q φph(q). One can estimate �γ→ck

using the
phonon spectral function Sph(−εk ≈ −�) of Eq. (D7), where
the appropriate coupling constant is now mk . Summing over all
possible excited quasiparticles (assuming a BCS-like density
of states) yields

T ∗−1
2,β = ξ

L

√
π

2�β
Sph(−�). (E3)

Using the values of Appendix D and � = 1 K, β−1 = 50 mK,
we find T ∗

2,β = τ0(L/ξ ) exp(β�) with τ0 ∼ 50 ns.
In the presence of a larger-than-thermal density of nonequi-

librium quasiparticles the dominant dephasing process is due to
quasiparticle relaxation into the MZMs T ∗−1

2,neq = ∑
k nk�ck→γ

with nk denoting the occupation of the kth quasiparticle and
�ck→γ = |mk|2Sph(εk ≈ �). Using the same assumptions as
above we find

T ∗−1
2,neq = ξ

L
NqpSph(�). (E4)

Since the phonon bath is in thermal equilibrium
Sph(�)/Sph(−�) = exp(β�) and we can therefore extend
Eq. (41) of the main text to the regime of nonequilibrium
quasiparticles by identifying

√
π/(2�β) exp(−β�) → Nqp,

where Nqp = ∑
k nk is the total number of above-gap

quasiparticles in the system.
So far we considered only the contribution of phonons in the

semiconductor assuming that most of the MZM wave function
weight is in the semiconductor. In the case when the tunneling
rate between the superconductor and semiconductor is large
(i.e., strong tunneling regime), transitions due to phonons in
the superconductor might become important. One can estimate
the corresponding rate for aluminum using τ

(Al)
0 ∼ 100–500 ns

[57] and the corresponding value for �(Al). Since aluminum
has weak electron-phonon coupling with τ

(Al)
0 > τ0 as well as

�(Al) > �, we expect that the excitation rate is determined by
the semiconductor contribution. One can estimate an upper
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TABLE II. Values of αE for Refs. [31–34] using frequency cutoffs
ω0 = 2π/(100 ms), ωc = 40 MHz reported in Ref. [32].

Ref. σε d αE

Ref. [31] 10.2 μeV 200 nm 86 (V/m)2

Ref. [32] 3.9 μeV 200 nm 13 (V/m)2

Ref. [33] 7.3 μeV 250 nm 28 (V/m)2

Ref. [34] 5 μeV 200 nm 21 (V/m)2

bound for T −1
2,β by assuming that most of the MZM wave

function resides in InAs. The resulting time scales T2,β are
of the order of minutes; see Table I.

APPENDIX F: EXTRACTING αE

We now explain our choice of αE ∼ 10 (V/m)2. Reference
[32] reports the spectral function describing noise for a semi-

conductor charge qubit as

S(ω) =
(

EC

e

)2
α

|ω| , (F1)

with α = (2 × 10−4e)2. In order to describe electric field fluc-
tuations, we convert the coefficient α to αE = (Ec/e)2α/(ed)2,
where ed is the dipole moment of the double quantum dot
forming the charge qubit. Using the values EC = 3.2 meV and
d = 200 nm, we find αE = 10 (V/m)2.

Experiments on similar systems [31,33,34] do not report

the charging energy, but rather report σε =
√

2
∫ ωc

ω0
dω S(ω).

Assuming that the spectral function has the form of Eq. (F1), we
calculate αE for each of these papers; see Table II. The bottom
three rows corresponding to the more recent experiments are
all of the order 10 (V/m)2.
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