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Lifshitz transition and thermoelectric properties of bilayer graphene

Dominik Suszalski, Grzegorz Rut, and Adam Rycerz
Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, PL–30348 Kraków, Poland

(Received 19 December 2017; published 5 March 2018)

This is a numerical study of thermoelectric properties of ballistic bilayer graphene in the presence of a trigonal
warping term in the effective Hamiltonian. We find, in the mesoscopic samples of the length L > 10 μm at
sub-Kelvin temperatures, that both the Seebeck coefficient and the Lorentz number show anomalies (the additional
maximum and minimum, respectively) when the electrochemical potential is close to the Lifshitz energy, which
can be attributed to the presence of the van Hove singularity in a bulk density of states. At higher temperatures the
anomalies vanish, but measurable quantities characterizing the remaining maximum of the Seebeck coefficient
still unveil the presence of massless Dirac fermions and make it possible to determine the trigonal warping
strength. Behavior of the thermoelectric figure of merit (ZT ) is also discussed.
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I. INTRODUCTION

It is known that thermoelectric phenomena provide valuable
insight into the details of the electronic structure of graphene
and other relativistic condensed-matter systems that cannot
be solely determined by conductance measurements [1]. Such
a fundamental perspective has inspired numerous studies on
Seebeck and Nernst effects in mono- (MLG) and bilayer (BLG)
graphenes [2–9] as well as in other two-dimensional sys-
tems [10–13]. The exceptionally high thermal conductivity of
graphenes has also drawn significant attention [14–19] after a
seminal work by Balandin et al. [20]. A separate issue concerns
thermal and thermoelectric properties of tailor-made graphene
systems [1,21–26], including superlattices [21], nanoribbons
[22–25], or defected graphenes [25,26], for which peculiar
electronic structures may result in high thermoelectric figures
of merit ZT > 2 at room temperature [24,25].

Unlike in conventional metals or semiconductors, thermo-
electric power in graphenes can change a sign upon varying the
gate bias [2–4], making it possible to design thermoelectronic
devices that have no analogues in other materials [27]. In
BLG the additional band-gap tunability [28–30] was utilized
to noticeably enhance the thermoelectric power in a dual-gated
setup [8].

At sufficiently low temperatures, one can expect thermo-
electric properties of BLG to reflect most peculiar features of
its electronic structure. These features include the presence (in
the gapless case) of three additional Dirac points in the vicinity
of each of the primary Dirac points K and K ′ [31–34]. In
turn, when varying chemical potential the system is expected
to undergo the Lifshitz transition at μ = ±EL (the Lifshitz
energy) [34]. What is more, electronic density of states (DOS)
shows van Hove singularities at μ = ±EL. Unlike in systems
with Mexican-hat band dispersion, for which diverging DOS
appears at the bottom of the conduction band and at the top of
the valence band [12,13], in BLG each van Hove singularity
separates populations of massless Dirac-Weyl quasiparticles
(|μ| < EL) with approximately conical dispersion relation,
and massive chiral quasiparticles (|μ| > EL) characterized

by the effective mass meff ≈ 0.033 me, with me being the
free-electron mass. Although the value of EL is related to
several directly-measurable quantities, such as the minimal
conductivity [35–37], available experimental results cover the
full range of EL ∼ 0.1–1 meV [34].

The purpose of this paper is to show that thermoelectric
measurements in ballistic BLG (see Fig. 1) can provide insights
into the nature of quasiparticles near the charge-neutrality
point and allow one to estimate the Lifshitz energy. We
consider a relatively large, rectangular sample of ballistic
BLG (with the length L = 17.7 μm and the width W = 20 L)
and calculate its basic thermoelectric properties (including the
Seebeck coefficient S and the Lorentz number L) within the
Landauer-Büttiker formalism [38,39]. Our main findings are
outlined in Fig. 1, where NS

max (NL
min)—the number of maxima

(minima) of S (L) appearing for μ > 0 is indicated in the EL-T
parameter plane. For instance, a handbook value of EL/kB ≈
10 K [40] leads to the anomalies, including additional ex-
trema at μ ≈ EL, at sub-Kelvin temperatures. We further
show that even for T � 1 K (at which NS

max = NL
min = 1)

the value of EL determines the carrier concentration corre-
sponding to the remaining maximum of S (or the minimum
of L).

The paper is organized as follows: The model and theory
are described in Sec. II, followed by the numerical results
and discussions on the conductance, thermopower, validity
of the Wiedemann-Franz law, the role of phononic thermal
conductivity, and the figure of merit (Sec. III). A comparison
with the linear model for transmission-energy dependence
(see Appendix) is also included. The conclusions are given in
Sec. IV.

II. MODEL AND THEORY

A. The Hamiltonian

We start our analysis from the four-band effective
Hamiltonian for low-energy excitations [34], which can be
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FIG. 1. The system studied numerically in the paper (inset) and
the thermoelectric phase diagram (main) for Bernal-stacked bilayer
graphene. Thermal and electric currents (IQ,I ) flow between the
leads, modeled as infinitely-doped graphene regions with electro-
chemical potentials μL(R) → ∞ (at a fixed μR−μL ≡ eV , with the
electron charge −e and the voltage V ), and temperatures TL(R),
attached to the rectangular sample. Additional gate electrodes (not
shown) are used to tune the chemical potential in the sample area
μ at zero bias between the layers. The number of distinct maxima
of the Seebeck coefficient (NS

max) and minima of the Lorentz factor
(NL

min), occurring for 0<μ<∞, are indicated in the Lifshitz energy–
temperature parameter plane. The border of the Fabry-Pérot transport
regime T <TF−P (in which NS

max,N
L
min � 1), corresponding to the

system length L = 104 l⊥ = 17.7 μm, is also depicted.

written as

H = ξ

⎛
⎜⎜⎝

0 vF π ξ t⊥ 0
vF π † 0 0 v3π

ξ t⊥ 0 0 vF π †

0 v3π
† vF π 0

⎞
⎟⎟⎠, (1)

where the valley index ξ = 1 (−1) for K (K ′) valley, vF =√
3 t0a/(2h̄) � 106 m/s is the asymptotic Fermi velocity de-

fined via the intralayer hopping t0 = 3.16 eV and the lattice pa-
rameter a = 0.246 nm, π = h̄e−iθ (−i∂x + ∂y), θ denotes the
angle between the main system axis and the armchair direction.
(For the numerical calculations, we set h̄vF = 0.673 eV nm.)
The nearest-neighbor interlayer hopping is t⊥ = 0.381 eV [41]
defining l⊥ = h̄vF /t⊥ = 1.77 nm, and v3 = vF t ′/t0 with t ′
being the next-nearest neighbor (or skew) interlayer hopping.

The Hamiltonian (1) leads to the bulk dispersion relation
for electrons [31,34]

E
(e)
± (k) =

[
1
2 t2

⊥ + (
v2

F + 1
2v2

3

)
k2 ±

√
�(k)

]1/2
,

�(k) = 1
4

(
t2
⊥−h̄2v2

3k
2
)2 + h̄2v2

F k2
(
t2
⊥+h̄2v2

3k
2
)

+ 2ξ t⊥h̄3v3v
2
F k3 cos 3ϕ, (2)

kx/kL

k
y
/
k

L

E/EL

0 0.5 1.0 1.5 2.0
0

0.5

1.0

0

100

200

300

(2
π
/W

)×
N

o
p
e
n

[1
/n

m
]

E [meV]

C
A

R
R

IE
R

D
E

N
SI

T
Y

[μ
m

−
2
]

D
O

S
[e

V
−

1
nm

−
2
]

t
=
0

0.2
eV

0.3
eV(a)

(d)(b)

0.2 eV

t =0

0.3 eV

(c)

0 0.4 0.8 1.2

-1.0

-0.5

0

0.5

1.0

-1.0 -0.5 0 0.5 1.0 1.5

0

0.04

0.08

0.12

FIG. 2. Physical consequences of the dispersion relation given
by Eq. (2). (a) Equienergy surfaces for E = 0.5 EL (gray solid lines),
E = EL (red solid line), and E = 1.5 EL (blue dashed line) for the
crystallographic orientation θ = 0. (b) Density of states (purple solid
line) and the approximating expressions given by Eqs. (7), (8), and (9)
(gray solid, black dashed, and black dotted-dashed line, respectively).
(c) Carrier density and (d) the number of open channels for different
values of t ′ (specified for each line). Solid and dashed lines in panel
(d) corresponds to θ = 0 and θ = π/6, dotted-dashed lines represent
the approximating Eq. (12).

where k ≡ (kx,ky) is the in-plane wave vector (with k = 0
referring to the K or K ′ point), k = |k|, and the angle 0 ≤
ϕ < 2π can be defined as the argument arg z of a complex
number

z = e−iθ (kx + iky). (3)

For holes, we have E
(h)
± (k) = −E

(e)
± (k) [42].

B. Low-energy electronic structure

Basic consequences of Eq. (2) are illustrated in Fig. 2. In
the energy range |E| < EL, with the Lifshitz energy

EL = 1

4
t⊥

(
v3

vF

)2

, (4)

there are four distinct parts of the Fermi surface [see
Fig. 2(a)], centered at z = z0, . . . ,z3, where z0 = 0, zj =
kL exp(2πij/3),j = 1,2,3, and

kL = t⊥v3

h̄v2
F

. (5)

For |E| ≥ EL the Fermi surface becomes connected, and
the transition at E = ±EL is accompanied by the van Hove
singularity in the density of states ρ(E) [see Fig. 2(b)], which
can be defined (for electrons) via∫ E

0
dE′ρ(E′) ≡ n(E) = A(E)

π2
, (6)
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where n(E) is the physical carrier density (taking into ac-
count spin and valley degeneracies gs = gv = 2) depicted in
Fig. 2(c), and A(E) denotes the area bounded by the Fermi
surface in the (kx,ky) plane [43]. In particular, taking the limit
of t ′ → 0 we have

ρ t ′→0(|E| � t⊥) ≈ 2meff

πh̄2 = t⊥
π (h̄vF )2

≡ ρ0, (7)

where we have introduced the effective mass relevant in the
absence of trigonal warping (EL = 0). At finite t ′ (EL > 0)
the value of ρ0 defined in Eq. (7) is approached by the actual
ρ(E) for |E| � EL [see Fig. 2(b)]. Also, in the t ′ �= 0 case, we
find that the approximating formula

ρ(E) ≈ ρ0|E|
EL

[1 + 0.33(E/EL)2], (8)

reproduces the actual ρ(E) with 1% accuracy for |E| ≤ EL/2
(being the energy interval most relevant for discussion pre-
sented in the remaining parts of this paper). For |E| � EL,
leaving only the leading term on the right-hand side of Eq. (8)
brought us to

ρ(|E| � EL) ≈ 4|E|
π (h̄v3)2

, (9)

which can be interpreted as a double-monolayer DOS with the
Fermi velocity replaced by v3.

Although the trigonal-warping effects become hardly vis-
ible in ρ(E) for E � EL, characteristic deformations of the
Fermi surface can be noticed also for E � EL. We point out
that a compact quantity taking this fact into account, which
can be determined directly from Eq. (2) without resorting to
quantum transport simulations, is the number of propagating
modes (open channels) Nopen(θ,E) presented in Fig. 2(d). It
can be defined as a total number of solutions, with real kx , of
equations

E
(p)
+ (kx,q	ky) = E, E

(p)
− (kx,q	ky) = E, (10)

where p = e for electrons (E > 0) or p = h for holes
(E < 0), q = 0, ± 1, ± 2, . . . , and 	ky = 2π/W (we sup-
pose the periodic boundary conditions along the y axis)
that correspond to a chosen sign of the group velocity, e.g.,
(vg)(p)

±,q = ∂E
(p)
± (kx,q	ky)/∂ky > 0. Apart from the t ′ → 0

limit, for which

Nopen(t ′ → 0,|E| � t⊥) ≈ 2

√
|E|t⊥

(h̄vF )2

1

	ky

, (11)

the number of open channels is anisotropic and shows the
periodicity with a period π/3. In the low-energy limit

Nopen(θ,|E| � EL) ≈ 2F (θ )
|E|
h̄v3

1

	ky

, (12)

where

F (θ ) = 1 +
∑

j=1,2,3

[
1 − 8

9
cos2

(
θ + 2π

3
j

)]1/2

,

≈ 3.126 + 0.029 cos 6θ. (13)

The anisotropy is even more apparent for |E| � EL. In par-
ticular, Nopen(θ = 0,E) grows monotonically with increasing

E, whereas Nopen(θ = π/6,E) has a shallow minimum at
E ≈ 1.11EL.

It is also visible in Fig. 2(d) that the effects of increasing t ′
are essentially opposite at different energy ranges: For |E| �
EL, Nopen grows systematically with t ′; for |E| � EL we have
Nopen ∝ 1/t ′ following from Eq. (12). Such a feature has no
analogues in behaviors of other characteristics presented in
Fig. 2.

C. Thermoelectric properties

In the linear-response regime, thermoelectric properties of a
generic nanosystem in graphene are determined via Landauer-
Büttiker expressions for the electrical and thermal currents
[44,45]

I = −gsgve

h

∫
dE T (E)[fL(E)−fR(E)], (14)

IQ = gsgv

h

∫
dE T (E)[fL(E)−fR(E)](E−μ), (15)

where gs = gv = 2 are spin and valley degeneracies, T (E) ≡
Tr(tt†) with t being the transmission matrix [36], fL(R) is the
distribution functions for the left (right) lead with electro-
chemical potential μL(R) and temperature TL(R). Assuming
that μL − μR ≡ − eV and TL − TR ≡ 	T are infinitesimally
small [hereinafter, we refer to the averages μ = (μL + μR)/2
and T = (TL + TR)/2], we obtain the conductance G, the
Seebeck coefficient S, and the electronic part of the thermal
conductance Kel, as follows [39]

G = I

V

∣∣∣∣
	T =0

= e2L0, (16)

S = − V

	T

∣∣∣∣
I=0

= L1

eT L0
, (17)

Kel = IQ

	T

∣∣∣∣
I=0

= L0L2 − L2
1

T L0
, (18)

where Ln (with n = 0,1,2) is given by

Ln = gsgv

h

∫
dE T (E)

(
−∂fFD

∂E

)
(E − μ)n, (19)

with fFD(μ,T ,E) = 1/[ exp ((E−μ)/kBT ) + 1 ] the Fermi-
Dirac distribution function.

By definition, the Lorentz number accounts only the elec-
tronic part of the thermal conductance,

L = Kel

T G
= L0L2 − L2

1

e2T 2L2
0

. (20)

The thermoelectric figure of merit accounts the total thermal
conductance (Ktot = Kel + Kph)

ZT = T GS2

Ktot
=

(
Kel

Kel + Kph

)
L2

1

L0L2 − L2
1

, (21)

where the phononic part can be calculated using

Kph = 1

2π

∫
dω h̄ω

∂fBE

∂T
Tph(ω), (22)

with fBE(T ,ω) = 1/[ exp (h̄ω/kBT ) − 1 ] the Bose-Einstein
distribution function and Tph(ω) the phononic transmission
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spectrum. For BLG in a gapless case considered in this
work, we typically have Kph ∼ Kel (see Sec. III D) [46].
As Tph(ω) in Eq. (22) is generally much less sensitive to
external electrostatic fields than T (E) in Eq. (18) it should
be possible—at least in principle—to independently determine
Kph and Kel in the experiment.

It can be noticed that ultraclean ballistic graphene shows
approximately linear transmission to Fermi-energy depen-
dence T (E) ∝ |E| (where E = 0 corresponds to the charge-
neutrality point) [47–50]. Straightforward analysis (see Ap-
pendix A) leads to extremal values of the Seebeck coefficient
as a function of the chemical potential

Smax = −Smin ≈ kB/e = 86 μV/K, (23)

providing yet another example of a material characteristic
given solely by fundamental constants [47,51]. Similarly, the
Lorentz number reaches, at μ = 0, the maximal value given
by

Lmax = 9 ζ (3)

2 ln 2

(
kB

e

)2

= 2.37 LWF, (24)

with LWF = 1
3π2(kB/e)2 being the familiar Wiedemann-Franz

constant. Although the disorder and electron-phonon coupling
may affect the above-mentioned values, existing experimental
works report Smax and Lmax close to those given by Eqs. (23)
and (24) for both MLG and BLG, provided the temperature is
not too low [2–7,18].

At low temperatures, the linear model no longer applies,
partly due to the contribution from evanescent modes [47,52]
and partly due to direct trigonal-warping effects on the elec-
tronic structure (see Sec. II B). For this reason, thermoelectric
properties calculated numerically from Eqs. (16)–(21) are
discussed next.

III. RESULTS AND DISCUSSION

A. Zero-temperature conductivity

For T → 0 Eq. (16) leads to the conductivity

σ (T →0) = G(T →0)L

W
= g0L

W
Tr(tt†), (25)

with the conductance quantum g0 = 4e2/h. As the right-hand
side of Eq. (25) is equal to Tr(tt†) with a constant prefactor,
σ (T →0) gives a direct insight into the transmission-energy
dependence that defines all the thermoelectric properties [see
Eqs. (16)–(21)].

In order to determine the transmission matrix t for a given
electrochemical potential μ we employ the computational
scheme similar to that presented in Ref. [36]. However, at finite-
precision arithmetics, the mode-matching equations become ill
defined for sufficiently large L and μ, as they contain both ex-
ponentially growing and exponentially decaying coefficients.
This difficulty can be overcome by dividing the sample area
into Ndiv consecutive, equally-long parts, and matching wave
functions for all Ndiv+1 interfaces [53].

Numerical results are presented in Fig. 3. A striking feature
of all datasets is the presence of quasiperiodic oscillations
of the Fabry-Pérot type. Although such oscillations can be
regarded as artifacts originating from a perfect, rectangular

FIG. 3. Zero-temperature conductivity [see Eq. (25) in the main
text] for L = W/20 = 104 l⊥ = 17.7 μm and θ = 0 [54] plotted as a
function of the chemical potential. The value of skew-interlayer hop-
ping t ′ is specified for each line. Remaining tight-binding parameters
are given below Eq. (1) in the main text. Vertical lines mark values of
the Lifshitz energy, given by Eq. (4), for t ′ = 0.2 eV and t ′ = 0.3 eV.
Inset is a zoom in, for low chemical potentials, with horizontal lines
depicting σ = 2 σMLG = (8/π ) e2/h and σ = 6 σMLG.

shape of the sample area (vanishing immediately when, e.g.,
samples with nonparallel edges are considered, see Ref. [55])
their periodic features are useful to benchmark the numerical
procedure applied.

In particular, for t ′ = 0, the conductivity shows abrupt
features at energies associated with resonances at normal
incidence (ky = 0) [52], namely

En(t ′ = 0) ≈ ± h̄vF l⊥
(πn

L

)2
, n = 1,2,3, . . . , (26)

where the approximation refers to the parabolic dispersion
relation applying for |En| � t⊥, or equivalently for n �
L/(πl⊥) ≈ 3180 in our numerical example. In turn, the sepa-
ration between consecutive resonances is

	En(t ′ = 0) = |En+1−En| ≈ 2n+1

t⊥

(
πh̄vF

L

)2

≈ 2
πh̄vF

L

√
|En|
t⊥

, (27)

with the last approximation corresponding to n � 1.
For t ′ �= 0 the analysis is much more cumbersome even

at low energies, as we have resonances associated with four
distinct Dirac cones. However, resonances at normal incidence
associated with the central cone, occurring at En ≈ πh̄v3n/L

(n = ±1, ± 2, . . . ), allow us to estimate the order of magni-
tude of the relevant separation as

	En(t ′ �= 0) ∼ πh̄v3

L
= 2

πh̄vF

L

√
EL

t⊥
≡ kBTF−P, (28)

finding that the period of Fabry-Pérot oscillations is now
energy independent and should be comparable with 	En(0)
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given by Eq. (27) for μ = En ≈ EL(t ′). The data displayed
in Fig. 3 show that the oscillation period is actually energy
independent in the surprisingly-wide interval of μ � 1.5EL,
with the multiplicative factor 	En(t ′)/	En(0)|μ=EL(t ′) ≈ 3.
The oscillation amplitude is also enhanced, in comparison to
the t ′ = 0 case, for μ � 1.5EL. For μ � 1.5EL, both the oscil-
lation period and amplitude are noticeably reduced, resembling
the oscillation pattern observed for the t ′ = 0 case. It is also
visible in Fig. 3, that the mean conductivity (averaged over
the oscillation period) linearly increase with μ for μ � EL,
with a slope weakly dependent on t ′. Such a behavior indicates
that Tr(tt†) < Nopen [see Fig. 2(d)] which can be interpreted as
a backscattering (or transmission reduction) appearing when
different classes of quasiparticles are present in the leads and
in the sample area. For larger μ, the transmission reduction is
still significant, but its dependence on t ′ is weakened, and the
sequence of lines from Fig. 2(d) is reproduced.

A detailed explanation of the above-reported observations,
in terms of simplified models relevant for |μ| � EL and for
|μ| � EL, will be presented elsewhere. Here we only notice
that the linear model for transmission-energy dependence is
justified, for |μ| � EL, with the numerical results presented in
Fig. 3.

The rightmost equality in Eq. (28) defines the Fabry-Pérot
temperature, which can be written as

TF−P = π t⊥t ′l⊥
kBt0L

= 13890 K × t ′ l⊥
t0L

. (29)

For L = 104 l⊥, we obtain TF−P = 88 mK if t ′ = 0.2 eV,
or TF−P = 132 mK if t ′ = 0.3 eV. For higher temperatures,
Fabry-Pérot oscillations are smeared out due to thermal exci-
tations involving transmission processes from a wider energy
window [see Eqs. (16) and (19)].

B. Thermopower and Wiedemann-Franz law

As the finite-T conductivity is simply given by a convolu-
tion of T (E) = Tr(tt†) with the derivative of the Fermi-Dirac
function, we proceed directly to the numerical analysis of
the Seebeck coefficient and the Lorentz number given by
Eqs. (17)–(20) [56]. In Fig. 4, these thermoelectric properties
are displayed as functions of μ, for a fixed t ′ = 0.3 eV
(corresponding to EL/kB ≈ 10 K) and varying temperature.
Quasiperiodic oscillations are still prominent in datasets for
the lowest presented temperature, T = 80 mK ≈ 0.6 TF−P,
although it is rather close to TF−P. This is because all the
abrupt features of T (E) are magnified when calculating S, or
L, since they affect the nominator and the denominator in the
corresponding Eq. (17), or Eq. (20), in a different manner. For
T = 0.2 K ≈ 1.5 TF−P the oscillations vanish for S and are
strongly suppressed for L; instead, we observe the anomalies:
the secondary maximum of S and minimum of L, located
near μ = EL. The secondary maximum of S vanishes for
T = T S

 = 0.515 K, but L still shows the two shallow minima
at this temperature. (We find that the minima of L merge at
T L

 = 1.20 K = 2.33 T S
 , the corresponding dataset is omitted

for clarity.) For T = 2 K , each of S and L shows a single
extremum for μ > 0.

The crossover temperatures T S
 and T L

 as functions of EL,
varied in the range corresponding to 0.1 eV ≤ t ′ ≤ 0.35 eV,

FIG. 4. Seebeck coefficients S and Lorentz number L for t ′ =
0.3 eV, as a function of the chemical potential. The temperature is
specified for each line in the top panel and is the same in both panels.
Vertical lines mark the Lifshitz energy; horizontal line in bottom panel
corresponds to the Wiedemann-Franz valueL = LWF = 1

3 π 2(kB/e)2.
Inset shows crossover temperatures, corresponding to vanishing of
the secondary maximum of S (triangles) and minimum of L (circles),
plotted as functions of the Lifshitz energy, together with the best-fitted
linear functions [see Eqs. (30) and (31)].

are also plotted in Fig. 4 (see the inset). The least-squares fitted
lines are given by

T S
,fit = 0.0504(5) × EL/kB, (30)

T L
,fit = 0.1176(3) × EL/kB, (31)

with standard deviations of the last digit specified by numbers
in parentheses.

These findings can be rationalized by referring to the onset
on low-energy characteristics given in Sec. II B (see Fig. 2). In
particular, the abrupt features of T (E) near E = EL, attributed
to the van Hove singularity of ρ(E) shown in Fig. 2(b), or to the
anisotropy of Nopen(θ,E) in Fig. 2(d), are smeared out when
calculating thermoelectric properties for energies of thermal
excitations

kBT � 0.1 EL. (32)

However, some other features, related to trigonal-warping
effects on Nopen(θ,E) or n(E) [see Fig. 2(c)] away from
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FIG. 5. Same as Fig. 4 but plotted versus the dimensionless
variable μ/(kBT ). Solid lines in both panels represent the datasets
for T = 0.2 K and T = 2 K. Dashed-dotted lines correspond to
Eqs. (A4) and (A5) in Appendix, following from the linear model
for transmission-energy dependence. Dashed line in bottom panel
marks L = LWF. Inset shows the finite-T conductivity (solid lines)
σ = GL/W [see Eqs. (16) and (19) in the main text] and the linear
fit (dash-dot line) to the corresponding T = 0 dataset in Fig. 3.

E = EL, visible in thermoelectric properties, may even be
observable at higher temperatures.

C. Comparison with the linear model for transmission-energy
dependence

In Fig. 5 we display the selected numerical data from
Fig. 4, for T = 0.2 K and T = 2 K, as functions of μ/(kBT )
[solid lines] in order to compare them with predictions of the
linear model for transmission-energy dependence T (E) ∝ |E|
[dashed-dotted lines] elaborated in Appendix. For T = 2 K,
both S andL show an agreement better than 10% with the linear
model for μ � EL ≈ 5 kBT . For T = 0.2 K, larger deviations
appear for low chemical potentials due to the influence of
transport via evanescent waves, which are significant for μ <

h̄vF /L ≈ 2–3 kBT . For larger μ, a few-percent agreement
with the linear model is restored and sustained as long as
μ � EL ≈ 40 kBT .
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FIG. 6. Relative electronic contribution to the thermal conduc-
tance for t ′ = 0.3 eV as a function of the chemical potential. The
temperatures are (top to bottom) T = 80 mK, 0.2 K, 0.515 K, and
2 K. Inset shows phononic [blue line] and electronic [red line] thermal
conductivities (κ = KL/(2dW ), with d = 0.335 mn the separation
between layers) as functions of temperature, with the chemical
potential fixed at μ = μmax corresponding to the maximal Seebeck
coefficient.

Another remarkable feature of the results presented in
Fig. 5 becomes apparent when determining the extrema: The
maximal thermopower corresponds to μ(S)

max/(kBT ) = 2.0 at
T = 2 K, or to μ(S)

max/(kBT ) = 2.2 at T = 0.2 K; the minimal
Lorentz number corresponds to μ

(L)
min/(kBT ) = 5.4 at T = 2 K,

or to μ
(L)
min/(kBT ) = 4.6 at T = 0.2 K. In other words, an

almost perfect agreement with the linear model [see, respec-
tively, the second equality in Eq. (A6), or the second equality
in Eq. (A7) in Appendix] is observed provided that

h̄vF

L
� kBT ∼ μ(S)

max ∼ μ
(L)
min � EL. (33)

In consequence, the effects that we describe may be observable
for the sample length L > 10 μm.

D. Electronic and phononic parts of the thermal conductance

Before discussing the thermoelectric figure of merit ZT we
first display, in Fig. 6, values of the dimensionless prefactor in
the last expression of Eq. (21), quantifying relative electronic
contribution to the thermal conductance. The phononic trans-
mission spectrum [see Eq. (22)] was calculated numerically by
employing, for the sample length L = 17.7 μm, the procedure
presented by Alofi and Srivastava [57] adapting the Callaway
theory [58] for mono-and few-layer graphenes [59]. The
results show that in sub-Kelvin temperatures the electronic
contribution usually prevails, even if the system is quite close
to the charge-neutrality point, as one can expect for a gapless
conductor. For T > 1 K, however, the phononic contribution
overrules the electronic one in the full range of chemical
potential considered.

125403-6



LIFSHITZ TRANSITION AND THERMOELECTRIC … PHYSICAL REVIEW B 97, 125403 (2018)

FIG. 7. Effective carrier concentration (n−p)max (a) and chem-
ical potential μmax (b) corresponding to the maximal Seebeck co-
efficient Smax (c) as functions of temperature. The figure of merit
ZT (μmax) (d) is also displayed. Solid lines represent the numerical
results for different values of t ′ [specified in panel (a)]. Dashed
lines mark predictions of the linear model for transmission-energy
dependence T (E) ∝ |E|.

A direct comparison of the phononic and the electronic and
thermal conductivities calculated in the physical units (see
inset in Fig. 6) further shows that, if the chemical potential
is adjusted to μmax ≡ μ(S)

max for a given temperature, both
properties are of the same order of magnitude up to T = 2 K.
Also, for μ = μmax, we find that Kel = Kph at the temperature
Tel−ph ≈ 0.3 K, which is almost insensitive to the value of t ′.

E. Maximal performance versus temperature

In Fig. 7 we present parameters characterizing the maximal
thermoelectric performance for a given temperature (0 <

T ≤ 2 K). As the existing experimental works refer to the
carrier concentration rather than to the corresponding chemical
potential, we focus now on the functional dependence of the
former on T (and t ′).

Taking into account that the maximal performance is
expected for μ ∼ kBT (see previous subsection), and that
a gapless system is under consideration, one cannot simply
neglect the influence of minority carriers. For the conduction
band (μ > 0), the effective carrier concentration can be written
as

n−p =
∫ ∞

0
dE ρ(E)f (μ,E)

−
∫ 0

−∞
dE ρ(E)[1 − f (μ,E)], (34)

where we have supposed the particle-hole symmetry ρ(E) =
ρ(−E). [For the valence band (μ < 0), the effective concentra-
tion p-n is simply given by the formula on the right-hand side
of Eq. (34) with an opposite sign.] Next, the approximating

Eqs. (7) and (8) for the density of states lead to

n−p ≈ ρ0kBT

×
{

y, if t ′ = 0,

τL

[
I1(y) + 0.33 τ 2

L I3(y)
]
, if t ′ �= 0,

(35)

where y = μ/kBT , τL = kBT /EL, and we have defined

In(y) =
∫ ∞

−y

(x + y)n

ex + 1
dx −

∫ ∞

y

(x − y)n

ex + 1
dx. (36)

(In particular, I0(y) = y.) Numerical evaluation of the inte-
grals in Eq. (35) for y = ymax given by Eq. (A6) in Appendix
brought us to

(n−p)max ≈ ρ0kBT

×
{

1.949 if t ′ = 0,

3.269 τL

(
1+3.23 τ 2

L

)
if t ′ �= 0.

(37)

In turn, the carrier concentration corresponding to the max-
imum of S for a given T is determined by the value of EL.
[A similar expression for the minimum of L, see Eq. (A7) in
Appendix, is omitted here.]

Solid lines in Fig. 7(a) show the values of (n−p)max

calculated from Eq. (34) for the actual density of states and
the chemical potential μ = μmax [displayed with solid lines in
Fig. 7(b)] adjusted such that the Seebeck coefficient, obtained
numerically from Eq. (17), reaches the conditional maximum
(Smax) [see Fig. 7(c)] at a given temperature T (and one of the
selected values of t ′ = 0, 0.2 eV, or 0.3 eV). The numerical
results are compared with the linear-model predictions (dashed
lines in all panels), given explicitly by Eq. (37) [Fig. 7(a)] or
Eq. (A6) in Appendix [Figs. 7(b) and 7(c)]. Again, the linear
model shows a relatively good agreement with corresponding
data obtained via the mode-matching method; moderate devia-
tions are visible for t ′ �= 0 when μmax � EL/2. In such a range,
both ρ(E) no longer follows the approximating Eq. (9), and the
sudden rise of T (E) near E ≈ EL starts to affect thermoelectric
properties.

Figures 7(c) and Fig. 7(d) display, respectively, the maximal
Seebeck coefficient (Smax) and figure of merit [ZT (μmax)]
as functions of temperature. For t ′ �= 0, the former shows
broad peaks, centered near temperatures corresponding to
μmax ≈ 0.4 EL, for which the prediction of the linear model
[see Eq. (A6) in Appendix] is slightly exceeded (by less then
10%), whereas for t ′ = 0 a monotonic temperature depen-
dence, approaching the linear-model value, is observed. The
figure of merit (calculated for μ = μmax) shows relatively
fast temperature decay due to the role of phononic thermal
conductivity (see Sec. III D). We find that ZT (μmax), although
being relatively small, is noticeably elevated in the presence of
trigonal warping in comparison to the t ′ = 0 case. The behavior
of Smax presented in Fig. 7(c) suggests a procedure, allowing
one to determine the trigonal-warping strength via directly
measurable quantities.

For any t ′ �= 0, one can determine a unique global maximum
of S = S(μ,T ), which is reached at μ = μS

max and T = T S
max.

Our numerical findings for 0.1 eV ≤ t ′ ≤ 0.35 eV are pre-
sented in Fig. 8, where we have plotted (instead of μS

max), the
optimal effective concentration (n−p)Smax [see the inset]. The
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FIG. 8. Temperature corresponding to the maximal thermopower
as a function of the Lifshitz energy (data points). Least-squares fitted
linear dependence [see Eq. (38)] is also displayed (line). Inset shows
the carrier concentration versus ρ0kBT S

max, together with the model
prediction (dashed line) and the linear fit (solid line) [see Eqs. (37)
and (39)].

best-fitted lines displayed in Fig. 8 are given by

T S
max, fit = 0.203(2) × EL/kB, (38)

(n − p)Smax, fit = 0.816(5) × ρ0kBT S
max, (39)

where numbers in parentheses are standard deviations for the
last digit. A few-percent deviation of the actual (n−p)Smax
from predictions of the linear model [see dashed line in the
inset, obtained from Eq. (37) by setting τL = kBT S

max, fit/EL ≈
0.20] is relatively small taking into account that the existence
of a global maximum of S(μ,T ) is directly linked to the
breakdown of the linear model occurring for μ ∼ kBT � EL

(and therefore is not observed in the t ′ = 0 case). We further
notice that Eqs. (38) and (39) provide direct relations between
the two independent driving parameters corresponding to the
optimal thermopower, T S

max and (n−p)Smax, and the trigonal
warping strength quantified by EL.

IV. CONCLUSIONS

We have investigated the thermopower, violation of the
Wiedemann-Franz law, and the thermoelectric figure of merit,
for large ballistic samples of bilayer graphene in the absence of
electrostatic bias between the layers (a gapless case) and close
to the charge-neutrality point. Although the thermoelectric
performance is not high in such a parameter range, we find
that low-temperature behavior of thermoelectric properties is
determined by microscopic parameters of the tight-binding
Hamiltonian, including the skew-interlayer hopping integral
responsible for the trigonal warping, and by the relativistic
nature of effective quasiparticles (manifesting itself in linear
energy dependence of both the density of states and the
electrical conductivity).

In particular, at sub-Kelvin temperatures, clear signatures of
the Lifshitz transition, having forms of anomalies in chemical-
potential dependences of the Seebeck coefficient and the
Lorentz number, occurs in a vicinity of the Lifshitz energy

(defined by the microscopic parameters and quantifying the
trigonal-warping strength). The anomalies are blurred out by
thermal excitations above the crossover temperatures (different
for the two thermoelectric properties) that are directly propor-
tional to the Lifshitz energy.

At higher temperatures (of the order of 1 K) the trigonal-
warping strength can be determined from thermoelectric mea-
surements following one of the two different approaches: (i)
finding the carrier concentration corresponding to the maximal
thermopower as a function of temperature, or (ii) finding the
optimal temperature, i.e., such that the thermopower reaches its
global maximum. The first possibility is linked to the properties
of massless quasiparticles, due to which the carrier concentra-
tion corresponding to the maximal thermopower depends ap-
proximately quadratically on temperature and reciprocally on
the Lifshitz energy. On the other hand, existence of unique opti-
mal temperature (equal to 2 K if the handbook value of the Lif-
shitz energy EL/kB ≈ 10 K is supposed) is related to the grad-
ual conductivity enhancement, and subsequent suppression of
the thermopower, with increasing population of thermally-
excited massive quasiparticles above the Lifshitz energy.

To conclude, we have shown that thermoelectric mea-
surements may complement the list of techniques allowing
one to determine tight-binding parameters of bilayer-graphene
Hamiltonian. Unlike the well-established techniques [34] (or
the other recently proposed [36,37]), they neither require
high-magnetic-field measurements nor refer to conductivity
scaling with the system size. Instead, the proposed single-
device thermoelectric measurements must be performed on
large ballistic samples (with the length exceeding 10 μm), such
that quantum-size effects define the energy scale much smaller
then the Lifshitz energy.

As we have focused on clean ballistic systems, several fac-
tors which may modify thermoelectric properties of graphene-
based devices, including the disorder [34], lattice defects [60],
or magnetic impurities [61], are beyond the scope of this study.
However, recent progress in quantum-transport experiments on
ultraclean freestanding monolayer samples exceeding 1 μm
size [49,62] allows us to expect that similar measurements
would become possible in bilayer graphene soon. Also, as
the effects we describe are predicted to appear away from the
charge-neutrality point, the role of above-mentioned factors
should be less significant than for phenomena appearing
precisely at the charge-neutrality point, such as the minimal
conductivity [63,64]. Similar reasoning may apply to the role
of interaction-induced spontaneous energy gap [65–67] (we
notice that experimental values coincide with energy scales
defined by quantum-size effects, e.g., h̄vF /L ≈ 3 meV for
L = 250 nm in Ref. [67]).

Note added. Recently, we become aware of theoretical
works on strained monolayer graphene reporting quite similar,
double-peak spectra of the Seebeck coefficient for sufficiently
high uniaxial strains [68].
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APPENDIX: LINEAR MODEL FOR
TRANSMISSION-ENERGY DEPENDENCE

At sufficiently high temperatures, thermoelectric properties
given by Eqs. (16)–(21) become insensitive to the detailed
functional form of T (E), and simplified models can be
considered. Here we assume T (E) = C|E|, with C being a
dimensionless parameter. In turn, Eq. (19) leads to

L0 = D
β

(
y

∫ y

0

dx

cosh x + 1
+

∫ ∞

y

x dx

cosh x + 1

)

= D
β

ln (2 cosh y + 2), (A1)

L1 = D
β2

( ∫ y

0

x2dx

cosh x + 1
+ y

∫ ∞

y

x dx

cosh x + 1

)

= D
β2

[
π2

3
+ y2 − y ln (2 cosh y + 2) + 4Li2(−e−y)

]
,

(A2)

L2 = D
β3

(
y

∫ y

0

x2dx

cosh x + 1
+

∫ ∞

y

x3dx

cosh x + 1

)

= D
β3

[
π2

3
y − y3 + y2 ln(2 cosh y + 2)

− 8yLi2(−e−y) − 12Li3(−e−y)

]
, (A3)

where D = (gsgv/h) C, β = 1/kBT , y = βμ, and Lis(z) is
the polylogarithm function [69]. Subsequently, the Seebeck
coefficient and the Lorentz number [see Eqs. (17) and (20) in
the main text] are given by

S = kB

e

[
−y +

π2

3 + y2 + 4Li2(−e−y)

ln (2 cosh y + 2)

]
, (A4)

Kel

T G
=

(
kB

e

)2 {
π2y + y3 − 12Li3(−e−y)

ln (2 cosh y + 2)

−
[ π2

3 + y2 + 4Li2(−e−y)

ln (2 cosh y + 2)

]2 }
. (A5)

As the right-hand sides in Eqs. (A4) and (A5) depend only
on a single dimensionless variable (y) they are convenient to be
compared with thermoelectric properties obtained numerically
via the mode-matching method (see Sec. III for details). In
particular, the function of Eq. (A4) is odd and has a single
maximum for y > 0, i.e.,

Smax = 1.0023 kB/e for y(S)
max = 1.9488, (A6)

which is approximated by Eq. (23) in the main text. Analo-
gously, the function of Eq. (A5) is even, and has a maximum
at y = 0, that brought us to Eq. (24) in the main text. It also
reaches a minimum

Lmin = 3.0060 (kB/e)2 ≈ 0.91 LWF for y
(L)
min = 4.5895,

(A7)

with the Wiedemann-Franz constant the LWF = 1
3π2(kB/e)2.

For y → ∞ we have L → LWF.
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