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This paper presents the theory, implementation, and application of a quantum transport modeling approach
based on the nonequilibrium Green’s function formalism and a full-band empirical pseudopotential Hamiltonian.
We here propose to employ a hybrid real-space/plane-wave basis that results in a significant reduction of the
computational complexity compared to a full plane-wave basis. To this purpose, we provide a theoretical
formulation in the hybrid basis of the quantum confinement, the self-energies of the leads, and the coupling
between the device and the leads. After discussing the theory and the implementation of the new simulation
methodology, we report results for complete, self-consistent simulations of different electron devices, including a
silicon Esaki diode, a thin-body silicon field effect transistor (FET), and a germanium tunnel FET. The simulated
transistors have technologically relevant geometrical features with a semiconductor film thickness of about 4 nm
and a channel length ranging from 10 to 17 nm. We believe that the newly proposed formalism may find applications
also in transport models based on ab initio Hamiltonians, as those employed in density functional theory methods.
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I. INTRODUCTION

In nanoelectronic and nanophotonic devices semiconductor
materials are frequently structured at truly nanometric dimen-
sions. While early examples were related to high electron
mobility transistors (HEMTs) employing quantum wells of
III-V semiconductors, more recently also mainstream com-
plementary metal oxide semiconductor (CMOS) technologies
have introduced field effect transistors (FETs) realized in an
ultrathin semiconductor film on insulator (UTB-SOI), and then
Fin-FETs and multigate FETs (MuGFETs), as well as gate-all-
around (GAA) nanowire transistors [1]. CMOS technologies
are also exploring the use of III-V semiconductors, such as
InGaAs [2–4], whose light conduction band effective masses
emphasize quantum effects. The relevance of quantum effects
in CMOS transistors is no longer restricted to subband splitting
due to carrier confinement, in fact genuinely quantum transport
phenomena have become important, such as the undesired
source-drain tunneling in MOSFETs [5–7], or the band-to-
band tunneling (BTBT) from the source to the channel region,
which is the working principle of tunnel FETs (TFETs) [8,9].

The increasing relevance of quantum mechanical effects in
CMOS devices is confirmed by recent and exciting attempts to
employ silicon nanowires to implement qubits, and thus pave
the way for a scalable and industrial level platform for quantum
computing [10].

A quantum transport formalism including the full-band
energy effects produced by atomic scale potentials has a no-
toriously daunting complexity, which explains the widespread
use of simplified Hamiltonians based either on the effective
mass approximation (EMA) [11–13], or on the k·p approach
[14–16]. Both the EMA and k·p methods have accuracy
limitations at ultraconfined scale and, most importantly, they

describe low-dimensional systems including only the states
close to a given symmetry point in the Brillouin zone of the
underlying semiconductor, typically the � point for k·p mod-
els. Consequently band-to-band-tunneling effects in indirect
bandgap materials (e.g., Si, Ge, SiGe) cannot be described
with an EMA or a k·p approach.

As of today, the empirical tight-binding (TB) method has
been the only full-band approach used in complete quantum
transport device simulations by employing the nonequilibrium
Green’s function (NEGF) formalism [17,18]. The empirical
TB uses directly the hopping integrals and Hamiltonian matrix
elements as empirical, adjustable parameters, so that an explicit
form of the wave function is not available and the overall
number of fitting parameters is quite large. Nonempirical
TB formulations using explicit basis functions have been
also explored, but their use has been limited to transport in
molecules or in transistors consisting of only about 1000 atoms
[19]. Density functional theory (DFT) Hamiltonians have also
been reported for quantum transport using a real-space, finite
difference discretization of the unit cell, and based on either a
wave-function matching [20], or an NEGF formalism [21,22],
but this approach has been so far limited to very small systems.

Plane-wave-based methods provide both band structure and
explicit expressions for the atomistic wave function, however,
their use in DFT calculations usually requires such a large
basis that transport calculations for technologically relevant
devices are computationally very problematic. The empirical
pseudopotential (EP) method provides an alternative with a
more tractable computational burden; it relies on a fairly small
number of fitting parameters and it has been successfully
used for band-structure calculations in nanostructured devices
[23–27], whereas only a few attempts have been reported to
use EP for transport calculations. EP methods have been used
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to investigate the conductance of a carbon nanotube using a
wave-function matching condition at the interface between the
device and the lead [28], and more recently they have been
employed with a quantum-transmitting-boundary approach to
simulate ultra-thin-body FETs [29,30], as well as nanowire
FETs with a body size of 0.39 nm and graphene nanoribbon
transistors [31,32]. In effect the computational burden of EP-
based transport models remains very heavy, so that simplifying
assumptions have been frequently introduced, such as the
envelope wave-function approximation which assumes that the
external potential is slowly varying over a unit cell [31,32].

In this work we present a full-band, quantum transport
methodology based on a plane-wave empirical pseudopotential
Hamiltonian and the NEGF formalism [33,34], and the paper
extends substantially our previous, brief communication in
[35]. We do not assume any a priori simplification of the
problem and we introduce a hybrid real-space/plane-wave
basis that largely improves the computational efficiency com-
pared to a full plane-wave approach. We outline our formalism
for a three-, two- and one-dimensional electron gas, which
makes it suitable for a wide set of electron devices ranging
from p-n diodes to nanowire transistors. Then we present
some exemplary results for complete, self-consistent device
simulations including an Esaki diode, as well as ultra-thin-body
MOSFETs and tunnel FETs with technologically relevant
geometrical dimensions.

In order to clarify the novel contributions of our approach a
few explicit remarks may be useful: (a) In most previous papers
employing a pseudopotential Hamiltonian in a quantum trans-
port framework authors have used a real space discretization
of the unit cell along all spatial directions, then they introduced
periodicity in some directions and repeated their calculations
for the Bloch wave vectors in periodic directions [20–22]; our
approach is different because we use real space along the trans-
port direction and plane waves along the transverse directions;
(b) in our hybrid basis the confinement operator cannot be
simply computed by means of a Fourier transform of a confine-
ment potential, because there is no local operator in real space
able to describe confinement; consequently we developed the
original procedure described in Sec. II B for band-structure
calculations, and in Sec. III B for transport calculations;
(c) band-structure and transport calculations according to our
approach suggest definitions of the reduced zone different
from the first Brillouin zone, that are thoroughly discussed
in Sec. V; (d) the physical systems analyzed in most previous
studies dealing with quantum transport with a pseudopotential
Hamiltonian are extremely small and actually consist of only
a few tens of atoms [20–22], whereas the methodology of this
paper allowed us to report self-consistent, complete device
simulations of the current-voltage characteristics for transistors
consisting of several thousands of atoms and by using a simple
parallelization on few tens of cores.

The paper is organized as follows. In Sec. II we argue that,
because of the hybrid real-space/plane-wave basis employed
in the transport model, we need to introduce a discretization
of the real space and we thus discuss how such a discretization
enters the EP formalism for both bulk semiconductors and
quantum confined systems. Section III explains our approach
to transport relying on the NEGF method, Sec. IV B deals with
the calculation of charge and current, and with the scheme for

self-consistent simulations, while in Sec. V we provide details
about the implementation and computational burden. In Sec. VI
we present several results for complete, self-consistent device
simulations and in Sec. VII we report our concluding remarks.

II. PSEUDOPOTENTIAL METHOD IN A DISCRETE
REAL-SPACE LATTICE

The empirical pseudopotential method for band-structure
calculations in bulk semiconductors and nanostructures is
usually formulated assuming a continuous real space, that is,
without introducing any real space discretization. However,
such a discretization becomes indispensable in the formalism
for electronic transport described in Sec. III, so that we here
discuss the implications of a discrete real-space lattice for EP
calculations. This section also introduces part of the notation
used in the rest of the paper.

Let us start by defining the real space lattice as rd =
(xd,yd,zd ), and assume the same discretization d = a0/Nd

in all spatial directions s = {x,y,z}, where a0 is the semi-
conductor lattice constant and Nd is an even integer number.
In a volume V = (LxLyLz) the number of lattice points in
each direction is Ns = Ls/d = NdLs/a0 and the total num-
ber of points in the three-dimensional (3D) lattice is NT =
NxNyNz. A plane wave in the discrete real space lattice can be
written as

|K〉 = eiK·rd

√
NT

, Ks = ns

2π

Ls

, ns = 0,±1,±2 . . . , (1)

where K is the wave vector in the extended K space and, more
precisely, each K component has a range set by the real-space
discretization,

−π

d
� Ks <

π

d
,

π

d
= Nd

2

(
2π

a0

)
. (2)

Each |K〉 is actually a column vector with NT components,
and such vectors are orthogonal and normalized according to
〈K′|K〉 = δK,K′ , with δ being the Kronecher symbol.

A. Bulk semiconductors

For a bulk crystal the Schrödinger equation for EP can be
written as [36,37][

− h̄2

2m0
∇2 + VL(r)

]
ψ(r) = Eb ψ(r), (3)

where m0 is the free electron mass, VL(r) is the lattice potential
energy, and Eb is the energy in the bulk crystal. Equation (3)
assumes a local pseudopotential, which is in fact used in all
the calculations reported in the present paper.

Given the periodicity of VL(r) and assuming periodic
boundary conditions, the solutions of Eq. (3) have the well-
known form of Bloch functions,

�nk(r) = unk(r) eik·r =
∑

G

Bnk(G)ei(k+G)·r, (4)

where unk(r) is the periodic part of the Bloch function, n the
band index, and the coefficients Bnk(G) determine completely
the wave function �nk(r). In Eq. (4) we have also introduced
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the wave vector k in the reduced zone, such that K = (k + G)
with G being a reciprocal lattice vector.

By substituting Eq. (4) in Eq. (3) the Schrödinger equation
for the local EP model can be written as [36]∑

G′
Hk(G,G′)Bk(G′) = Eb(k) Bk(G), (5)

where the elements of the Hamiltonian matrix in K space read

Hk(G,G′) = T (k + G)δG,G′ + VL(G − G′), (6)

where VL(G) is a spectral component of the pseudopotential,
T (K) is the kinetic energy operator, and Eb(k) is the energy
dispersion of the bulk semiconductor. For a diamond semicon-
ductor (e.g., Si or Ge) or a zinc-blende compound (e.g., GaAs,
InAs) the spectral components of the lattice potential energy
can be written as [36,37]

VL(G) = US(|G|) cos[G · τ ] + iUA(|G|) sin[G · τ ], (7)

where τ = (1/8)a0(1,1,1) and US(|G|), UA(|G|) are, respec-
tively, the symmetric and antisymmetric form factors [with
UA(|G|) being null for diamond materials].

For a continuous real-space model, the kinetic energy
operator in K space has the well-known expression [36],

T (k + G) = h̄2|k + G|2
2m0

. (8)

For a discrete real-space lattice, however, the form of the
kinetic energy operator in real space and consequently also
in K space depends on the discretization scheme. Within a
finite difference discretization method, EP calculations require
a higher than second-order discretization for the kinetic energy
operator [38]. In this respect, if one describes the second
derivative with a centered difference approximation of order
2p, the kinetic energy operator in K space takes the form,

T (k + G) = −t0
∑

s=x,y,z

[
C0 + 2

p∑
r=1

Cr cos[r(ks + Gs)d]

]
,

t0 = h̄2

2m0d2
, (9)

where the coefficients Cr are the convolution mask for
the second derivative and can be easily calculated for any
order 2p.

As for the numerical solution of Eq. (5) we note that,
because the wave vector in extended space is K = (k + G),
then the maximum |Ks | in Eq. (2) results in

|Gs | � Nd

2

(
2π

a0

)
s = x,y,z, (10)

which creates a link between the real-space discretization d =
(a0/Nd ) and the maximum magnitude of the G vectors used in
the solution of the EP problem, Eq. (5).

In this respect it is interesting to notice that in any actual EP
calculation it is inevitable to introduce a truncation of the G
vectors, which is typically enforced via a cutoff energy Ecut,
such that the maximum |G| is given by |G|2 = (2m0Ecut/h̄

2)
[36,37]. Consequently, even if an explicit real-space discretiza-
tion is not usually introduced in EP calculations, nevertheless
the maximum |G| sets a minimum spacing between real-space

points where the wave function can be evaluated without
incurring in aliasing problems. This observation reconciles the
use of a discrete real-space lattice with the necessary truncation
of the G vectors used in the solution of Eq. (5).

It is also important to notice that, according to Eq. (10),
the expansion volume of the G vectors is defined as a cube,
rather than as the sphere defined by a cutoff energy condition.
In Eq. (10), in fact, the spatial discretization d = a0/Nd is the
same along x, y, z, which is necessary to preserve the crystal
symmetries and ensure the equivalence of the three crystal
orientations [100], [010], [001].

Two important remarks should be made about the dis-
cretized kinetic energy operator. First, Eq. (10) implies that,
for any discretization d = a0/Nd , the maximum value of
(ks + Gs)d in Eq. (5) is π and does not decrease with decreas-
ing d, because the extended K space expands proportionally
to 1/d. Second, the only means to enlarge the Kx range where
the discretized T (K) agrees well with the continuous T (K) is
in effect to increase the discretization order.

The discrepancies between the discretized and continuous
kinetic energy have significant consequences on the band-
structure calculations that are illustrated in Fig. 1, reporting
the energy dispersion of bulk germanium obtained by solving
Eq. (5) and using either the continuous or the discretized kinetic
energy operator with d = a0/10. The parameters for the local
EP model used throughout this paper are reported in Table I.

Figure 1 reports the band structure for germanium, and it
shows that for a second-order discretization the differences
with respect to the continuous case are unacceptably large:
The minimum of the conduction band is at the � rather than
at the L point and the energy gap is only 0.5 eV. By increasing
the discretization order, however, the results converge to the
continuous case and, in particular, to the expected values for
both the energy gap and the effective masses, in agreement
with the results of Ref. [38].

If not otherwise stated, all the calculations in this work were
obtained by using the T expression in Eq. (9) with d = a0/10
and 2p = 8. It should be noticed that the order of discretization
has essentially no influence on the computational burden.

B. Nanostructures with quantum confinement effects

The confinement in nanostructures is here described using
a single material approximation, where the confinement is
obtained by means of a discontinuity of the conduction and
valence band of the bulk semiconductor. For a semiconductor-
oxide system with band discontinuities as large as some
electron volts this seems a reasonable approximation, that
has been already discussed and validated in some previous
publications [27,39]. Hereafter we give explicit expressions
for a quasi-2D electron gas, namely a gas where quantum
confinement occurs along a single direction; the formalism for
a one-dimensional (1D) electron gas is a quite straightforward
extension and will be briefly discussed in Appendix A.

We first introduce a unitary step function �(z) along
the quantization direction z, such that �(z) = 0 for |z| �
Tsct /2 and �(z) = 1 for Tsct /2 < |z| < Lz/2, where Tsct is
the thickness of the semiconductor film and Lz > Tsct is the
periodicity length of the nanostructure in the z direction.
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FIG. 1. Band-structure for bulk germanium as obtained from
EP calculations for either a continuous model [i.e., kinetic energy
operator from Eq. (8) or a discretized real space lattice with the
kinetic energy from Eq. (9)]. (a) Lowest conduction band along the
[111] direction showing the minimum at the L point in k = |k| =
0.5

√
3(2π/a0); (b) valence bands along the [100] direction; spin-orbit

interaction has been here neglected, so that two bands are perfectly
degenerate. For a discretization order larger than about 2p = 6 the
results practically coincide with the continuous model.

The representation of �(z) in K space is readily given by

�(K,K′) = δKx,K ′
x
δKy,K ′

y
�z�(Kz − K ′

z), (11)

where �z�(Kz − K ′
z) is the discrete Fourier transform along

z. For a very fine spatial discretization the discrete Fourier
transform approaches the analytical expression corresponding
to a continuous abscissa z, namely

�z�(Kz − K ′
z) ≈ − 1

2π

[
sin[(Kz − K ′

z)Tsct /2]

(Kz − K ′
z)Tsct /2

]
. (12)

It is now important to understand that in our formalism the
carrier confinement is obtained with an operator H(c) that, in
the basis of the Bloch functions �nk of the bulk semiconductor,

TABLE I. Pseudopotential parameters used for all calculations
and expressed in Rydberg. These values are taken from Ref. [36] for
Si, from Ref. [45] for Ge, and from Ref. [46] for GaAs.

US(
√

3) US(
√

8) US(
√

11) UA(
√

3) UA(
√

4) UA(
√

11)

Si −0.2241 0.0551 0.0724 0 0 0
Ge −0.2768 0.0582 0.0152 0 0 0
GaAs −0.23 0.01 0.06 0.07 0.05 0.01

can be readily written as

H(c)(nk,n′k′)

=
{
Vcb �(nk,n′k′) if n′ ∈ conduction band
Vvb �(nk,n′k′) if n′ ∈ valence band , (13)

where Vcb and Vvb are the band discontinuity, respectively, for
the conduction and the valence band, and �(nk,n′k′) is the
representation of the unitary step function �(z) in the Bloch
function basis.

In the rest of the paper we will often refer to operators
and matrices in different basis sets. Matrices will be denoted
using square brackets and a subscript for the basis: for example,
[H(c)

� ], [��] denote the matrix for, respectively, the confining
operator and the unitary step function in the Bloch function
basis, whereas [H(c)

K ], [�K] denote the same matrices in the
plane-wave basis. When we denote the elements of the ma-
trices, instead, we drop the subscript and write H(c)(nk,n′k′),
�(nk,n′k′) or H(c)(K,K′), �(K,K′), because the symbols that
indicate the elements (in this case nk or K) identify univocally
the basis set.

Equation (13) can be rewritten in matrix notation as[
H(c)

�

] = [��]
[
D(c)

�

]
, (14)

where [D(c)
� ] is the diagonal matrix whose elements are

defined as

D(c)(nk,n′k′)

= δn,n′ δk,k′ ×
{
Vcb if n′ ∈ conduction band
Vvb if n′ ∈ valence band . (15)

Our goal now is to find the expression [H(c)
K ] for the

confining operator in plane-wave basis |K〉. To this purpose
we consider the unitary matrix [UK,�] from Bloch functions
to |K〉 basis, whose columns are the eigenvectors of the
bulk crystal EP problems in Eq. (5). The form of the matrix
[UK,�] depends on the shape of the reduced zone of the
bulk crystal and on the sorting of the functions in both
bases.

We here assume that the reduced zone of the bulk crystal is
defined so that, for any two different wave vectors k 	= k′ in the
reduced zone, none of the corresponding wave vectors in the
extended K space have the same x and y components; namely,
for any two reciprocal lattice vectors G, G′ we must have
(kx + Gx,ky + Gy) 	= (k

′
x + G′

x,k
′
y + G′

y). Such a condition is
fulfilled, for example, if we define the reduced zone of the bulk
crystal according to inequalities −2π/a0 � kx,kz < 2π/a0

and −π/a0 � ky < π/a0. Such a definition of the reduced
zone implies that the unitary step function �(nk,n′k′) in the
Bloch function basis is non-null only for Bloch functions
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�nkxykz
, �n′kxyk′

z
corresponding to the same kxy = (kx,ky).

Consequently the transformation of the step function from
the plane-wave to the Bloch-function basis is governed by a
separated unitary matrix, [U(kxy )

K,� ], for each kxy = (kx,ky) in the

reduced zone of the bulk crystal. If we further assume that the
|K〉 functions are sorted according to the sets of NG functions
that are coupled in the EP problems in Eq. (5), then [U(kxy )

K,� ]
takes the block diagonal form,

[
U(kxy )

K,�

] =

⎡
⎢⎢⎢⎣

[Bn,kxykz,1 (G)] 0 0 · · ·
0 [Bn,kxykz,2 (G)] 0 · · ·
...

...
. . .

...
0 0 · · · [Bn,kxykz,Nkz

(G)]

⎤
⎥⎥⎥⎦, (16)

where [Bn,kxy ,kz
(G)] is an NG × NG matrix such that each

column is the eigenvector of Eq. (5) for band n (with n =
1, 2, . . . NG). The rank of [U(kxy )

K,� ] is thus NGNkz
, with Nkz

being the number of kz in the reduced zone of the bulk crystal.
By using [U(kxy )

K,� ] the step function in the Bloch-function
basis can be written as

[��] = [
U(kxy )

K,�

]†
[�K]

[
U(kxy )

K,�

]
, (17)

where [�K] is a matrix of rank NGNkz
given by the eval-

uation of Eq. (11) at the K = [(kxy,kz) + G] wave vectors
corresponding to the Nkz

EP problems defined by Eq. (5)
for k = (kxy,kz) and −2π/a0 � kz < 2π/a0. The confinement
operator for a fixed kxy in the Bloch-function basis can be
similarly written,

[
H(c)

�

] = [
U(kxy )

K,�

]† [
H(c)

K

] [
U(kxy )

K,�

]
, (18)

where [H(c)
K ] is the same operator in K space, whose expression

we wish to derive. We now rewrite Eq. (14) by using Eq. (17) as

[
H(c)

�

] = [
U(kxy )

K,�

]†
[�K]

[
U(kxy )

K,�

] [
D(c)

�

]
, (19)

where [D(c)
� ] now has NGNkz

rank. If we substitute Eq. (19) in
Eq. (18) and solve it for [H(c)

K ] we obtain

[
H(c)

K

] = [�K]
[
D(c)

K

]
, (20)

where we have introduced[
D(c)

K

] = [
U(kxy )

K,�

] [
D(c)

�

] [
U(kxy )

K,�

]†
, (21)

which is the expression in K space of the [D(c)
� ] matrix defined

in the Bloch-function basis by Eq. (15). It may be worth noting
that, if the discontinuity at the valence and conduction band
were the same, that is, if we set Vcb = Vvb in Eq. (15), then
Eq. (20) would simplify as[

H(c)
K

] = Vcb [�K]. (22)

However, in a semiconductor-oxide system Vcb is positive
whereas Vvb is negative, so that our treatment leading to
Eqs. (20) and (21) is indispensable.

We reiterate that Eqs. (18)–(21) refer to a fixed kxy , that all
matrices have an NGNkz

rank, and that the K in these equations
are the K = [(kxy,kz) + G] wave vectors corresponding to the

solution of the Nkz
EP problems defined by Eq. (5) for k =

(kxy,kz) and −2π/a0 � kz < 2π/a0.
The overall Hamiltonian for a 2D electron gas in K space

and a given kxy takes thus the form,

Hkxy
(K,K′) = T (k + G)δG,G′δkz,k′

z
+ VL(G − G′)δkz,k′

z

+ H(c)(K,K′), (23)

where K = [(kxy,kz) + G], K′ = [(kxy,k
′
z) + G′], and the

band structure of the 2D electron gas can be calculated
solving the eigenvalue problem associated with Hkxy

(K,K′)
and varying kxy in the 2D reduced zone. All matrices in Eq. (23)
have a rank NGNkz

, with Nkz
being the number of kz values in

the reduced zone of the bulk crystal.
Figure 2 shows the band structure for a germanium 2D

electron gas obtained with the Hamiltonian in Eq. (23) and the
methodology described in the present section. The calculations
correspond to a square germanium quantum well with different
well thicknesses Tsct = 15, 10, 7a0 (with a0 = 0.565 nm), the
quantization direction is [001], and the bands are plotted along
the [110] direction. As already mentioned the sign of the band
discontinuity is different for the conduction and valance band,
and in these calculations we used Vcb = 3 eV andVvb = −3 eV,
which result in an expected upshift of the conduction band and
a downshift of the valence band compared to the bulk crystal.
As it can be seen the subband quantization is the largest at the
� point of the conduction band, where the effective mass is the
smallest.

III. TRANSPORT FORMALISM BASED
ON THE NEGF METHOD

The transport formalism developed in this section relies on
the non-equilibrium Green’s function (NEGF) method. The
main steps necessary for transport calculations can be summa-
rized as follows: (a) we need an expression for the Hamiltonian
matrix (both in the device and in the leads) for closed boundary
conditions, as opposed to the periodic boundary conditions
used in Sec. II for band-structure calculations; (b) we need to
calculate the surface Green’s function of the leads; (c) we need
the matrices describing the coupling between the device and
the leads, that eventually allow us to calculate the self-energies
of the leads.

Let us now consider a device structure with a length Lx =
Ncxa0, with Ncx being the number of unit cells in the transport
direction x. In the plane-wave basis and for periodic boundary
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FIG. 2. Band-structure calculations obtained with the Hamiltonian in Eq. (23) for a squared germanium quantum well with different well
thicknesses Tsct = 15, 10, 7a0, with a0 = 0.565 nm. Quantization is along the [001] direction and the |k| on the x axis runs along the [110]
direction. The band edge discontinuities are Vcb = 3 eV for the conduction band and Vvb = −3 eV for the valence band.

conditions the Hamiltonian matrix of the device can be written
by using Eq. (6), Eq. (23), or Eq. (A2), respectively, for a 3D,
2D, or 1D electron gas. For such Hamiltonians in the plane-
wave basis, it is possible to describe a procedure to modify
boundary conditions in the x direction from periodic to closed
boundary conditions.

The main difficulty in dealing with this approach, however,
is that the Hamiltonian matrices with closed boundary condi-
tions are dense in the |K〉 basis and have no block diagonal
structure. For a 2DEG, for instance, the Hamiltonian of the
leads is a dense matrix whose rank is NGNkz

N
(L)
kx

, where

the number N
(L)
kx

of kx values is huge for semi-infinite leads.
The rank of these matrices makes such a full plane-wave
approach computationally prohibitive, so that we here propose
to use a hybrid basis consisting of real space in the transport
direction x and plane waves in the (y,z) directions normal to
transport.

A. Transport in a 3D electron gas

The main advantage of the hybrid basis is that the overall
Hamiltonian has a block tridiagonal form. For a 3D electron
gas (3DEG), for instance, the Hamiltonian in the hybrid basis

can be written,

[HxKyz
] =

⎡
⎢⎢⎢⎣

H1,1 H0,1 0 0 · · · 0
H†

0,1 H2,2 H0,1 0 · · · 0

· · · · · · . . .
...

0 0 · · · 0 H†
0,1 HNcx,Ncx

⎤
⎥⎥⎥⎦,

(24)

where the index l = 1,2, . . . Ncx indicates an a0 long section
along x comprising Nd discretization points (see the beginning
of Sec. II), and each block Hl,l , H0,1 has a 2NG rank (as
discussed in more detail at the end of Sec. V). Moreover, it
should be noticed that [HxKyz

] in Eq. (24) already incorporates
closed boundary conditions along the transport direction at the
first and last discretization point along the x axis.

The Hamiltonian in Eq. (24) refers to a fixed kyz = (ky,kz)
in the reduced zone and the Kyz entering Eq. (24) are the (y,z)
components of the wave vectors K = [(kx,kyz) + G] involved
in the solution of the Nkx

= 2Ncx eigenvalue problems given
by Eq. (5) for k = (kx,kyz) and with −2π/a0 � kx < 2π/a0.
In this latter respect, in fact, it is important to underline
that, in order for the hybrid basis to describe correctly the
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transport along the x direction, it is necessary that for any
Kyz = [(ky,kz) + (Gy,Gz)] in Eq. (24) the corresponding x

components Kx = kx + Gx cover with no voids the entire
extended Kx range [−(Nd/2)(2π/a0),(Nd/2)(2π/a0)]. This
prescription requires that kx in the reduced zone be in the range
−2π/a0 � kx < 2π/a0.

All off-diagonal blocks H0,1 are the same, whereas the
diagonal blocks Hl,l differ only by the external potential
energy, Vext, produced by doping and external biases. More
specifically the Hl,l blocks can be written as

Hl,l(xlKyz,xlK′
yz)

= H0,0(xlKyz,xlK′
yz) + Vext(xl ,(Kyz − K′

yz)), (25)

where Vext(xl ,(Kyz − K′
yz)) is a matrix including the discrete

Fourier transform with respect to (y,z) of the Vext calculated
at each one of the Nd discretization points in the block l, while
H0,0(xlKyz,xlK′

yz) is independent of the specific block l.
An inspection of the kinetic energy operator and the pseu-

dopotential term allows us to see that H0,0 can be written as

H0,0(xlKyz,xlK′
yz)

= VL(xl ,(Gyz − G′
yz)) + T0,0(xlKyz,xlK′

yz), (26)

where VL(xl ,(Gyz − G′
yz)) and T0,0(xlKyz,xlK′

yz) are, respec-
tively, the pseudopotential and kinetic energy contributions,
while for a 3D gas the off-diagonal blocks H0,1 are given solely
by the kinetic energy operator, that is,

H0,1(xlKyz,x′
lK

′
yz) = T0,1(xlKyz,x′

lK
′
yz). (27)

The pseudopotential term VL(xl ,(Gyz − G′
yz)) in Eq. (26)

is periodic of a0 along x; it is the same in every block l and it
can be written as

VL(xi,Gyz − G′
yz)

= 2

Nd

∑
(Gx,G′

x )

VL(Gx−G′
x,Gyz−G′

yz) exp[i(Gx − G′
x) xi],

(28)

where G = (Gx,Gyz), G′ = (G′
x,G

′
yz) are reciprocal lattice

vectors (with Nd/2 being the number of Gx components in
the expansion volume), VL(G) is given by Eq. (7) and, with
no loss of generality, we can take xi = 0,d,2d . . . (a0 − d).
Moreover, by recalling the results about the discretization of
the kinetic energy operator reported in Sec. II A, we see that
for T0,0(xlKyz,xlK′

yz) in Eq. (26) we have

−t0

⎡
⎢⎢⎢⎢⎣

(
C0 + T

(yz)
0,0

)
I C1I · · · CpI 0 · · · 0

C1I
(
C0 + T

(yz)
0,0

)
I C1I · · · CpI 0 · · · 0

...
...

...
. . .

...

0 0 · · · 0 CpI · · · C1I
(
C0 + T

(yz)
0,0

)
I

⎤
⎥⎥⎥⎥⎦, (29)

where I is an identity matrix of rank 2NG/Nd and T
(yz)

0,0 (Kyz,K′
yz) is given by

T
(yz)

0,0 (Kyz,K′
yz) = δKyz,K′

yz

∑
s=y,z

[
C0 + 2

p∑
r=1

Cr cos[r(ks + Gs)d]

]
, (30)

with Ky = ky + Gy , Kz = kz + Gz. The off-diagonal contribution of the kinetic energy operator can instead be written as

T0,1(xlKyz,x′
lK

′
yz) = −t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 · · · 0
...

...
...

...
0 0 · · · 0 0 · · · 0

CpI 0 · · · 0 0 · · · 0
...

...
...

. . .
...

C2I · · · CpI 0 0 · · · 0
C1I C2I · · · CpI 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

where I is the same identity matrix as in Eq. (29) and the matrix
in Eqs. (29) and (31) has Nd rows and columns.

B. Transport in a 2D electron gas (2DEG)

Let us now consider a quantum well or an ultra-thin-body
SOI FET with a length Lx = Ncxa0, where Ncx , Ncz are the
number of unit cells, respectively, in the transport direction
x and in the confinement direction z. In the hybrid basis the
Hamiltonian with closed boundary conditions along x can be

written as

[HxKyz
] =

⎡
⎢⎢⎢⎣

H1,1 H0,1 0 0 · · · 0
H†

0,1 H2,2 H0,1 0 · · · 0

· · · · · · . . .
...

0 0 · · · 0 H†
0,1 HNcx,Ncx

⎤
⎥⎥⎥⎦,

(32)

where, differently from Eq. (24), each block Hl,l , H0,1 has now
a 2NGNkz

rank, with Nkz
= 2Ncz being the number of kz wave
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vectors in the reduced zone of the bulk crystal (see the end of
Sec. V for more details).

The Hamiltonian [HxKyz
] in Eq. (32) refers to a fixed ky in

the reduced zone and, moreover, the Kyz in Eq. (32) are the
(y,z) components of the K = [(kx,ky,kz) + G] wave vectors
involved in the solution of the NkxNkz eigenvalue problems
given by Eq. (5) for k = (kx,ky,kz) and with −2π/a0 �
kx,kz < 2π/a0. As already mentioned in the comment to
Eq. (24), the kx range between −2π/a0 and 2π/a0 ensures
that, for any Kyz = [(ky,kz) + (Gy,Gz)] in Eq. (32), the cor-
responding x components Kx = kx + Gx cover with no voids
the entire extended Kx range.

The differences in the definition of the Hl,l and H0,1

compared to the 3DEG case stem from the confinement Hamil-
tonian discussed in Sec. II B. In fact, because the confinement
Hamiltonian is a nonlocal operator, it provides a contribution
to both the diagonal and the off-diagonal blocks of the [HxKyz

].
More specifically, Hl,l is still expressed by Eq. (25), but H0,0

takes now the form,

H0,0(xlKyz,xlK′
yz) = VL(xl ,(Gyz−G′

yz))+T0,0(xlKyz,xlK′
yz)

+ H(c)
0,0(xlKyz,xlK′

yz). (33)

Furthermore, the off-diagonal blocks are now rewritten as

H0,1(xlKyz,x′
lK

′
yz)

= T0,1(xlKyz,x′
lK

′
yz) + H(c)

0,1(xlKyz,x′
lK

′
yz), (34)

where Eqs. (29)–(31) still hold for the terms stemming from
the kinetic energy operator.

The contributions due to the confinement operator cannot
be given in an explicit, analytical form, and must be evaluated
numerically by using an appropriate unitary transformation. To
this purpose we define the unitary transformation matrix from
x to Kx as

[
UKx,x

] = 1√
Nx

⎡
⎢⎢⎢⎣

eiKx1 x1 I eiKx1 x2 I · · · eiKx1 xNx I
eiKx2 x1 I eiKx2 x2 I · · · eiKx2 xNx I

· · · · · · . . .
...

eiKxNx x1 I eiKxNx x2 I · · · eiKxNx xNx I

⎤
⎥⎥⎥⎦,

(35)

where I is an identity matrix with rank of 2NGNkz
/Nd and then

write the confinement operator in the hybrid basis as[
H(c)

xKyz

] = [
UKx,x

]† [
H(c)

K

]
[UKx,x], (36)

where [H(c)
K ] is given by Eq. (20).

An inspection of the confining operator shows that
H(c)(xiKyz,xiK′

yz) (where xi is an individual discretiza-
tion point) is periodic of a0 along x. Moreover, the op-
erator is nonlocal, but the nonlocality is short range and
we verified that H(c)(xiKyz,xj K′

yz) can be adequately de-
scribed by considering only xj such that |xi − xj | extends
up to a0. Consequently, if we evaluate H(c)(xiKyz,xj K′

yz)
with Eq. (36) for xi = 0,d,2d . . . (a0 − d) and xj =
0,d,2d . . . (2a0 − d), then H(c)

0,0(xlKyz,x′
lK

′
yz) can be iden-

tified with the terms of H(c)(xiKyz,xj K′
yz) for xi,xj =

0,d,2d . . . (a0 − d), whereas H(c)
0,1(xlKyz,x′

lK
′
yz) corresponds

to the terms of H(c)(xiKyz,xj K′
yz) forxi = 0,d,2d . . . (a0 − d),

xj = a0,a0 + d, . . . (2a0 − d).
We reiterate that H(c)

0,0(xlKyz,x′
lK

′
yz), H(c)

0,1(xlKyz,x′
lK

′
yz) are

the same in every section section l of the device (with l =
1,2, . . . Ncx).

IV. CALCULATIONS OF GREEN’S FUNCTIONS,
CHARGE, AND CURRENT

The Hamiltonian matrices in Eqs. (24) and (32) have
a block tridiagonal form, which reduces dramatically the
computational burden to obtain the retarded, [GxKyz

], and the
lesser-than, [G<

xKyz
], Green’s function of the system.

A. Green’s functions

In principle [GxKyz
(E)], [G<

xKyz
(E)] at a given energy E can

be obtained by solving the kinetic equations,

[GxKyz
(E)] = [

(E + i0+)I − [HxKyz ] − [�(E)]
]−1

, (37)

[G<
xKyz

(E)] = [GxKyz (E)][�<(E)][GxKyz (E)]†, (38)

where [�] = [�L] + [�R] + [�ph] and [�<] = [�<
L ] +

[�<
R ] + [�<

ph] are, respectively, the retarded and the lesser-than
self-energies accounting for the connection of the device to
the external leads (i.e., left lead L, and right lead R), and for
the effects of a possible electron interaction with photons or
phonons [33]. All matrices in Eqs. (37) and (38) have the
same rank as [HxKyz

], which makes the complete solution
computationally intractable.

Thanks to the block tridiagonal form of the [HxKyz
] in

the hybrid basis, however, we can limit the calculation of
the Green’s functions matrices to the blocks on the main
diagonal and of the first diagonal above and below the main
diagonal, which are necessary to express the carrier density
and the spatial distribution of the current. These blocks can be
computed with the recursive Green’s function algorithms based
on the Dyson equation [33], with a computational burden that
is set by the rank of the diagonal and off-diagonal blocks in
Eq. (24) or (32), as discussed in Ref. [40].

As for the calculation of the self-energies of the leads, we
note that in the contacts the external potential Vext is zero, hence
Eq. (25) shows that all diagonal blocks are the same Hl,l ≈ H0,0

and the system is periodic in the x direction. Consequently,
the surface Green’s function G0,0 of a semi-infinite chain of
unit cells can be calculated by means of the Sancho-Rubio
algorithm [41], or the eigenvalue method [42,43], that is
by dealing only with the diagonal and off-diagonal blocks
of Eq. (24) or (32). Then the self-energy of the left lead,
for example, can be obtained as [�L] = H†

0,1G0,0H0,1 and
[�<

L ] = −([�L] − [�L]†)fL, with fL being the Fermi-Dirac
occupation function of the left reservoir. An entirely similar
expression holds for the self-energies [�R], [�<

R ] of the right
lead.

The above equations illustrate that in our formalism the
inelastic scattering with phonons or photons can be included
quite naturally by adding the appropriate expressions for the
retarded and lesser-than self-energies [�ph], [�<

ph] [33,34]. The
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results reported in this paper, however, are restricted to the
ballistic transport regime.

B. Charge, current, and self-consistent calculations

By treating the electron-electron interaction according to
the Hartree approximation, we here couple the charge com-
puted with the NEGF solver and the electrostatic potential by
means of the 3D Poisson equation,

∇ · [ε(r)∇φ(r)] = −e[p(r) − n(r) + ND(r) − NA(r)], (39)

where e is the positive electron charge, φ(r) is the electrostatic
potential, ε(r) is the material-dependent permittivity, and n(r),
p(r), NA(r), ND(r) are the electron, hole, acceptor, and donor
concentration, respectively.

In order to solve Eq. (39) it is necessary to express the
carrier concentration in real space. To this purpose the electron
concentration is first computed from the diagonal elements of
the real-space, lesser-than Green’s function, [G<

r ], which can
be obtained by means of the unitary transformation [G<

r (E)] =
[UKyz,ryz

]† [G<
xKyz

(E)] [UKyz,ryz
], and has the same spatial dis-

cretization d as the Hamiltonian matrix. More precisely, the
electron concentration reads

n(r) = −igs

d3

∫ ∞

E0(xi )

dE

2π
G<(r,r; E), (40)

where gs is the spin degeneracy, E0(xi) is the neutrality energy
level at the abscissa xi , here assumed to be in the center of the
energy gap. A similar equation holds for hole concentration,

p(r) = igs

d3

∫ E0(xi )

−∞

dE

2π
G>(r,r; E), (41)

where [G>
r (E)] is the real-space, greater-than Green’s function

defined as [G>
r (E)] = [G<

r (E)] + [Gr(E)] − [Gr(E)]†.
Then, because the electrostatic potential φ(r) has fairly slow

variations on the scale of the lattice constant a0, the electron
and hole concentrations are interpolated on a coarser mesh with
a discretization dc larger than d (typically dc � a0/2).

The spatial distribution of the current along the transport
direction is expressed in the hybrid basis as

Ixl→xl+1 = gse

h̄

∫
dE tr{Hl,l+1G<

l+1,l − G<
l,l+1Hl+1,l}, (42)

where tr{· · · } denotes the trace of a matrix, and Hl,l+1, G<
l+1,l

are the blocks of [HxKyz
] and [G<

xKyz
] on the first diagonal above

and below the main diagonal. Finally, in the ballistic limit the
current ILR between the left and right contact is given by the
Landauer formula

ILR = gse

h̄

∫
dE tr{[�L][GxKyz

][�R][GxKyz
]†}

× [fL(E) − fR(E)], (43)

where [�L(R)] = i([�L(R)] − [�L(R)]†) and fL(R) is the Fermi-
Dirac occupation function at the L(R) contact.

A self-consistent calculation of the carrier densities and
electrostatic potential is obtained by iteratively calculating
the retarded and lesser-than Green’s functions, and solving
the Poisson equation Eq. (39) until convergence is reached.
Equation (39) is numerically solved by using the well-known
nonlinear formulation of the Poisson equation, which allows
one to define a Jacobian matrix and thus employ the Newton-
Raphson method.

V. IMPLEMENTATION AND COMPUTATIONAL
COMPLEXITY

In order to set up our simulation framework we first have
to identify the necessary reciprocal lattice vectors G and the
shape of the reduced zone of the bulk semiconductor. The
maximum magnitude of the G vectors is set by the spatial
discretization mesh d = a0/Nd according to Eq. (10). In this
work, we verified that the minimum Nd necessary to obtain
accurate band-structure calculations for silicon and germanium
is Nd = 8, and we accordingly used a cubic expansion volume
counting a number of G vectors NG = 128 for all simulations.

We think it is useful to point out a few summarizing remarks
about the reduced zone of the bulk semiconductor that we
recommend to use for either band-structure or transport cal-
culations. In fact for the purposes of this work it is convenient
to tailor the reduced zone of the bulk crystal differently from
the 3D first Brillouin zone.

As far as transport calculations are concerned, the reduced
zone defined as−2π/a0 � kx < 2π/a0,−π/a0 � ky < π/a0,
and −2π/a0 � kz < 2π/a0 is appropriate for all electron gas
dimensionalities because it guarantees that, for any Kyz =
[(ky,kz) + (Gy,Gz)] in Eqs. (24), (32), and (A5), the corre-
sponding x components Kx = kx + Gx cover with no voids the
entire extended Kx range [−(Nd/2)(2π/a0),(Nd/2)(2π/a0)]
defined by Eq. (2).

For a coherent transport such a reduced zone ensures also
that, for a 3DEG with an external potential constant along the
(y,z) plane transverse to the transport direction, a separated
transport problem (with a corresponding transmission coeffi-
cient) can be written for any (ky,kz) with −π/a0 � ky < π/a0

and −2π/a0 � kz < 2π/a0. Similarly, for a 2DEG with an
external potential constant along the y direction, a separated
transport problem can be written for any ky with −π/a0 �
ky < π/a0. No separation is instead possible for a 1DEG.
The size of the transport problem is thus set by the rank of
the blocks of the matrices in Eqs. (24), (32), and (A5). It is
understood, however, that even for a 3DEG and a 2DEG the
self-consistent calculation of charge density and electrostatic
potential indirectly couples the otherwise separated transport
problems.

For the band-structure calculation of a 2DEG the bulk
crystal reduced zone defined above for transport calculations
leads also to a separated eigenvalue problem for any (kx,ky),
consequently the reduced zone of the 2DEG can be defined
as −2π/a0 � kx < 2π/a0, −π/a0 � ky < π/a0. For the band
structure of a 1DEG, instead, the reduced zone defined for
transport does not enable the separation of the eigenvalue
problems for different kx , which can be obtained by defining
the bulk crystal reduced zone as −2π/a0 � ky,kz < 2π/a0 and
−π/a0 � kx < π/a0, that in turn results in a reduced zone for
the 1DEG given by −π/a0 � kx < π/a0.

We conclude this section with a comment about the rank
of the blocks of the device Hamiltonian matrices in Eqs. (24),
(32), and (A5). The overall number of wave vectors in the
extended K space defined in Sec. II is NT = 4NGNcxNcyNcz,
and it is equal to the number of points in the discrete real
space lattice. In fact NT can be written as NG Nred, where
Nred = 4NcxNcyNcz is the number of wave vectors in the
reduced zone of the bulk crystal, that in turn can be inferred
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FIG. 3. (a) Bulk Si band structure along the � direction, where
the reference energy is taken at the top of the valence band.
(b) Transmission probability through the band structure with no
energy barrier. (c) Transmission probability in the presence of a
rectangular energy barrier (with a barrier height EB = 1 eV and a
width WB = 5.43 nm) and computed either with the EP model (blue
solid line) or with the EMA Hamiltonian (red dashed line). Transport
direction is along the [100] direction.

by the volume 4(2π/a0)3 of the reduced zone and the density
of states (2π )3/(LxLyLz) in K space. For a 3D electron gas
each block in Eq. (24) corresponds to a fixed (ky,kz) in the
reduced zone (with Nky = Ncy , Nkz = 2Ncz being the number
of, respectively, ky , kz values in the reduced zone), and to an
a0 long device section along x (namely Ncx times shorter than
Lx = Ncxa0). Consequently the size of the blocks in Eq. (24)
is given by NT /[NcxNcy(2Ncz)] = 2NG. For a 2D electron gas
each block in Eq. (32) corresponds to a fixed ky and an a0 long
device section, so that the size of the blocks is NT /(NcxNcy) =
4NGNcz. Finally for a 1D gas, because no separation is possible
for transverse k components, the size of the blocks in Eq. (A5)
is simply given by NT /Ncx = 4NGNcyNcz.

VI. SIMULATION RESULTS

A. Transmission through an analytical energy barrier

We start this section of simulation results showing a simple
example consisting in the transmission through a rectangular
barrier, in fact in this case a comparison with an analytical
calculation based on the EMA is possible. The energy barrier
is superimposed to the atomic scale pseudopotentials of the
underlying silicon crystal and it has a width WB = 10 a0 =
5.43 nm along the transport direction x (taken as [100]), and
an energy barrier height EB = 1 eV; such a potential energy
profile creates a forbidden region for electrons and a quantum
well for holes along x.

Figure 3 illustrates the band structure of bulk silicon close
to the energy gap and the corresponding transmission at
(ky,kz) = (0,0) calculated with the formalism presented in
Sec. III, and for a system with or without the above mentioned
energy barrier. In particular, Fig. 3(b) shows the transmission
for the case with no energy barrier, where sharp steps are
observed at the energies corresponding to the band edges,

FIG. 4. (a) GaAs band structure in proximity of the � point
obtained either with the EPM (solid black line) or with the four-
band k·p Hamiltonian (dashed red line). The parameters for EPM
calculations are reported in Table I, while the k·p model is based
on the formulation in Ref. [47] and the parameters are γ L

1 = 6.98,
γ L

2 = 2.06, γ L
3 = 2.93, mc = 0.067, Ep = 20.8 eV, EG = 1.55 eV,

and �so = 0 eV. (b) Simulated current versus forward bias for the
GaAs Esaki diode obtained either with the EPM (solid black line) or
with the four-band k·p Hamiltonian (dashed red line). The doping
concentration is ND = 2×1019 cm−3 for the n-doped region and
NA = 5×1019 cm−3 for the p-doped region. Transport direction is
along the [100] direction.

with two modes available in the conduction band and three
modes in the valence band. Figure 3(c) illustrates the results
in the presence of the energy barrier, and it can be seen that
the transmission is much smaller than one for an energy up
to about 1 eV above the bottom of the conduction band.
Moreover, for energies close to the top of the energy barrier
(i.e., around 2 eV) the decay of the transmission calculated
with the EP method (solid line) is tracked very well by the
analytical results obtained using a simple EMA model (dashed
line) and using the silicon longitudinal effective mass 0.91
m0. When the energy falls deeper below the top of the energy
barrier, however, a large discrepancy is observed between EMA
and EP results, because in the EP model the transmission
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FIG. 5. Cross section of the simulated electron concentration at
VGS = 0.6 V and VDS = 0.6 V for an n-type, silicon FET with gate
length LG � 10 nm and Tw = 7a0 � 3.8 nm.

reaches a minimum and then increases for decreasing energy.
For energies close to the conduction band edge, in particular,
the transmission through energy barrier occurs mainly via the
evanescent states of the valence band (whose top is at E = 1
eV in the energy barrier region), which are not at all considered
in the EMA model.

B. GaAs Esaki diode

As a first device application for a 3DEG system we report
simulation results for a GaAs Esaki diode consisting in a highly
doped p-n junction. This is a prototypical device demanding a
quantum transport simulation approach because the forward
bias current is determined by electron tunneling from the
valence to the conduction band.

Figure 4 shows a comparative analysis for simulation results
obtained either with the EPM Hamiltonian of this work or with
a four-band k·p Hamiltonian developed for the � point. The
four-band k·p model is a simplified version of the eight-band
k·p Hamiltonian discussed and employed in some of our
previous publications [15,44], where we have removed the
spin-orbit interaction in order to have a fair comparison with the
EPM Hamiltonian used in this work, which does not include
spin-orbit related terms. Figure 4(a) reports the bulk GaAs

band structure in proximity of the � point and shows that the
agreement between the k·p and the EPM band structure is good
close to the valence and conduction band edge.

FIG. 6. Simulated IDS versus VGS characteristic at VDS = 0.6 V
for an n-type, silicon FET with gate length LG � 10 nm and Tw =
7a0 � 3.8 nm.
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FIG. 7. Conduction sub-band profile (left) and corresponding
current density plot (right) for the n-type silicon FET of Fig. 6 and at
VDS is 0.6 V.

As for the GaAs Esaki diode, we here performed self-
consistent simulations of a diode having a donor and an
acceptor-type dopant concentration of, respectively, ND =
2×1019 cm−3 and NA = 5×1019 cm−3, and assumed that the
external potential varies only along the longitudinal direc-
tion (x axis). Figure 4(b) reports the current versus voltage
characteristic under forward bias, which exhibits the negative
differential resistance behavior distinctive of an Esaki diode.
The I -V curves obtained with the two different Hamiltonians
are in fairly good agreement especially in terms of peak current,
suggesting that the current is dominated by direct tunneling at
the � point and for an energy range where the band structure
obtained with the two models is in good agreement.

C. Silicon ultra-thin-body FET

We here report simulations for an ultra-thin-body silicon n-
FET having a silicon thickness Tw = 7a0 � 3.8 nm and a gate
length LG =� 10 nm. The confinement along the z direction
is described using an energy barrier region having band edge
discontinuities Vcb = 3 eV and Vvb = −3 eV (respectively, for
the conduction and valence band), and an overall thickness
in the z direction of 2a0. In fact we verified that such a bar-
rier thickness is sufficient to ensure an appropriate suppression
of the electron wave function in the oxide region, namely an
appropriate confinement of the electron wave function and
electron concentration in the semiconductor region. This is
exemplified in Fig. 5 reporting the self-consistent electron
density at VGS = 0.6 V and VDS = 0.6 V, where the reader
can also recognize the atomic scale features of the carrier
concentration due to the periodic parts of the crystal Bloch
functions. The same parameters for the energy barrier region
have been used also for the simulations of thin-body TFETs in
Sec. VI D.

Figure 6 reports the results of self-consistent simulations
for the IDS versus VGS curve at VDS = 0.6 V. As it can be seen
the current characteristics at VDS = 0.6 V are well behaved
and the quite large IDS values are due to the fact that neither
scattering nor series resistance effects are included. Figure 7
illustrates the corresponding profile of the lowest conduction
subband along the channel and the current spectral density
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FIG. 8. Simulated drain current versus gate voltage characteris-
tics for an n-type, germanium tunnel FET at VDS = 0.4 V with Tw of
either 7a0 � 3.95 nm or 5a0 � 2.82 nm. Gate length is LG � 17 nm.

J (E). As it can be seen the peak of J (E) follows closely the
top of the barrier energy because the source-drain tunneling
component is small in silicon at LG � 10 nm [6].

D. Germanium ultra-thin-body tunnel FET

To illustrate the flexibility of the new transport methodol-
ogy, we show in Fig. 8 the self-consistently calculated IDS

versus VGS characteristics at VDS = 0.4 V for an n-type,
germanium tunnel FET with two different semiconductor film
thicknesses Tw. The TFET exhibits a subthreshold swing (SS)
below 60 mV/dec and, as expected, the minimum SS improves
with reducing Tw [6]. Figure 9 reports the subband profile and
the corresponding J (E), where the tunneling from the source
valence band to the conduction band in the channel is clearly
observed. We here emphasize that BTBT in an indirect bandgap
semiconductor, such as germanium, cannot be described with a
k·p method restricted to the � point, and it is a distinct feature
of a full-band transport model, such as the pseudopotential
NEGF method developed in this work.
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FIG. 9. Conduction and valence sub-band profile (left) and corre-
sponding current density plot (right) for the germanium tunnel FETs
of Fig. 8 with Tw = 7a0.

VII. CONCLUSIONS

We have presented a full-band quantum transport modeling
approach based on the NEGF formalism and an empirical
pseudopotential Hamiltonian. The model relies on a hybrid
real-space/plane-wave basis that improves the computational
efficiency compared to a full plane-wave approach, and has
been described for different electron gas dimensionalities,
which makes it in principle suitable for a large variety of
devices.

We have implemented the proposed approach in a self-
consistent simulation framework, and reported complete de-
vice simulations for a tunneling diode, and for ultra-thin-body
transistors (both FETs and tunnel FETs) with geometrical
features representative of forthcoming CMOS technologies.

The paper delivers novel contributions in several aspects
(already mentioned in Sec. I), which include the hybrid
real-space/plane-wave basis itself, the treatment of quantum
confinement by means of an on-purpose developed, nonlocal
confining operator, a discussion of the separability of either the
band structure or transport problems leading to definitions of
the reduced zone alternative to the conventional first Brillouin
zone, and finally the size of the systems addressed by our
self-consistent simulations, that is substantially larger than
reported in previous papers using a similar Hamiltonian for
quantum transport calculations.

While all the results in this work have been obtained using
a local EP formulation and assuming a coherent transport
regime, a model extension to nonlocal pseudopotentials seems
possible and, moreover, the NEGF-based formalism is in
principle capable of including also scattering with phonons
or photons. Both these topics are outside the scope of the
present work, but they are interesting directions for future
developments.

The computational complexity of the method remains a
challenge, in terms of both memory occupation and CPU time.
In particular, the size of the problem increases for a 2D and
especially for a 1D electron gas, because the quantum con-
finement precludes the separation of the problem in transverse
modes identified by some k components normal to the transport
direction.

We believe that the formalism developed in this work may
find useful applications also for transport methods based on
density functional theory Hamiltonians, which typically rely
on a full plane-wave basis. Further investigations are necessary
to establish how useful and feasible the transport method of this
work can be for an accurate analysis of nanoscale electronic
and photonic devices.
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APPENDIX: CONFINEMENT AND TRANSPORT
FOR A 1D ELECTRON GAS (1DEG)

The quantization and transport for a quasi-1D electron gas
(1DEG), namely a gas where quantum confinement occurs
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along both directions normal to the transport direction x, can
be described through an extension of the approach described
for a 2D electron gas in Secs. II B and III B. The step function
�(y,z) used to describe the quantum confinement in a 1DEG
can be written in K space as

�(K,K′) = δKx,K ′
x
�yz�(Kyz − K′

yz), (A1)

where �yz�(Kyz − K′
yz) is the 2D discrete Fourier transform

in the (y,z) plane.

1. Band-structure calculations

For band-structure calculations it is convenient to define the
reduced zone of the bulk crystal with inequalities −2π/a0�ky ,
kz < 2π/a0, and −π/a0 � kx < π/a0 which ensure that, for
any two different wave vectors k 	= k′ in the reduced zone,
none of the corresponding wave vectors in the extended K
space have the same x component; namely for any two recip-
rocal lattice vectors G, G′ we have (kx + Gx) 	= (k

′
x + G′

x).
Such a definition of the reduced zone implies that the unitary

step function �(nk,n′k′) in the Bloch function basis is non-null
only for Bloch functions �nkxkyz

, �n′kxk′
yz

corresponding to the
same kx . Consequently the transformation of the step function
from plane waves to the Bloch function basis is governed by a
separated unitary matrix U(kx )

K,� for −π/a0 � kx < π/a0. The

unitary matrix U(kx )
K,� is defined similarly to Eq. (16), but the

rank of the matrix for a 1DEG is NGNky
Nkz

, with Nky
, Nkz

being the number of, respectively, ky , kz values in the reduced
zone of the bulk crystal.

In this case the passages from Eq. (17) to Eq. (23) remain
valid for a 1DEG, so that we can write the overall Hamiltonian
in K space as

Hkx
(K,K′) = T (k + G)δkyz,k

′
yz
δG,G′ + VL(G − G′)δkyz,k

′
yz

+ H(c)(K,K′), (A2)

where K = [(kx,kyz) + G], K′ = [(kx,k
′
yz) + G′], where

H(c)(K,K′) is given by[
H(c)

K

] = [�K][Dc,K], (A3)

with

[Dc,K] = [
U(kx )

K,�

]
[Dc,�]

[
U(kx )

K,�

]†
. (A4)

It is understood that �(K,K′) is now given by Eq. (A1) and
that all matrices in Eq. (A2) have a rank NGNky

Nkz
, with Nky

,
Nkz

being the number of ky , kz in the reduced zone of the bulk
crystal. The band structure of the 1DEG gas is obtained varying
kx in the range −π/a0 � kx < π/a0.

2. Transport

As for the transport in a 1DEG, let us consider a system
confined along y, z and with a length Lx = Ncxa0, where
Ncx , Ncy , Ncz are the number of unit cells, respectively, in
the transport direction x and in the confinement directions
y, z.

We start by recalling that, as already mentioned after
Eqs. (24) and (32), for transport it is necessary that the
reduced zone of the bulk crystal is defined such that, for
each transverse wave vector Kyz = [(ky,kz) + (Gy,Gz)] in the
extended K space, the corresponding x components Kx =
kx + Gx cover with no voids the entire extended Kx range
[−(Nd/2)(2π/a0),(Nd/2)(2π/a0)]. This condition is not ful-
filled by the reduced zone for band-structure calculations
introduced in the previous subsection and corresponding to
−π/a0 � kx < π/a0. Consequently, for transport calculations
we have to use a reduced zone defined by inequalities
−2π/a0 � kx < 2π/a0, −π/a0 � ky < π/a0 and −2π/a0 �
kz < 2π/a0, which is thus suitable for transport calculations
for all electron gas dimensionalities. This definition implies
that the unitary step function �(nk,n′k′) in the Bloch function
basis is non-null only for Bloch functions �nkxkyz

, �n′k′
xk′

yz

corresponding to couples of kx and k
′
x such that |kx − kx

′| =
2π/a0. Consequently the transformation of the step function
in Eq. (A1) from a plane-wave to Bloch-function basis is

governed by a separated unitary matrix, U(kx ,k
′
x )

K,� , identified
by the couple (kx,k

′
x) with −2π/a0 � kx,k

′
x < 2π/a0. The

unitary matrix U(kx ,k
′
x )

K,� is defined similarly to Eq. (16), but the
rank of the matrix for a 1DEG is 2NGNky

Nkz
.

In the hybrid basis the Hamiltonian with closed boundary
conditions along x can still be written,

[HxKyz
] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H1,1 H0,1 0 0 · · · 0

H†
0,1 H2,2 H0,1 0 · · · 0

· · · · · · . . .
...

0 0 · · · 0 H†
0,1 HNcx,Ncx

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(A5)

where the Kyz are the (y,z) components of the wave
vectors K = [(kx,ky,kz) + G] involved in the solution of
the NkxNkyNkz eigenvalue problems given by Eq. (5) for
k = (kx,ky,kz) and with −2π/a0 � kx,kz < 2π/a0, −π/a0 �
ky < π/a0. Each block Hl,l , H0,1 has now a 2NGNky

Nkz
rank,

with Nky
= Ncy , Nkz

= 2Ncz being the number of, respectively,
ky , kz values in the reduced zone of the bulk crystal (see the end
of Sec. V for more details). As it can be seen Eq. (A5) is similar
to Eq. (32), however, the Hamiltonian in Eq. (A5) couples
all the ky , kz in the plane normal to the transport direction
and, differently from the [HxKyz

] in Eq. (32), no separation
of the problem is possible for any transverse wave-vector
component.

Equations (33)–(36) remain formally valid for a 1DEG
system, however, all the blocks have now a 2NGNky

Nkz

rank, which increases substantially the computational burden
compared to a 2DEG system.
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