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The theory of correlated electron systems on a lattice proves notoriously complicated because of the exponential
growth of Hilbert space. Mean-field approaches provide valuable insight when the self-energy has a dominant
local structure. Additionally, the extraction of effective low-energy theories from the generalized many-body
representation is highly desirable. In this respect, the rotational-invariant slave-boson (RISB) approach in its
mean-field formulation enables versatile access to correlated lattice problems. However, in its original form, due
to numerical complexity, the RISB approach is limited to about three correlated orbitals per lattice site. We thus
present a thorough symmetry-adapted advancement of RISB theory, suited to efficiently deal with multiorbital
Hubbard Hamiltonians for complete atomic-shell manifolds. It is utilized to study the intriguing problem of Hund’s
physics for three- and especially five-orbital manifolds on the correlated lattice, including crystal-field terms as
well as spin-orbit interaction. The well-known Janus-face phenomenology, i.e., strengthening of correlations
at smaller-to-intermediate Hubbard U accompanied by a shift of the Mott transition to a larger U value, has
a stronger signature and more involved multiplet resolution for five-orbital problems. Spin-orbit interaction
effectively reduces the critical local interaction strength and weakens the Janus-face behavior. Application to the
realistic challenge of Fe chalcogenides underlines the subtle interplay of the orbital degrees of freedom in these
materials.
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I. INTRODUCTION

The dichotomy of higher-energy localization and lower-
energy itinerancy poses a key challenge of correlated electron
systems on lattices with spatial dimension dim >1. To cope
with this problem on general grounds, many-body theory has to
cover a large energy window, rendering standard perturbation
theory or renormalization-group approaches difficult. Integrat-
ing out degrees of freedom is notoriously complex. Only if the
physics singles out a certain energy scale, e.g., low energy
in the Kondo problem, (numerical) exact theoretical methods
become available.

Auxiliary-particle or Gutzwiller-based [1] schemes ap-
proach the given problem in a simplified, but often qualita-
tively adequate way, that is especially useful to study low-
temperature properties of correlated electron systems in the
thermodynamic limit. Instead of aiming for a complete treat-
ment of the lattice electrons’ dichotomy with further necessary
approximations in real or reciprocal space, temperature or
frequency range, key focus is on an approximate handling of
the two-faced character of the electrons. A certain protocol for
liberating the itinerant from the localized degrees of freedom
is common to all the various flavors of these schemes. In this
work, we concentrate on the auxiliary- or “slave” -particle
methods, but in practice the Gutzwiller frameworks carry in
principle the same physics [2], using a different representa-
tion/language [3–5].

Originally introduced [6] to handle the Anderson model, the
slave-boson concept was further developed in the context of
mixed-valent and Kondo-lattice systems [7,8], and afterwards
has been modified and extended in various directions over

the years [9–20]. The main idea is to distinguish between the
localized and the delocalized character of an electron on the
operator level. In its simplest one-orbital form at infinite local
interaction strength U , one introduces a quasiparticle (QP)
fermionic operator f for the itinerant behavior, while a bosonic
operator φ takes care of the strictly local empty state on lattice
site i. Therewith, the physical electron creation operator c† may
be reexpressed, and a straightforward constraint to abandon
doubly occupied lattice sites established, i.e.,

c
†
iσ = f

†
iσ φi ∧

∑
iσ

f
†
iσ fiσ + φ

†
i φi = 1, (1)

whereby σ = ↑,↓ marks the spin projection. This efficient
route to select the physical states on an interacting lattice
can be generalized by various means. Kotliar and Ruckenstein
[9] increased the number of local bosons to describe finite-U
cases. Multiorbital extensions thereof ask for a further increase
of the bosonic variables [14]. In parallel, there are options to
replace/modify the character of the auxiliary particle in order to
strengthen or focus on certain aspects of the correlated electron
problem. For instance, the slave-rotor method [15] and the
slave-spin framework [16] are two such alternative theories.

This work deals with an efficient realization of the
rotational-invariant slave-boson (RISB) theory [12,17,18], an
elaborate generalization of the original ideas for manifest
multiorbital problems. Rotational invariance in the theoretical
description is essential to promote the simple one-orbital
empty-state bosonic degree of freedom to an object that can
address the intricate multiplet structure of a local quantum-
chemical entity in full generality, as well as its general
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coupling to the k-dependent quasiparticle degrees of freedom.
The RISB framework handles these issues properly and it
has been successfully utilized to study various correlated
condensed matter problems, both on the model level and
using realistic dispersions in the context of concrete materials.
Namely, applications to multiorbital Mott transitions [17,21],
quasi-two-dimensional lattices [22–25], spin-orbit and related
anisotropic interactions [26–28], three-orbital Hund’s physics
[21,29], multiorbital superconductivity [18], and real-space
defect problems [30] were performed. In addition, inspired by
a Gutzwiller-based scheme [31], a time-dependent extension
to address nonequilibrium electronic correlations has also been
put forward [29,32,33].

However, the number of auxiliary bosons grows exponen-
tially with the number of orbitals, as expected for a method
coping with a faithful coverage of the generic quantum Hilbert
space. Therefore, we here report an advancement of the RISB
framework that makes rigorous use of the various detailed
symmetries of the lattice problem at hand. This allows us
to perform full transition-metal d-shell investigations with
general Coulomb interactions and including crystal fields
and spin-orbit coupling. Moreover, the methodology may be
combined with density functional theory (DFT) in a charge
self-consistent manner. We apply the generalized scheme to
study the prominent Hund’s physics [34–37] in three- and
five-orbital model Hamiltonians and provide results within the
materials context of FeSe and FeTe.

The paper is organized as follows. In Sec. II the basic
principles of RISB are introduced for the canonical single-band
case, in line with a brief classification of the formalism in
view of other many-body techniques. Section III discusses the
characteristics of the available multiorbital model Hamilto-
nians. The technical Sec. IV presents the symmetry-adapted
RISB extension to many orbitals. A compendious account
of combining RISB with DFT to approach realistic systems
is given in Sec. V. Finally, Sec. VI deals with the selected
applications to model and materials problems in the broader
context of Hund’s physics.

II. BRIEF SURVEY OF ROTATIONAL-INVARIANT
SLAVE-BOSON THEORY

To set the stage, we first provide a short overview about
the key methodological steps of the RISB approach on the
basis of the canonical single-band Hubbard model. This serves
the goal to introduce the principles of the theory, which
is generalized to the symmetry-adapted multiorbital case in
Sec. IV. Additionally, this then allows us to discuss the
important mean-field (or saddle-point) approximation as well
as comparisons to other many-body schemes. For a general,
more detailed introduction to RISB, see Ref. [17].

A. Single-orbital formalism

The Hamiltonian for the single-band Hubbard model with
nearest-neighbor hopping t and local Coulomb repulsion U

reads as [38]

H = −t
∑
ijσ

c
†
iσ cjσ + U

∑
i

ni↑ni↓ ≡ H(kin) +
∑

i

H(loc)
i ,

(2)

with i,j labeling lattice sites. For the following, the details
of the crystal lattice are irrelevant, and we assume a Bravais
lattice in spatial dimension dim > 1 [39].

On a lattice site i, the four possible electron states are given
by

A = {|E〉,|S↓〉,|S↑〉,|D〉}, (3)

i.e., an empty site |E〉, a site |Sσ 〉 occupied by a single electron
with spin projection σ , and a site |D〉 occupied by two electrons
of opposite spin are represented in RISB in full generality
through acting on the vacuum state |vac〉 as follows:

|E〉 = |0〉 = φ
†
E |vac〉, (4)

|S↓〉 = |↓〉 = 1
2 {φ†

↓↑ f
†
↑ + φ↓↓ f

†
↓} |vac〉, (5)

|S↑〉 = |↑〉 = 1
2 {φ†

↑↑ f
†
↑ + φ↑↓ f

†
↓} |vac〉, (6)

|D〉 = |↑↓〉 = φ
†
D |vac〉. (7)

Thus, the method introduces two fermionic QP operators
and six bosonic operators on every site, i.e.,

site i : f↓,f↑,φE,

(
φ↓↓ φ↑↓
φ↓↑ φ↑↑

)
,φD. (8)

The second index on the single-particle bosons refers to a
QP degree of freedom, whereas the first index is generally
associated with the local state. The physics of this higher-
dimensional bosonic-operator structure may be read off from
Eqs. (5) and (6). A low-energy QP excitation is not necessarily
only connected to its spin-identical high-energy local coun-
terpart, but may also connect to other local configurations:
in this simple case, a state with opposite spin configuration.
This general structure renders it possible to account for full
rotational invariance in the description.

Choosing these four slave-boson operators in the one-
particle sector, derived by physical intuition, already accounts
for a given symmetry of the system: particle-number symmetry
is included, there exists no slave-boson operator that mixes
two states with different number of particles. In fact, since we
aim for a matrix-based formulation, these four objects can be
organized in a larger slave-boson operator matrix on the set
A, i.e.,

Φ =

φE 0 0 0

0 φ↓↓ φ↑↓ 0

0 φ↓↑ φ↑↑ 0

0 0 0 φD

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

E S↓ S↑ D

E

S↓

S↑

D

. (9)

Note that the matrix � is block diagonal in particle numbers
with (as color coded) zero-particle sector one-particle sector

, and two-particle sector . Its matrix elements φAB with
A,B ∈ A are labeled by all available local states. Already here,
be aware that throughout this work, we exclude the possibility
for pairing instabilities and therefore do not couple different
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particle sectors by slave bosons. For a RISB representation
describing superconductivity, we refer to Ref. [18].

In order to select the true complete physical states, com-
posed of slave bosons and quasiparticles, the constraints

1 = φ
†
EφE +

∑
σσ ′

φ
†
σσ ′φσ ′σ + φ

†
DφD, (10)

f †
σ fσ = φ

†
DφD +

∑
σ ′

φ
†
σσ ′φσ ′σ , (11)

f †
σ fσ̄ =

∑
σ ′

φ
†
σ̄ σ ′φσ ′σ (12)

have to be enforced on each site i, whereby σ̄ denotes the
opposite spin projection to σ . The full electron operator is
expressed through

c
†
iσ = 1√

2

∑
σ ′

{φ†
iσσ ′φiE − (−1)δσσ ′ φ

†
iDφiσ̄ σ̄ ′ } f

†
iσ ′

≡
∑
σ ′

R
†
iσ ′σ f

†
iσ ′ . (13)

The kinetic Hamiltonian H(kin) is then readily written in RISB
as

H(kin) = −t
∑
ij

∑
σσ ′σ ′′

R
†
iσ ′σ Rjσσ ′′ f

†
iσ ′fjσ ′′ . (14)

Depending on the bosons, the Ri matrix relates the QP
character to the full electron excitation on site i. To represent
the local Hamiltonian, one uses the key fact that any local
operator O may be written in quadratic terms of the bosonic
degrees of freedom on the enlarged local Hilbert space, e.g.,
the four states in A as defined in (3). The general RISB form,
with (A|O|A′) represented as a matrix element in the basis set
A, is written as

O =
∑
AA′

(A|O|A′)
∑

n

φ
†
nAφA′n. (15)

For the local Hubbard interaction H(loc)
i on each site, i.e., O =

Uni↑ni↓, the slave-boson representation HU = Uφ
†
DφD is

readily obtained. Together with the kinetic part, this completes
the RISB single-band Hubbard Hamiltonian representation

H = −t
∑

ij,σσ ′σ ′′
R

†
iσ ′σ Rjσσ ′′ f

†
iσ ′fjσ ′′ + U

∑
i

φ
†
iDφiD. (16)

It is noted that as common in usual auxiliary-particle theo-
ries, there are inherent gauge symmetries. This can already
be illustrated [40–42] using the most simplest slave-boson
introduction from Eq. (1) by marking the U(1) gauge symmetry

φi → eiθi φi, fiσ → eiθi fiσ . (17)

In specific cases, this symmetry may be used to gauge away
the phases of the bosonic fields [43]. Furthermore, within
single-orbital RISB on a given lattice site, an arbitrary SU(2)
rotation of the QP operators provides some freedom in the
representation of the corresponding QP indices. This holds
also in the multiorbital case, but as shown in Ref. [17], physical
observables remain of course generally gauge invariant. Let us
mention that in this regard, Lanatà et al. [44] recently proposed
an alternative RISB representation.

B. Saddle-point approximation and comparison to other
many-body techniques

Enforcing the constraints (10)–(12) on each site in the
thermodynamic limit, while keeping the operator character of
the introduced electronic degrees of freedom appears unfea-
sible. Therefore, in most cases, slave-boson theory is actually
practiced in its simplest nontrivial form, namely, within the
saddle-point approximation. Its realization amounts to three
essential steps [17]. First, the bosons are condensed to c

numbers ϕAn ≡ 〈φAn〉. Second, the constraints are treated on
average by introducing Lagrange multipliers in a free-energy
functional (see below). And third, the representation (13) of
the physical electron operator has to be modified by a proper
normalization in order to recover the correct noninteracting
limit within the given mean-field picture.

With inverse temperature β = 1/T and transformation of
the kinetic part to k space with dispersion εk, the saddle point
is obtained from the free-energy functional [17]


[{ϕAn}; �,λ0]

= − 1

β

∑
k

tr ln
[
1 + e−β(R†(ϕ)εkR(ϕ)+�)] − λ0

+
∑

AA′nn′
ϕ∗

An′

{
δnn′δAA′ λ0 + δnn′(A|Hloc|A′)

− δAA′
∑
σσ ′

�σσ ′(n|f †
σ fσ ′ |n′)

}
ϕA′n, (18)

through extremalizing over the set {ϕAn} and the Lagrange
multipliers. Note that λ0 is associated with the constraint (10)
and � deals with the remaining constraints (11) and (12).

Importantly, the physical self-energy takes on the form

�(ω) = ω(1 − [RR†]−1) + [R†]−1�R−1 − [ε0], (19)

with ε0 as the onsite part of the dispersion. Hence, the self-
energy consists of a term linear in frequency as well as a
static part, and the local QP weight Z ≡ [1 − ∂

∂ω
� ]

−1

ω=0
is here

generally given in matrix form via Z = RR†. For the rest of the
paper, we will discuss RISB by assuming that the mean-field
limit is taken in the final equations. In this respect, to simplify
notations, we thus also keep the φ notation for the slave bosons
throughout the writing and will not furthermore highlight the
difference to the condensed ϕ quantity.

We now try to classify briefly the performance of RISB on
a qualitative level in view of some other available many-body
techniques on the lattice. The self-energy is local, but carries
frequency dependence, contrary to simplest Hartree-Fock for
the Hubbard model. The optimal local many-body theory is
given by dynamical mean-field theory (DMFT) (see, e.g.,
Refs. [45,46] for reviews). This theory describes a most general
ω dependence within the context of a mapping of the correlated
lattice problem onto the problem a quantum impurity residing
within a self-consistent bath. The full-frequency information
may be extracted via, e.g., quantum Monte Carlo or exact-
diagonalization impurity solvers. The linear-frequency restric-
tion of RISB allows one to study only Fermi-liquid regimes
and spectral-weight transfer to, e.g., Hubbard bands is not
accessible from the spectral function. Yet importantly, via an
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inspection of the occupation of the local states, still relevant
information on the high-energy physics may be obtained. In
principle, the slave-boson approach can also be interpreted
as a simplified impurity solution within DMFT since the
RISB formalism may also be implemented within a quantum-
impurity-in-bath scope [24]. Let us note here that there are also
differences concerning the level of approximation among the
different available auxiliary-particle schemes since this often
raises some confusion. For instance, interacting five-orbital
Hamiltonians may be straightforwardly encountered by mean-
field representations of Kotliar-Ruckenstein slave bosons [9]
or slave spins [16] since those approaches enable a simplified
treatment of the problem. In the more elaborate RISB method,
such large orbital manifolds require special advancements, as
discussed in this work.

Going beyond the local-self-energy concept is generally
tough and we here do not want to enter this branch of many-
body theory by general means. Let us note that there are rare
slave-boson formulations beyond the mean-field limit, usually
by invoking Gaussian fluctuations around the saddle point (see,
e.g., Refs. [47,48]) in selected single-orbital problems. Such
formulations are capable of describing k-dependent parts of the
self-energy. But, to our knowledge so far no such advancement
has been undertaken for the general RISB framework. Deriving
and putting into practice a generic multiorbital slave-boson
scheme beyond saddle-point proves technically very demand-
ing. Cluster self-energies coping with short-range nonlocal
correlations have been introduced to extended DMFT (see, e.g.,
Ref. [49] for a review), and the RISB method can indeed also
be formulated within a cluster scheme [17,24,25]. It yields very
good results in comparison to more elaborate cluster DMFT
[24]. Here, however, we remain throughout the paper within
the single-site framework.

III. MULTIORBITAL HAMILTONIANS

In this study, the multiorbital Hamiltonians are composed of
a kinetic part and a local part that includes the electron-electron
interaction, thus again of the general form (2), H = H(kin) +∑

i H
(loc)
i . We here will model orbital manifolds with angular

momentum l = 1,2, i.e., p- and d-shell systems.

A. Kinetic Hamiltonian

Electrons in M orbitals of Wannier type on the dim =
three-dimensional simple-cubic lattice are considered. The ki-
netic Hamiltonian with only nearest-neighbor hopping t reads
as

H(kin) = −t
∑

〈ij〉mσ

c
†
imσ cjmσ , (20)

using m = 1, . . . ,M . Note that we do not allow hopping
between different orbital flavors. For the rest of the paper, the
half-bandwidth W/2 is the unit of energy. Since the present
kinetic Hamiltonian is diagonal in orbital space with identical
eigenvalues for all orbitals, it remains invariant under orbital
rotations.

eg

t2g

Δcf

Δcf

d
3/5

2/5

FIG. 1. Example for crystal-field splitting in the case of ad level in
cubic symmetry. It splits into twofold eg = {z2,x2 − y2} and threefold
t2g = {xz,yz,xy}. The level center is not changed.

B. Local Hamiltonian

On the local level of a single-lattice site, the respective
Hamiltonian part is given by

H(loc) = H(cf) + H(int) + H(SOC), (21)

whereby the first term describes the crystal-field (cf) term,
the second the Coulomb interaction (int), and the third the
spin-orbit coupling (SOC). The single-particle crystal-field
Hamiltonian takes care of a possible onsite energy splitting
�m between the orbitals (see Fig. 1), reading as

H(cf) =
∑
mσ

�m c†mσ cmσ . (22)

1. Slater-Condon form of the local interaction

For the case of a complete rotational-invariant treatment on
the local level, the corresponding two-particle interaction is
described by the Slater-Condon (SC) Hamiltonian

H(int) = 1

2

∑
m1m2
m3m4

∑
σσ ′

Um1m2m3m4c
†
m1σ

c
†
m2σ ′cm4σ ′cm3σ

. (23)

Since we aim at a canonical modeling, we assume spherical
symmetry of the electron-electron interaction throughout this
work, i.e., no orbital-dependent screening mechanism is al-
lowed. Then, the Coulomb matrix element is expressed via
standard Slater integrals Fk through

Um1m2m3m4 =
2l∑

k=0

ak(m1,m2,m3,m4) Fk, (24)

with expansion coefficients ak given by

ak(m1,m2,m3,m4)

=
k∑

q=−k

(2l + 1)2(−1)m1+q+m2

(
l k l

0 0 0

)2

×
(

l k l

−m1 q m3

)(
l k l

−m2 −q m4

)
. (25)

In the case of p and d electrons, the relevant Slater integrals
may be parametrized by averaged Coulomb integrals, namely,
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the Hubbard U and the Hund’s exchange JH as

l = 1 : F 0 = U,F 2 = 5JH, (26)

l = 2 : F 0 = U,F 2 = 14

1 + r
JH, F 4 = rF 2. (27)

The F 4/F 2 Slater-integral ratio is here chosen as r = 0.625,
which is adequate for transition-metal atoms.

2. Slater-Kanamori form of the local interaction

Treating full rotational invariance in the interactions was a
long-standing problem in many-body techniques. Therefore,
simpler versions of interacting Hamiltonians have been in-
troduced. In the context of local Coulomb interactions, the
Slater-Kanamori (SK) Hamiltonian is the most prominent one.
It reads as

H(int) = U
∑
m

nm↑nm↓

+ 1

2

∑
m
=m′,σ

{
(U−2JH) nmσnm′σ̄ +(U − 3JH) nmσnm′σ

+ JH(c†mσ c
†
m′σ̄ cmσ̄ cm′σ + c†mσ c

†
mσ̄ cm′σ̄ cm′σ )}

= (U − 3JH)
N (N − 1)

2
+ 5

2
JHN − 2JHS2 − 1

2
JHL2.

(28)

Here, n = c†c, and N marks the total-particle operator, S the
spin operator, and L the orbital-momentum operator. This
form of the local interaction is obtained from the general
Slater-Condon form (23) via the restriction to only two-orbital
interaction terms and the setting

Ummmm = U, Umm′mm′ = U − 2JH,
(29)

Umm′m′m = JH, Ummm′m′ = JH.

Although reduced, the Slater-Kanamori Hamiltonian is rota-
tional invariant in the case of the p shell as well as the eg and
t2g subshells of d-electron manifolds. However, it differs in the
scaling of the local Coulomb interaction when compared to the
SC form. In fact, the SC Hamiltonian takes on the SK operator
structure, if the F 4/F 2 Slater-integral ratio is set to a formal,
rather unphysically large value r = 1.8.

C. Spin-orbit coupling

Spin and orbital momentum of an electron are coupled
due to relativistic effects. The Hamiltonian expressing this
coupling reads as

H(SOC) = λ

2

∑
k=x,y,z

∑
μμ′

∑
σσ ′

L̃k
μμ′ Sk

σσ ′ c
†
μσ cμ′σ ′ , (30)

whereby L̃ denotes the angular-momentum representation on
the lz states and S carries the Pauli matrices as components
and λ is the spin-orbit interaction constant. Because of the
mixing of spin and orbital degrees of freedom, the spin-orbit
Hamiltonian does generally not commutate with S2 and L2 in
many-electron systems. However, it commutates with the total
angular-momentum operator J 2 as well as its z component Jz.

FIG. 2. Example for an initial state for a three-orbital p-shell
model. This state represents two electrons, one in the lz = 1 spin-
down orbital, the second one in the lz = −1 spin-down orbital. By
construction, these states diagonalize the operators Lz and Sz.

IV. MULTIORBITAL SLAVE BOSONS

A. States and operators

In the following, three building blocks of the local multi-
orbital rotational-invariant representation of the slave-boson
formalism are introduced. First, the local many-body Hilbert
space in Fock-basis representation. Second, a set of commu-
tating quantum operators which can be represented on that
space which fully and uniquely determine the different states.
And, third, a matrix containing all state-connecting variational
parameters. The latter will be determined such that it follows
the given symmetries of the system and may ultimately be used
as the slave-boson operator matrix �.

The first building block of the M-orbital rotationally
invariant representation is the local many-body Hilbert
space at one space-point entity i spanned by the set Q =
{v1, . . . ,va, . . . ,vQ} of Q = 22M vectors, such that renor-
malizations between adjacent space points are excluded. It
contains, for example, all possible local many-body d states or,
in a cluster scheme, all possible many-electron configurations
of a four-site plaquette. The vectors va describe two spin-
resolved orbitals for every local-orbital degree of freedom.
Each one may either be occupied (represented by 1) or
empty (represented by 0), which is nothing but a Fock-space
occupation-number representation of all configurations over a
body of binary numbers B, i.e., va ∈ B2M. Thus, each vector
has 2M entries, which, e.g., in the case of an atomic shell with
angular momentum l amounts to 2(2l + 1). An example for
M = 3, a p-shell state, is shown in Fig. 2. Since the size of Q
scales likeQ = 22M , matrices represented in this space become
large for M > 3 and numerical computation becomes costly in
time and memory. It is worthwhile to use symmetries to rule
out states that do not take part in local interaction processes
and hence reduce the size of the problem.

This leads to the second building block of the advanced
RISB formalism, namely, the set S of local-commutating
operators. In the absence of spin-orbit coupling, it is chosen to
consist of the particle-number operator N , spin square S2, and
spin-z-component operator Sz, the seniority operator � which
measures the number of unpaired spins in a given state, the
orbital angular momentum L2, and orbital-angular-momentum
z-component operator Lz, i.e.,S := {N,S2,Sz,�,L2,Lz}. The
set S is easily represented on Q via explicitly considering
the operator action on the state vectors. In the following,
we always assume the initial Fock-space orbitals to be la-
beled with magnetic quantum numbers lz and spin quan-
tum number sz from highest to lowest value (e.g., l = 1 →
1↑,1↓,0↑,0↓,−1↑,−1 ↓), thus diagonalizing the operators
Lz and Sz by construction (cf. Fig 2). The particle-number
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operator is most easily represented on these states. It is by
construction also diagonal in the occupation-number basis and
counts the number of occupied orbitals, thus, electrons. For
the matrix representation of the S2 operator between vectors
va,vb, the expression

(S2)ab = 〈va|
∑

k=x,y,z

∑
σ1σ2σ3σ4

×
∑
μ1μ2

Sk
σ1σ2

Sk
σ3σ4

c†μ1σ1
cμ1σ2c

†
μ2σ3

cμ2σ4 |vb〉 (31)

holds, with local orbital indices μ1,μ2 and Pauli matrices S .
For the Sz operator it follows

(Sz)ab = 〈va|
∑

μ

∑
σ1σ2

Sz
σ1σ2

c†μσ1
cμσ2 |vb〉. (32)

For the L2 and Lz operators hold similar relations as for the
spin operators, namely,

(L2)ab = 〈va|
∑

k=x,y,z

∑
μ1μ2μ3μ4

×
∑

σ

L̃k
μ1μ2

L̃k
μ3μ4

c†μ1σ
cμ2σ c†μσ cμσ |vb〉 (33)

and

(Lz)ab = 〈va|
∑

σ

∑
μ1μ2

L̃z
μ1μ2

c†μ1σ
cμ2σ |vb〉. (34)

Writing out the matrix elements for the seniority operator
� in second quantization is a bit more involved and can be
found in the literature [50,51] in terms of vector-coupled ladder
operators of two spins at zero net momentum.

A common eigenbasisA, the so-called adapted basis, for all
operators in S has to be generated. It is spanned by the vectors
AA, of which there are again Q with index A ∈ [1, . . . ,Q].
They are conveniently labeled as |A〉 = |ν,s,σ,ξ,l,lz〉 ∈ C2M .
These six quantum numbers are sufficient to label the states
of the local Hilbert space up to five orbitals (M = 5) unam-
biguously. After the diagonalization process, the states are
ordered with left quantum numbers varying slowest, right
fastest, starting from lowest values to highest. The basis is
stored as a unitary transformation matrixUA, which transforms
all operators represented in Fock space Q to the adapted basis
as a linear combination of the previous occupation-number
representation with coefficients of complex-number kind.

The central building block, the slave-boson operator �,
may now be be seen as a transition operator, that medi-
ates between the quasiparticle and local-excitation degree of
freedom. Conveniently, it can be expressed with the same
set of possible local states |A〉 = |νA,sA,σA,ξA,lA,lzA〉 and
|B〉 = |νB,sB,σB,ξB,lB,lzB〉. Hence, it carries two indices and
is represented as a matrix on the local Hilbert space of
the adapted-basis-set states, i.e., �AB ∈ CQ×Q. The specific
action of the operator �AB is, however, unknown a priori
and has to be determined self-consistently in the saddle-point
approximation, with its matrix elements as parameters. Thus,
the number of slave-boson parameters in the RISB calculation
scales like nφ = Q2.

B. Rotationally invariant representation

Let us for the following use a common index α = {m,σ } for
orbital and spin-projection degrees of freedom. By rearranging
Eq. (15) with the help of the unitary transformation matrix UA,
one obtains a representation which is by construction basis
free, hence obviously invariant under unitary rotations [52]:

O =
∑
AA′

(A|O|A′)
∑

n

φ
†
nAφA′n =

∑
nAA′

φ
†
nA(A|O|A′)φA′n

= Tr(φ†Oφ) = Tr(UAU
†
Aφ†UAU

†
AOUAU

†
Aφ)

= Tr(U †
Aφ†UAU

†
AOUAU

†
AφUA) = Tr(φ̄†Ōφ̄). (35)

The renormalization matrices from Eq. (13) are generalized in
the multiorbital mean-field framework via

cα →
∑

β

Rβαfβ, c†α →
∑

β

R∗
αβf

†
β , (36)

whereby

R∗
αβ =

∑
γ

T ∗
αγ wγβ (37)

with (see Appendix A)

T ∗
αγ = Tr(φ†f †

αφcγ ), (38)

and a normalization matrix w, which carries the matrix square
root of the product of the local particle- and hole-density matrix
(see Ref. [17] for details). Introducing that matrix ensures the
correct mean-field regime of RISB.

Finally, the multiorbital constraints at saddle point com-
pactly read as

Tr(φ†φ) = 1, (39)

Tr(φf †
αfβφ†) = 〈f †

αfβ〉. (40)

C. First glance on symmetry reduction

An obvious way to reduce the number of parameters in the
problem is by the use of the symmetries of the local interaction.
Hence, one may cut out slave-boson amplitudes, which would
otherwise violate a given symmetry. This renders the slave-
boson operator block diagonal in the allowed combinations
of quantum numbers. For instance, let the particle-number
conservation be a symmetry of the local Hamiltonian, i.e., the
commutator [H,N ] vanishes. Then, all slave-boson amplitudes
φAB with n(A) 
= n(B) will also be zero. This is known a priori,
so those amplitudes can be ruled out and be excluded in solving
the saddle-point problem. This does not only render the �

matrix sparse (and block diagonal) from the beginning, it also
enables to reduce the number of saddle-point equations, which
are nothing but derivatives of the free-energy functional with
respect to the free parameters of the formalism.

In previous implementations of RISB, all operations were
iterated over such irreducible quantum-number subspaces,
which made it hard to change from one set of quantum
numbers (or model) to another. A different approach shall
be presented here, which not only focuses on the sparsely
populated structure of the matrices under rotation to an adapted
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basis, but also opens the path to use the lattice point-group
symmetry to further reduce the number of free parameters.

D. Top-down reduction of free parameters

The number of free parameters can be further reduced, if
the point-group symmetry of the lattice is to be imprinted on
the local-interacting Hilbert space. Just as the Pauli matrices
are, for example, a matrix basis set for the four-dimensional
real vector space of all complex-Hermitian 2 × 2 matrices,
one can find a matrix basis set obeying a certain point-group
symmetry. This enables then the spanning of space of all
complex matrices compliant with that given symmetry. If
that point-group symmetry is a symmetry of the lattice under
consideration, it rules out certain many-body transitions, which
in turn are here represented by the slave-boson operator.
This makes it possible to represent the slave-boson operator
in a basis set which only allows for point-group-supported
transitions in the first place.

The idea of expanding an operator representation in a basis
of orthonormal matrices obeying a finite symmetry group [53]
is already used in the context of an implementation of the
Gutzwiller formalism [5]. There, it is done for the case of
paramagnetic problems [54] for d orbitals and with further
reduction by symmetry of the involved renormalization matri-
ces. The latter are then promoted to free variables to treat spin-
orbit coupling and crystal-field splitting in f -orbital systems
[44,55]. In the following, the details of an implementation
without the need of promoting the renormalization matrices
to free variables is wrapped up.

The goal is a decomposition of the represented slave-boson
operator � into a number of Y basis matrices �̃i within the
adapted basis A of the form [56]

� = p1�̃1 + p2�̃2 + · · · + pY �̃Y =
Y∑

i=1

pi �̃i, (41)

with coefficients pi ∈ C, and the orthonormality relation

δij = 〈�̃i �̃j 〉 := Tr(�̃†
i �̃j ). (42)

Their indices are still labeled by the vectors of the adapted
basisA. The basis matrices �̃i can be constructed in a way that
they obey a certain point-group symmetry G. They commutate
with all elements gA of the symmetry group, represented in A.
That also means that this expansion of � projects its action on
a subspace which is commensurable with the symmetry group.
All other action is lost. The generation of �̃i is described in
Appendix B.

Inserting the given expansion into the general equation (35)
for the slave-boson representation of operator O results in

O = Tr

⎛
⎝∑

i

p∗
i �̃

†
i Ō

∑
j

pj �̃j

⎞
⎠ =

∑
ij

p∗
i Tr(�̃†

i Ō�̃j ) pj

= p† Tr(�†Ō�) p = p† O p. (43)

In this form, one precomputes and stores the matrices

(T ∗
αγ )ij := Tr(�̃†

i f
†
α �̃j cγ ), (44)(

�
(p)
αβ

)ij
:= Tr(�̃†

i f
†
αfβ�̃j ), (45)

(H(loc))ij := Tr(�̃†
iH(loc)�̃j ), (46)

(Nαβ)ij := Tr(�̃if
†
αfβ�̃

†
j ), (47)

so that for the constraints follows

Tr(φ†φ) =
∑
ij

p∗
i Tr(�̃†

i �̃j )pj =
∑

i

p∗
i pi = 1, (48)

Tr(φf †
αfβφ†) =

∑
ij

pi(Nαβ)ijp∗
j = 〈f †

αfβ〉. (49)

The free-energy functional is then rewritten as


[p∗
i ,�

∗,λ∗
0] = − 1

β

∑
k

Tr ln[1 + e−β[R†εkR+(�+H.c.)]]

−
[
λ∗

o

(
1 −

∑
i

p∗
i pi

)]

−
⎡
⎣�∗

βα

∑
ij

pi(Nαβ)ijp∗
j + c.c.

⎤
⎦

+
∑
ij

p∗
i (Hloc)ijpj . (50)

We expect the functional to map the complex variables z :=
{pi,�,λ0} to a real number 
 ∈ R. So, for writing the saddle-
point equations, the formal derivative of the functional 


with respect to the complex conjugate of all variables ∂
/∂z∗
is taken. By using Wirtinger calculus [57], the saddle-point
equations for the real and imaginary parts of the functional
read as

∂


∂ Re z∗ = 2 Re
∂


∂z∗
!= 0, (51)

∂


∂ Im z∗ = 2 Im
∂


∂z∗
!= 0. (52)

Technical remarks on the top-down approach are as follows.
One starts with an exhaustive list of quantum numbers for
labeling the occurring states. For a general p-shell problem,
the problem consists of labeling 64 states, which can be
unambiguously described by the five quantum numbers ν, s, sz,
l, and lz. For a d shell, the seniority quantum number ξ , which
counts the number of unpaired spins in a given state, has to be
added to label the occurring 210 = 1024 states unambiguously.
Since we exclude the effect of superconductivity, we first
abandon mixing between states of different particle number,
rendering ν a good quantum number. We then apply the point-
group symmetry to assort states with point-group-compliant
combinations of l and lz. They are not straightforwardly good
quantum numbers since, e.g., the local interaction may mix
different states of lz. But, due to the underlying point-group
symmetry, only specific mixings are allowed. In the next step,
the mixing of different values of s, the total spin momentum,
shall be preserved. This still leaves sz as a free parameter and
enables us at this stage to locally describe magnetism along a
spin-quantization axis. However, since at this stage we are only
interested in paramagnetic solutions, the number of parameters
may still be reduced. In a paramagnetic saddle-point solution,
we expect the variational parameter belonging to a spin
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multiplet φsz
, with sz = −s, . . . ,s, to be identical for all sz

values. Using this requirement, it is sufficient to average the
connection matrices beforehand via φ = 1√

2s+1

∑s
sz=−s φsz

and
compute the saddle-point solution only for the symmetrized
parameter.

E. Double groups for spin-orbit coupling

For the inclusion of spin-orbit coupling, it is necessary to
expand the local symmetry group from a normal point group
to a double group, describing also the spin-direction change
after a rotation about 2π . In addition, a new commutating set
of local operators is used, Sz and Lz are replaced by the total
angular-momentum operator J 2 and its z component Jz. This
is put into practice by introducing a new rotation element Ē

and extending the group by doubling its elements, i.e.,

DG = {g,Ē g} ∀g ∈ G. (53)

The new double group consists of all group elements g of
the previous group G plus all previous elements multiplied
by Ē. This changes also the available equivalence classes and
amounts to noninteger values in the character tables.

F. Local correlation functions

The local-correlation operator on the full orbital space in
magnetic-quantum-number representation (spherical harmon-
ics) is of the form

Ōαβγ δ := Tr(φ†(Ō)αβγ δφ)

= Tr(φ†[(O2)αβγ δ − (O)αβ(O)γ δ]φ). (54)

It is rotated to the space of cubic harmonics by the transforma-
tion K with extraction of the diagonal elements for the physical
interpretation, i.e.,

Ōα′β ′ := Ōα′α′β ′β ′ = K
†
α′αK

†
β ′γ Ōαβγ δKβα′Kδβ ′ . (55)

G. Further details on implementation and computation

The basis matrices depend only on the number of or-
bitals and point-group symmetry involved, so they can be
precomputed and stored. For a given problem, also matrices
like (Tαβ)ij and (Nαβ)ij can be precomputed. They depend
on the geometry of the given model, but not on the values
of the interaction parameters. Since all these matrices are very
large but sparse, they are stored in compressed column/row
storage. For every set of interaction parameters, only (H (loc))ij

needs to be recomputed.
Table I lists the number n

(red)
φ of free parameters after

symmetry reduction for selected cases of orbital problems of
size M = {3,5}. Let us also quickly mention the difference in
the numerical effort compared to a standard density-density
slave-boson calculation [e.g., via a straightforward Kotliar-
Ruckenstein [9] (KR) implementation]. In RISB without sym-
metry constraints, the number of slave bosons amounts for a
M-orbital problem to nφ = 24M , whereas there are nφ = 22M

bosons in the standard KR scheme focusing on the orbital-
density labeling of the local states. Furthermore, RISB operates
with matrix objects, while KR works with scalar quantities
(e.g., an orbital-diagonal QP weight). Thus, there is a quadratic

TABLE I. Examples for the number of parameters for different
combinations of the orbital-manifold size M with point group G after
reduction by symmetry. Note that for the here chosen applications,
the different cubic groups O and Oh yield identical results.

M Symmetry group G n
(red)
φ

3 O 16
3 DO 50
5 O 873
5 DO 2064
5 D4 2516

gain (with some problem-specific prefactor) when going from
KR to RISB calculations. Note that in addition the memory
demands are much more serious in a RISB computation

In order to find the actual numerical solution of the
RISB saddle-point equations, we use a parallelized and data-
distributed implementation of the nonlinear-equation solver
from Dennis and Schnabel with backtracking [58] as well as a
problem-size adapted perturbation of the Hessian matrix.

The first-principles DFT data used in Sec. VI C stems from
an implementation [59] of the mixed-basis pseudopotential
formalism.

V. COMBINATION WITH DENSITY FUNCTIONAL
THEORY

The RISB approach is not limited to sole model problems.
It can be combined with density functional theory (DFT)
to directly address correlated materials within a realistic
first-principles setting. There are in principle two ways to
facilitate such a DFT+RISB framework. First, in the so-called
“one-shot” or “post-processing” scheme, the DFT Kohn-Sham
Hamiltonian, expressed in a localized basis, replaces the
noninteracting part of the model Hamiltonian. The interacting
part is then again provided by a suitable Hubbard-type form,
e.g., by the Slater-Condon Hamiltonian. Thus, the hoppings,
crystal fields, and also spin-orbit terms may be taken over from
the DFT calculations, and the complete problem is converged
in the RISB formalism. However, there is no feedback of
the correlation effects onto the electronic charge density. To
achieve this, the second option, the so-called charge self-
consistent (CSC) scheme, has to be employed. In the following,
we want to briefly mark the essential steps of the DFT+RISB
approach. Essentially, the general structure is very similar as
for the known DFT+DMFT formalism and we hence refer to
Refs. [60,61] for further details.

A converged Kohn-Sham self-consistency cycle of a DFT
calculation for a periodic crystal yields the eigenenergies
εkν and eigenfunctions ψkν for wave vector k and band ν

in reciprocal space. A projection operator P (k) enables the
mapping of the Bloch (bl) states onto localized orbitals within
a chosen energy window W . The projection operator allows
us to define the W-restricted Kohn-Sham Hamiltonian in a
localized basis, i.e.,

H′(k) := P (k)Hbl(k) P †(k). (56)
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FIG. 3. Quasiparticle (QP) weight with respect to the Hubbard-interaction strength U for the degenerate three-orbital p-shell model at
different fillings n and with different JH/U ratios. Solid lines: Slater-Condon interaction; dashed lines: Slater-Kanamori interaction. The light
dotted vertical lines are guides to the eyes for the critical Uc marking the Mott transition.

We separate the onsite terms from the truly k-dependent ones
by defining

H0 := 1

Nk

∑
k

H′(k) (57)

and extract the realistic kinetic Hamiltonian in the localized
basis via

H(kin)(k) := H′(k) − H0. (58)

Solving the RISB saddle-point equations yields the renormal-
ized Hamiltonian

H′′(k) = R† H(kin)(k) R + �, (59)

which describes the “one-shot” solution of the combination
with DFT.

In order to proceed to the CSC solution, the feedback onto
the Bloch level is needed. This is achieved by replacing the
interested DFT correlated part with the RISB correlated one in
Hbl, reading as

H(new)
bl (k) = Hbl(k) + P †(k)[H′′(k) − H′(k) − Hdc] P (k).

(60)

As in the DFT+DMFT framework [61], the double-counting
term Hdc takes care of the fact that part of the correlation
is already included in DFT from the exchange-correlation
functional. The fully localized double counting [62] is used
in this work. Note that in the “one-shot” scheme the double
counting may be absorbed in the chemical potential.

The particle number in the CSC scheme is fixed in the larger
space of Hbl(k) at every iteration. At each CSC step, one
Kohn-Sham iteration and a self-consistent RISB calculation
is performed. After each latter convergence, a charge-shifting
matrix �Nbl is extracted as

�Nbl := P † (NRISB − NKohn-Sham) P, (61)

which is then fed back to the DFT charge-density calculation to
recompute the Kohn-Sham potential for the next iteration step
[61]. This procedure is repeated, until the CSC cycle converges.
Note that �Nbl is a traceless matrix which reshuffles the charge
due to the many-body correlations [61].

There are other CSC implementations with a similar many-
body quality available, namely, a DFT+Gutzwiller approach
[63,64] as well as the so-called Gutzwiller-DFT [65] method.

VI. RESULTS

The following sections are devoted to the application of
the symmetry-adapted RISB formalism in the context of a
multiorbital onsite interacting Hamiltonian. Main focus is on
the interplay between the onsite Hubbard U and the Hund’s
exchange JH with respect to the overall electron filling n.
Whereas we first deal with minimal lattice models, the attention
is shifted to the realistic context of the iron-chalcogenide
systems FeSe and FeTe in the final part of this section.

As noted in Sec. III A, all model Hamiltonians in this work
are explored on a simple-cubic lattice with nearest-neighbor
hopping. Moreover, a Mott transition with increasing Hubbard
U is here defined by the disappearance of the metallic state via
a vanishing QP weight Z at a critical Uc := Uc2. The issue of
metal-Mott phase coexistence [66] is not investigated in this
work.

A. Three-orbital p-shell model

We start with an interacting three-orbital model having the
complete symmetry of a l = 1 (p) manifold. Both rotational-
invariant local-interaction Hamiltonians, i.e., of Slater-Condon
and of Slater-Kanamori types, are utilized. The full cubic point
group underlies the present problem.

Figure 3 displays the orbital-degenerate QP weight Z for
different ratios JH/U in the half-filled case n = 3 as well
as the fillings n = 4 and 5. Comparing the results for the
different electron counts on a global level, while for JH = 0 the
correlation strength increases with rising n, for finite Hund’s
exchange it weakens in that direction. At half-filling, the
critical Uc diminishes with growing JH/U ratio [21], similar as
in the two-orbital case [17,21]. On the contrary, for the case of
n = 4 electrons in three orbitals, the well-known Janus physics
[36,37] emerges at sizable JH/U : the system becomes strongly
correlated with substantially reduced Z already at intermediate
U and the Mott transition is, on the other hand, shifted to rather
large interaction strength. The fast reduction of Z is associated
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FIG. 4. Slave-boson amplitudes of dominant multiplets in the three-orbital model at different filling n. Top row: SC Hamiltonian; bottom
row: SK Hamiltonian. Colors mark different JH/U , with the coding as in Fig. 3. (a), (d) solid line: φ10; dashed line: φ6; dotted line: φ9. (b), (e)
solid line: φ15; dashed line: φ14; dotted line: φ10. (c), (f) solid line: φ15; dashed line: φ16; dotted line: φ14. Classification of the multiplets φ� can
be found in Table II.

with the formation of large local magnetic moments triggered
by JH. Notably, for the shown extreme case of JH/U = 0.7,
the SC Hamiltonian still restores this phenomenology, whereas
the SK form loses it because of the too strong negativity in
some interaction terms. For n = 5, the Janus physics mostly
disappears again and the differences between SC and SK are
significant for any size of the Hund’s exchange.

Importantly, the RISB framework not only provides infor-
mation on the QP weight which triggers the band renormaliza-
tion in reciprocal space, it also enables insight in the local real-
space competition between relevant many-body multiplets via
an analysis of the occupation hierarchy of the associated slave-
boson amplitudes. As a first observation, for both interaction
types, i.e., SC and SK, the same multiplets govern the physics
described by RISB. This is expected because in the three-
orbital model, both parametrizations obey the same complete
symmetry, commutating with the set {N,S2,Sz,�,L2,Lz}.

Figure 4 shows the slave-boson amplitudes for the dominant
multiplet states at different fillings. In the case of n = 3, the
Mott transition is driven by a one-dimensional spin quartet
of symmetry class A1 (see Table II), resembling Hund’s rule.
At the full-localization transition, this local many-body state
with three unpaired spins is the only remaining one. For n = 4
and 5, the local physics of the system is dominated by the
three-dimensional T1 multiplets. In the four-particle sector, it
corresponds to a spin triplet with two unpaired spins, while
in the five-particle sector to a spin doublet with only one
unpaired spin. The n = 4 Janus-face behavior with increasing

U is associated with a stronger flattening of the four-particle T1

in combination with a near degeneracy of the three-particle A1

and the five-particle T1, best illustrated for JH/U = 0.7 (0.3)
in the SC (SK) case. Hence, symmetric fluctuations from
the four-particle sector to the three-/five-particle sector are
uniquely underlying the Janus-face physics.

TABLE II. Classification of dominant slave-boson amplitudes
associated with local multiplets as plotted in Fig. 4 for the three-orbital
model. Notation is as follows: � is an internal label for the slave-
boson number. C :

∑s

σ=−s(N,s,σ,{ν},{l},{lz}), where curly brackets
indicate sets as imprinted by the point-group symmetry class C. All
sums are normalized by a factor

√
2s + 1. The number of nonzero

elements refers to each spin-sum term in the classification symbol.
For the whole number of nonzero elements in φ� , it has to multiplied
by 2s + 1.

� Symmetry Nonzero

6 T1:
∑1

σ=−1(2,1,σ,2,1,{−1,0,1}) 3

9 T2:
∑1/2

σ=−1/2(3,1/2,σ,3,2,{−2,−1,0,1,2}) 6

10 A1:
∑3/2

σ=−3/2(3,3/2,σ,3,0,0) 1

14 T1:
∑1

σ=−1(4,1,σ,2,1,{−1,0,1}) 3

15 T1:
∑1/2

σ=−1/2(5,1/2,σ,1,1,{−1,0,1}) 3

16 A1: (6,0,0,0,0,0) 1

125154-10



RIGOROUS SYMMETRY ADAPTATION OF MULTIORBITAL … PHYSICAL REVIEW B 97, 125154 (2018)

(a) (b) (c)
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FIG. 5. Off-diagonal (m 
= m′) onsite correlation function of the three-orbital model for charge (top) and spin (bottom). Solid lines:
Slater-Condon interaction; dashed lines: Slater-Kanamori interaction. Colors mark different JH/U , with the coding as in Fig. 3.

To shed further light on the the fluctuations, we plot the
onsite charge- and spin-correlation functions between the
degenerate orbitals in Fig. 5. Charge correlations are negative
for the proper realistic repulsion physics of the multiorbital
Hubbard Hamiltonian, which is always ensured by the SC
Hamiltonian. Due to the restricted Hilbert space, the fluctu-
ations are smallest in magnitude for filling n = 5. Because
of the Hund’s rule, onsite spin fluctuations between orbitals
are positive in sign. Only for JH = 0 the pathological case of
uncorrelated spins sets in. For n = 4 the correlation functions
exhibit plateaulike appearance for U values in the Janus-face
regime, again most obviously realized for JH/U = 0.7 (0.3)
in the SC (SK) case. This enables JH as the dominant relevant
energy scale in that regime, and a rather irrelevant influence of
moderate changes of U .

B. Five-orbital d-shell model

Let us turn to the case of five interacting orbitals on
the cubic lattice. Because of the highly enlarged Hilbert
space compared to the three-orbital scenario, the introduced
symmetry considerations are now truly indispensable for a
computational study of such a manifold. Three cases are

explored, namely, the orbital-degenerate, the more realistic
problem of electrons within an octahedral crystal field, and
finally the orbital-degenerate case with spin-orbit coupling.

1. Degenerate case

Starting with degenerate orbitals, we again apply the full
cubic point group for the underlying symmetry analysis. The
SC as well as the SK Hamiltonian are put into practice. The
Slater-Condon form is employed for the two parametrizations
r = 0.625 and 1.8. The resulting QP weights with respect to
the Hubbard U are shown in Fig. 6. As in the three-orbital
case, globally, the correlation strength increases with growing
n for JH = 0 and weakens for finite JH. There is no clear
trend concerning the size of the differences between the
Hamiltonian forms, but those dependent strongly on filling and
magnitude of the Hund’s exchange. Characteristic features are
nonetheless observable for all three local-interaction forms.
The most prominent feature is again the Janus-face physics,
which is most dominant for n = 6, but occurs also for n = 7
and with minor fingerprints also for n = 8. In comparison to
the three-orbital case, the Janus-face signature especially for
n = 6 appears more manifest. Again, JH/U = 0.7 in the SC
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FIG. 6. Quasiparticle (QP) weight with respect to the Hubbard U for the degenerate five-orbital d-shell model at different fillings n and with
varying JH/U ratio. Solid lines: SC Hamiltonian with r = 0.625; dashed lines: SC Hamiltonian with r = 1.8; and dotted lines: SK Hamiltonian.
Light dotted vertical lines are guides to the eyes for the critical Uc marking the Mott transition.

case with r = 0.625 and JH/U = 0.3 in the SK display the
strongest signature.

For the discussion of the slave-boson amplitudes, we restrict
the data to the most adequate case of the SC(r = 0.625)
Hamiltonian. The amplitudes for the dominant multiplet states
are shown in Fig. 7, with the explanation of the φ� labeling in
Table III. Nonsurprisingly, a one-dimensional A1 spin sextet
with five unpaired spins triggers the Mott transition at half-
filling. On the other hand, the Janus-face phenomenology at
n = 6 seems more intriguing than in the three-orbital case.
Although again a seemingly concerted behavior of the domi-
nant multiplets takes place, the higher seven-particle sector is
not majorly involved. Instead, the named A1 five-particle spin
sextet and a six-particle s = 2 multiplet with T2 symmetry are
the key competitors, accompanied with another six-particle
s = 2 multiplet of E symmetry. For smaller U , in particular
the A1- and E-symmetry states have similar weight, thus
fluctuations between the five- and six-particle sectors occur
via those symmetry channels. The energy separation between
the relevant multiplets increases at larger fillings, giving rise
to an increasingly decoupled behavior with less relevance of
fluctuations.

2. Cubic crystal-field splitting

Degenerate p(-like) models may be adequate for some
materials problems, e.g., for the threefold correlated t2g elec-
trons in SrVO3 [67]. However, there is always a crystal-field
splitting between the states of a d-shell atom on realistic
lattices. Thus, we like to include an example application of

our advanced RISB scheme to the simplest case, given by a
five-orbital model with cubic crystal-field splitting, i.e., the
termH(cf) in the local Hamiltonian (21) becomes now nonzero.
To facilitate the crystal field, a splitting � = 0.2 between the
eg = {z2,x2 − y2} and the t2g = {xz,yz,xy} states is used, here
explicitly reading as �eg

= 3/5� and �t2g
= −2/5� in view

TABLE III. Classification of dominant slave-boson amplitudes
associated with local multiplets as plotted in Fig. 7 for the degenerate
five-orbital model. See Table II for a detailed explanation of the
symmetry labeling. All sums are normalized by a factor of

√
2s + 1.

� Symmetry Nonzero

304 E:
∑

(4,2,σ,4,2,{−2,0,2}) 5

305 T2:
∑

(4,1,σ,4,2,{−2,−1,1,2}) 6

568 A1:
∑

(5,5/2,σ,5,0,0) 1

776 E:
∑

(6,2,σ,4,2,{−2,0,2}) 5

777 T2:
∑

(6,2,σ,4,2,{−2,−1,1,2}) 6

846 T1:
∑

(7,3/2,σ,3,{1,3},{−3,−1,0,1,3}) 22

850 T2:
∑

(7,3/2,σ,3,3,{−3,−2,−1,1,2,3}) 12

868 T1:
∑

(8,1,σ,2,{1,3},{−3,−1,1,3}) 22

869 T2:
∑

(8,1,σ,2,3,{−3,−2,−1,1,2,3}) 12

871 E:
∑

(9,1/2,σ,1,2,{−2,0,2}) 5

872 E:
∑

(9,1/2,σ,1,2,{−2,−1,1,2}) 6

873 A1: (10,0,0,0,0,0) 1
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FIG. 7. Slave-boson amplitudes of dominant multiplets in the degenerate five-orbital model at different filling n using the SC Hamiltonian.
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of Eq. (22) (cf. Fig. 1). This resembles a simplistic model
for an oxide perovskite where the key transition-metal site is
located on a simple-cubic lattice and explicit oxygen degrees
of freedom in octahedral position are integrated out. Note that
the hoppings for the different orbitals within the d shell are
here kept identical.

Albeit the problem of competing high- and low-spin states
in five-orbital manifolds with crystal field is a prominent one,
in our basic application we do not investigate such physics.
The present crystal-field size is rather small compared to the
bandwidth as well as the local Coulomb interactions. Hence,
the theoretical treatment does not result in obvious low-spin
states, and furthermore an explicit effort to reveal high-to-low-
spin transitions is not undertaken.

Figure 8 exhibits the (eg,t2g) QP weight for different fillings
and varying JH/U ratio, while Fig. 9 displays the associated
orbital fillings. Due to the chosen crystal-field splitting, the
t2g states are lower in energy than the eg ones and therefore
have larger occupation. At half-filling n = 5, the correlation
strength of the two orbital sectors is nearly degenerate and
increases with growing JH/U . The filling difference nt2g

− neg

tends to grow with rising U , but then decreases again close to
the Mott transition. For fixed U , a larger Hund’s exchange
reduces the filling difference since JH favors orbital balancing
and is a natural opponent of the crystal-field splitting. As
expected, away from half-filling the correlation and filling
scenario is more sophisticated. For the electron-doped n = 6

case, the Hund’s physics results in a manifest interplay of
the Janus-face behavior with orbital-selective mechanisms.
The less-filled eg states are close to half-filling and become
more strongly correlated than t2g . For JH/U > 0.1, while both
orbital sectors develop Janus-face signature, the eg orbitals
become localized at larger U with the t2g orbitals still metallic
[54]. The localization of the t2g states takes then place at
even larger U . Within the orbital-selective eg-localized sector,
the occupation is fixed to half-filled orbitals. Further electron
doping leads to a quick vanishing of the orbital-selective
behavior. For n = 7 it only occurs in a small-U window for
the extreme case JH/U = 0.7. For n = 7,8 the (eg,t2g) sectors,
though with different QP weight, enter the Mott-insulating
regime at the same critical interaction strength via a first-order
transition.

Note that there is an obvious breaking of particle-hole
symmetry with crystal-field splitting: whereas an additional
electron most likely enters the lower-lying crystal-field level,
an additional hole usually favors the higher-lying one. Thus,
in the hole-doped case of n = 4, the t2g states are now close
to half-filling, whereas the eg ones are closer to quarter-
filling. This leads to an inverse orbital-selective behavior in
comparison to n = 6. Namely, the t2g orbitals become first
localized and afterwards the eg orbitals at larger interaction
strength. Because of the different size of the orbital sectors,
the Z(U ) curves for n = 4,6 differ not only by an interchange
of eg against t2g .
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metal-insulator transition.

3. Spin-orbit coupling

We conclude the model applications by providing results
for the degenerate five-orbital model with finite spin-orbit
coupling. The interplay between electron correlations and SOC
has become of seminal interest in the study of strongly corre-
lated materials [26,28,68–71]. Especially for certain 4d and 5d

transition-metal compounds, processes based on interweaved
Mott and SOC physics may lead to intriguing phenomena. But,
also for specific correlated 3d compounds such as, e.g., the iron
pnictides and chalcogenides [72], the impact of the spin-orbit
interaction is heavily discussed.

Here, we again provide only a glimpse on this phenomenol-
ogy, mainly to illustrate the power and potential of the advanced
RISB scheme to tackle this issue. Albeit the interplay of
crystal-field splitting and spin-orbit coupling is often a relevant
physics in materials, we restrict the basic discussion here to
the degenerate five-orbital model on a cubic lattice. The Slater-
Condon Hamiltonian (with r = 0.625) for the local interaction
is utilized and two distinct ratios JH/U are employed with
rising spin-orbit-interaction parameter λsoc. Namely, we study
the cases JH/U = 0.1 and JH/U = 0.4. The chosen λSOC

values put us in the regime of strong spin-orbit coupling,
e.g., as applicable for iridates [73]. Basically, the additional
interaction gives rise to states in the five-orbital manifold,
given by the quantum number j = l ± 1/2. For the case of
a complete d shell with l = 2, the j states split into two
manifolds: a threefold-degenerate group with j = 5

2 and a
twofold-degenerate group with j = 3

2 . Hence, as in the former

case of a (eg,t2g) crystal field, a splitting of the physical
quantities into two sectors is expected. Since we keep λSOC

positive, the j = 3
2 manifold lies lower than the j = 5

2 one.
Figure 10 displays the quasiparticle weight Z for different

fillings n. Indeed, one may observe the grouping into the
both j = 5

2 , 3
2 sectors, respectively. From Z, a finite spin-

orbit coupling leads to a further lowering of the critical
Hubbard U , i.e., increases the correlation strength for fixed
Coulomb-interaction parameters. With growing deviation from
half-filling, this effect also becomes stronger in relative size.
Most interesting is the case of n = 6 and sizable JH/U , i.e.,
the setting that results in the Janus-face regime. There, a
rising spin-orbit coupling weakens the Janus-face signature,
with a final disappearance at λSOC = 0.3. Note that overall
for every filling and interaction, there is no “orbital-selective”
Mott transition taking place. Contrary to the crystal-field case,
both j sectors become insulating at the identical interaction
strength. Still, the fillings in the two sectors are respectively
rather different (see Fig. 11). The effective spin-orbit splitting
results in a stronger-filled j = 3

2 manifold, which for rising U

and sizable λSOC rather quickly becomes fully occupied. Only
in the original Janus-face regime, the j polarization may be
contained for not-too large λSOC within a larger regime of U

values.

C. Realistic application: Iron chalcogenides

In the final application, we tackle a realistic problem and
show that the advanced RISB scheme allied with DFT may
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transition.

serve as a versatile theoretical tool to analyze intricate corre-
lated materials. Documenting a materials case for the reported
technical advancements is the present main concern. The
prominent iron chalcogenides FeSe and FeTe as compounds
with seemingly important Hund’s physics are adequate mate-
rials examples [74–77] in line with the previous discussions
in the model context. Note that combinations of Gutzwiller
techniques and DFT have been applied to the problem of Fe
pnictides and chalcogenides in previous works [54,78,79].

Figure 12(a) depicts the symmetry-identical α-phase crystal
structure of tetragonal kind (space group P 4/nmm) of the
two compounds. Iron square lattices with lattice constant a,
having Se, Te up and below the square center in a distance
h, are stacked along the c axis with distance c. Based on the
available experimental data [80,81], we employed a(FeSe) =
3.77 Å, a(FeTe) = 3.82 Å; c(FeSe) = 5.52 Å, c(FeTe) = 6.29 Å
and h(FeSe) = 1.47 Å, h(FeTe) = 1.76 Å. Hence, as expected,
the FeTe compound has increased lattice parameters compared
to FeSe, most significantly a more elongated c-axis parameter.
The nominal filling of the Fe 3d shell amounts to n = 6
electrons, i.e., as also learned from the previous model results,
the systems are good candidates for manifest Hund’s physics.
There are various theoretical assessments of the local Coulomb
integrals for iron pnictides and chalcogenides, e.g., [82,83].
Therefrom it is agreed that a value for the Hubbard interaction
of U = 4.0 eV and a value for the Hund’s exchange of JH =
0.8 eV, i.e., JH/U = 0.2, are proper choices. In order to study
the relevance of JH, we here take again U as a parameter and

allow for two different ratios between the Hubbard interaction
and the Hund’s exchange, namely, JH/U = 0.15 and JH/U =
0.224.

1. DFT characterization

Let us first report the results within density functional
theory (DFT) using the generalized-gradient approximation
(GGA) based on the Perdew-Burke-Ernzerhof exchange-
correlation functional [84]. Original DFT results for FeSe
and FeTe have been presented by Subedi et al. [85].
Here, we construct a Wannier-type characterization of the
DFT(GGA) electronic structure based on projected-local or-
bitals [60]. The Fe 3d shell is split by crystal field, lead-
ing to onsite levels εm = {z2,x2 − y2,xz,yz,xy}. Those read
as ε(FeSe)

m = {−235,−459,100,100,156} meV and ε(FeTe)
m =

{−200,−285,177,177,138} meV. Thus, although the internal
(eg,t2g) degeneracy is mostly lifted within the tetragonal
symmetry, the eg manifold is energetically favored against t2g .
This yields also a stronger filling of the eg states. The orbital-
resolved DFT fillings (in the same order as the crystal-field lev-
els) read as n(FeSe)

m = {1.50,1.15,1.13,1.13,1.05} and n(FeTe)
m =

{1.48,1.11,1.15,1.15,1.10}. Note that the crystal-field level
of the x2-y2 orbital is lower than the z2 one. But, due to the
wider bimodal local density of states (lDOS) of the former [cf.
Fig. 12(b)], related to the major contribution to the in-plane
bonding, the electron occupation is highest in the z2 state.
Both compounds have a seemingly very similar DFT electronic
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FIG. 12. (a) P 4/nmm crystal structure and (b) DFT orbital-
resolved local density of states (lDOS) of FeSe and FeTe.

structure, e.g., the dominant in-plane bonding between x2-y2

orbitals is mediated by a nearest-neighbor hopping amplitude
of tx2-y2 = −438 meV for FeSe and of tx2-y2 = −433 meV for
FeTe. But, some differences are observable. FeTe has a slightly
larger bandwidth, i.e., 5.6 eV compared to the 5.3 eV of FeSe.
Furthermore, FeTe has a sharper z2 as well as xz,yz lDOS
and higher density of states at the Fermi level compared to
FeSe. In comparison to the previous model studies, an effective
Hubbard interaction normalized to the half-bandwidth reads as
Ueff ∼ 4.0/2.7 ∼ 1.5.

2. RISB quasiparticle weights and orbital occupations

We first employ the DFT Kohn-Sham Hamiltonian obtained
within the projected-local-orbital formalism in the “one-shot”
or “post-processing” combinational scheme with RISB, similar
to the previous approaches by Schickling et al. [79] and Lanatà
et al. [54]. To facilitate this, the proper symmetry relations
invoked by the tetragonal point group are implemented and
utilized.

Before discussing the concrete results, it is important to
realize the differences of the present realistic problem com-
pared to the model five-orbital problem with crystal field from
Sec. VI B 2. First, the reduced tetragonal symmetry lifts the
degeneracy within the eg and t2g subshells, and the crystal-field

splitting is now also active between these nondegenerate levels.
Second, the intraorbital hopping becomes orbital dependent
and is not bound to the nearest-neighbor term as in the model
case. Third, there are in addition also interorbital hopping
terms from short to longer range included in the Kohn-Sham
Hamiltonian.

Figure 13 shows the resulting orbital-dependent quasipar-
ticle weights as well as occupation with rising Hubbard U .
From the QP weights, the FeSe compound seems slightly more
correlated than FeTe, providing also a lower critical Uc for
the theoretical Mott transition. The least-filled xy orbital is
most strongly correlated as it resides closest to half-filling,
similar as the scenario in the model case. For the case of
larger JH/U = 0.224, which is closer to the assumed realistic
interaction, indeed the Janus-face signature sets in, and is most
pronounced for xy. The iron chalcogenides are hence truly
a clear case for dominant Hund’s physics. But, note that no
explicit orbital-selective behavior is observed, in contrast to
the model case with crystal field. This is probably due to the
longer-range and intraorbital hoppings that lead to a stronger
entanglement of the orbital correlations. Interestingly, there
is a crossover in the z2 vs x2-y2 occupations with rising U .
For larger U closer to the Mott transition, the x2-y2 orbital
gains more electrons. This filling-hierarchy change happens
for the larger JH/U ratio at smaller U , close to the expected
value of U = 4 eV. For completeness, we included the FeSe
data for the Slater-Condon Hamiltonian with r = 1.8 as well
as the Slater-Kanamori Hamiltonian. While the former does
not yield significant changes, the use of the latter simplified
Hamiltonian form results in somewhat stronger correlations
for intermediate U , but shifts the theoretical Mott transition to
larger interaction strengths.

Finally, we incorporated charge self-consistent DFT+RISB
results for Z and the orbital occupations at U = 1 and 6 eV. The
effect of charge self-consistency for the QP weight is generally
minor, qualitatively heading to a slight correlation-strength
increase. But, there are changes for the orbital occupations
at larger U . Namely, the mentioned crossover in the filling
hierarchy within the one-shot calculations tends to be shifted
to larger U or is even absent in the CSC treatment. Thus,
the orbital occupations especially in the eg states of the
iron chalcogenides appear to be sensitive to the many-body
charge-density handling. Note that we do not touch on the
prominent issue of nematicity [86] in the present context.
Since the tetragonal symmetry is hard cored here and spin-orbit
effects are neglected in this realistic example, such anisotropic
effects are excluded. Future studies lifting those restrictions
may enable results on this specific physics.

VII. SUMMARY

We here documented a rigorous implementation of the
mean-field version of the rotational-invariant slave-boson
(RISB) approach in terms of an efficient symmetry-adapted
handling of multiorbital degrees of freedom. The point-group
symmetry of the underlying lattice is used to reduce by general
means the number of relevant slave-boson amplitudes. Com-
plete generality in the form of the local Hamiltonian ensures
access to demanding interacting lattice problems. Spin-orbit
coupling is naturally included in the symmetry-faithful for-
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FIG. 13. Orbital-resolved quasiparticle weight (top) and occupation (bottom) for FeSe (solid lines) and FeTe (dashed lines). For the
interacting part, the SC Hamiltonian with r = 0.625 is used. Results from charge self-consistent calculations are given by by circles (triangles)
for FeSe (FeTe). Left panel: JH/U = 0.150; right panel: JH/U = 0.224. For comparison, the right panel additionally contains FeSe results for
the SC Hamiltonian with r = 1.8 (thick dashed lines, mostly on top of the r = 0.625 curves) and for the SK Hamiltonian (light dotted lines).

malism via the introduction of double-group representations.
In this work, the degree of complexity is limited to cubic and
tetragonal symmetries for up to five local orbitals, suitable
for generic d-shell studies. However, a further advancement
of the present scheme to other (low-)symmetry cases is
straightforward and with the present computing power, seven-
orbital problems, i.e., treating a full interacting f shell, are in
principle within the performance capabilities. The advanced
RISB framework is implemented such as to be applied to model
Hamiltonians, to one-shot combinations with DFT, or within
a full charge self-consistent DFT+RISB methodology.

Selected applications within the prominent research field
of Hund’s physics have been presented, however, without
providing an in-depth survey of the encountered physics. The
Hund’s physics with its highlighting influence of the Hund’s
exchange JH in the presence of a finite Hubbard U came
here across for three- and five-orbital models, as well as in
the realistic context of the FeSe and FeTe compounds. The
emergence of the Janus-face signature and its interplay with
orbital-selective physics in the presence of a crystal field
were reported for the model cases. Moreover, we showed the
weakening of this hallmark signature with finite spin-orbit
interaction. The reliability of the method also for true materials
problems was proven by verifying FeSe and FeTe as the
known Hund’s materials. Thereby, advanced RISB is capable

of dealing with the subtle differences in the electronic structure.
We showed that the eg polarizations of z2 and x2-y2 kind in
these iron chalcogenides are prone to an orbital crossover,
which might be relevant for fluctuation-driven processes in
the given materials.
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APPENDIX A: COMPUTATION OF THE
RENORMALIZATION MATRIX

The renormalization matrix R may be computed in the
multiorbital framework as follows. Equation (37) provides the
standard form for the renormalization matrix, reading as

R∗
αβ =

∑
γ

T ∗
αγ wγβ. (A1)

The matrix T can be written as

T ∗
αγ = Tr(φ†f †

αφcγ ) (A2)
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since

Tr(φ†f †
αφcγ ) =

∑
AB,CD

φ
†
AB(f †

α )BCφCD(cγ )DA

=
∑

AB,CD

φ∗
BA(f †

α )BCφCD(cγ )DA

=
∑

AB,CD

〈B|f †
α |C〉〈D|cγ |A〉φ∗

BAφCD

=
∑

AB,CD

〈B|f †
α |C〉〈A|c†γ |D〉∗φ∗

BAφCD. (A3)

As the element 〈A|c†γ |D〉 is a real number when using the Fock
basis, this form can also be written in the following way:

Tr(φ†f †
αφcγ ) =

∑
AB,nm

〈A|f †
α |B〉〈n|c†γ |m〉∗φ∗

AnφBm, (A4)

when changing notation, i.e., B → A, C → B, A → n, D →
m. Therewith, the final expression coincides with the formula
for the renormalization matrix in the original RISB paper [17].

APPENDIX B: GENERATION OF BASIS MATRICES

(1) We start with a representation � of the point group
G on the local many-body states (i.e., the adapted basis) A.
It is constructed by taking the Euler (angular-momentum)
representation of every group element and repeating it for
all other combinations of quantum numbers other than the
total angular momentum. This creates off-diagonal matrices,
which by construction contain the point-group representation
multiple repeated times. The number of repetitions R can be
obtained from the vector product of the character vector of

the representation � [χ (�)] and the character vector of an
irreducible representation χ (�α), normalized to the number
of group elements nG:

r = 1

nG

χ (�) χ (�α). (B1)

(2) Then, Casimir-type operators Ci are built, one for
every equivalence class, by summing up all elements of one
equivalence class in the above representation, via

0 = [Ci,g] ∀i,g. (B2)

They commutate with all elements g of the group and with each
other. The commutating set of Ci operators can be simultane-
ously diagonalized. The emerging basis block diagonalizes all
elements of the group in blocks of dimension of the irreducible
representation times its repetitions, i.e., dim(�α)R.

(3) To find a basis K that diagonalizes all elements of the
group, one has to perform a Koster-phase fixing [53] to separate
repeated irreducible representations from each other by means
of an irreducible representation �α of the same point group.

(4) Now, identity matrices of the dimension of the irre-
ducible representation are set up, according to Schur’s lemma
commutating with all elements of the group (up to a complex
factor, which will play the role of the variational parameter
in our context). All basis matrices for the actual irreducible
representation that commutate with all group elements in basis
K are now identified by taking each and every summand of the
(off-diagonal) direct sum of the identity matrices separately,
according to the number of repetitions, which amounts to
nφ̃(�α) = R2 different matrices.

(5) Rotating these identity matrices back toA results in the
desired basis matrices.
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