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We study the connections among particle statistics, frustration, and ground-state energy in quantum many-
particle systems. In the absence of interaction, the influence of particle statistics on the ground-state energy is
trivial: the ground-state energy of noninteracting bosons is lower than that of free fermions because of Bose-
Einstein condensation and Pauli exclusion principle. In the presence of hard-core or other interaction, however,
the comparison is not trivial. Nevertheless, the ground-state energy of hard-core bosons is proved to be lower than
that of spinless fermions, if all the hopping amplitudes are non-negative. The condition can be understood as the
absence of frustration among hoppings. By mapping the many-body Hamiltonian to a tight-binding model on a
fictitious lattice, we show that the Fermi statistics of the original particles introduces an effective magnetic flux
in the fictitious lattice. The latter can be effectively regarded as a kind of frustration since it leads to a destructive
interference among different paths along which a single particle is propagating. If we introduce hopping frustration,
the hopping frustration is expected to compete with the effective frustration due to the Fermi statistics, leading to
the possibility that the ground-state energy of hard-core bosons can be higher than that of fermions. We present
several examples, in which the ground-state energy of hard-core bosons is proved to be higher than that of fermions
due to the hopping frustration. The basic ideas were reported in a previous paper [W.-X. Nie, H. Katsura, and
M. Oshikawa, Phys. Rev. Lett. 111, 100402 (2013)]; more details and several extensions, including one to the
spinful case, are discussed in this paper.
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I. INTRODUCTION

In this paper, we study a simple question: How do the parti-
cle statistics affect the ground-state energy of the system? More
specifically, we compare the ground-state energy of bosons and
fermions on an identical lattice with same parameters such as
hopping amplitudes.

In noninteracting systems, the influence of particle statistics
on the ground-state energy can be understood easily. The two
systems in comparison are exactly equivalent to each other, and
thus have exactly the same ground-state energy, when only a
single particle is present. The ground-state energy of fermions
is simply given by the sum of the lowest single-particle energy
eigenvalues, following the Aufbau principle. In contrast, in the
ground state of noninteracting bosons, all the bosons condense
into the lowest single-particle state. This phenomenon is known
as Bose-Einstein condensation (BEC). Therefore, the ground-
state energies of noninteracting bosons and fermions satisfy
the “natural” inequality

EB
0 � EF

0 . (1)

On the other hand, the comparison of the ground-state
energies of bosons and fermions is not trivial in the presence of
interaction because the simple argument based on the perfect
BEC breaks down. In a system of interacting bosons, it is in fact
already a nontrivial question whether the BEC actually takes
place. Einstein’s original argument depends on the absence of
interaction. For interacting bosons, there is no general theorem
that BEC always occurs [1]. A counterexample is the solid
4He phase, where BEC is absent even at zero temperature,
under a sufficiently high pressure. Rigorously proven examples

of BEC, in the sense of the off-diagonal long-range order
(ODLRO), in interacting systems are still rather limited [2–4].
Even if the occurrence of BEC or the ODLRO is proved in a
system of interacting bosons, it does not necessarily restrict
the ground-state energy because single-particle states with
higher energies can be partially occupied. In particular, an
ODLRO does not necessarily imply the inequality (1). In fact,
the influence of particle statistics on the ground-state energy
had not been much explored in strongly correlated systems.

The comparison of the ground-state energies is particularly
appealing in the case of hard-core bosons and fermions. In
both kinds of systems, each site is either empty or occupied
by a single particle. Thus, the dimension of the Hilbert space
is identical between them. Nevertheless, the different particle
statistics generically lead to different ground-state energies, as
we will see in the following.

Before discussing the issue any further, let us comment
on the physical relevance of the question itself. The energy
eigenvalue itself is generally unphysical in the sense that one
can always redefine the energy by adding a constant. It is thus
the difference of energies of two different states that matters.

We can understand the difference by defining the ground-
state energy with respect to a simple reference state in each
system, such as a vacuum state (in which every site is empty).
This ground-state energy is the sum of energy gains in the
process of filling the system with particles, and is a measurable
quantity [5,6]. This is somewhat similar to the “enthalpy of
formation” studied in chemistry [7], which is the total change
of enthalpy (per mole) when the compound is formed from its
elements under a certain condition.
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Since the vacuum state is equivalent between the system
of bosons and fermions, the comparison of the ground-state
energies is completely well defined. Moreover, even when the
energy difference itself cannot be measured, the comparison of
the ground-state energies is relevant for understanding stability
of various different phases. This is particularly the case with
the possible realization of statistical transmutation, as we will
discuss later in this paper.

Concerning the comparison of the ground-state energies be-
tween bosons and fermions, recently we found [8] a sufficient
condition for the natural inequality (1) to hold, without relying
on the occurrence of BEC. That is, if all the hopping amplitudes
are non-negative, the ground-state energy of hard-core bosons
is still lower than that of the corresponding fermions. This
theorem is extended to the spinful case in this paper. Once
we relax the condition of non-negative hopping amplitudes,
it is possible to reverse the inequality so that the ground-state
energy of bosons is higher than that of fermions. We find several
concrete models in which such a reversal is realized; and in
several cases it is even proved rigorously. More examples and
techniques will be introduced in this paper than those discussed
in Ref. [8].

Moreover, our study leads to an important physical un-
derstanding of the effects of particle statistics, in terms of
frustration in quantal phase. This is more general than the
picture based on the perfect BEC, and is indeed applicable
to systems with interaction.

We can map a quantum many-particle problem to a single-
particle problem on a fictitious lattice in higher dimensions.
When all the hopping amplitudes are non-negative and the
particles are bosons, the corresponding single-particle problem
also has only non-negative hopping amplitudes. In such a case,
there is no frustration in the quantal phase of the wave function.
On the other hand, Fermi statistics of the original particles gives
an effective magnetic flux in the corresponding single-particle
problem. This implies a frustration in the phase of the wave
function, induced by the Fermi statistics. When a magnetic flux
is introduced in the original quantum many-particle problem,
it also results in a magnetic flux in the corresponding single-
particle problem, inducing a frustration. This hopping-induced
frustration and the the effective frustration induced by the
Fermi statistics can sometimes partially cancel with each other,
resulting in the reversed inequality between the ground-state
energies of the hard-core bosons and fermions.

The paper is organized as follows. In Sec. II, we present
the full proof of the natural inequality for the spinless case
and extend the discussion to the spinful case. Based on the
proof, in Sec. III, we put forward a unified understanding of
the frustration for bosons and fermions in the same manner.
As a by-product, a strict version of the diamagnetic inequal-
ity for a general lattice is presented. Several examples, in
which the natural inequality is violated owing to the hopping
frustration, are presented in Sec. IV. The examples include a
simple yet instructive, exactly solvable model of particles on
a one-dimensional ring, two-dimensional systems of coupled
rings, systems with flux in 2D and 3D, and flat-band models.
Rigorous proof of the reversed inequality is provided for most
cases. Conclusions and discussions are presented in Sec. V.
Detailed proofs of some of the theorems, and related technical
results are presented in the Appendices.

II. NATURAL INEQUALITY

The natural inequality (1) holds trivially for noninteracting
bosons and fermions with the same form of the Hamiltonian.
Now, we present three theorems, which state that Eq. (1)
holds even for hard-core bosons, provided that all the hopping
amplitudes are non-negative. A brief overview appeared in
Ref. [8], but here we give a more detailed discussion, and also
an extension to the spinful case.

A. Natural inequality for spinless case

First, we consider the comparison of spinless hard-core
bosons with spinless fermions. We assume the system of
bosons or fermions is described by the same form of Hamilto-
nian

H = −
∑
j �=k

(tjkc
†
j ck + H.c.) −

∑
j

μjnj +
∑
j,k

Vjknjnk, (2)

where j is the label of a site on a finite lattice � and nj ≡ c
†
j cj

is the number of particles on j th site. Chemical potential μ

is the uniform (site-independent) part of μj . For a system of
bosons, we identify cj with the boson annihilation operator bj

satisfying the standard commutation relations, with the hard-
core constraint nj = 0,1 at each site. The hard-core constraint
may also be implemented by introducing an infinite onsite
interaction U

2

∑
j nj (nj − 1), where U → +∞. For a system

of fermions, we identify cj with the fermion annihilation
operator fj satisfying the standard anticommutation relations.

This Hamiltonian is very general. We do not make any
assumption on the dimensionality or the geometry of the lattice
�, or on the range of the hoppings. In addition, the interaction
is also arbitrary, as long as it can be written in terms of Vjk . The
interesting aspect of attractive interaction will be discussed in
Appendix B. We note that the Hamiltonian (2) conserves the
total particle number. Thus, the ground state can be defined
for a given number of particles M (canonical ensemble) or
for a given chemical potential μ (grand canonical ensemble).
The comparison between bosons and fermions can be made in
either circumstance.

Now, we will present a sufficient condition for the natural
inequality (1). Moreover, a sufficient condition for the strict
inequality EB

0 < EF
0 is provided. The proof is also illuminating

for physical understanding of the natural inequality in interact-
ing systems, showing the importance of the particle statistics
and exchange processes.

Theorem 1. (Natural inequality for spinless case). The
inequality (1) holds for any given number of particles M on a
finite lattice � with N � M sites, if all the hopping amplitudes
tjk are real and non-negative.

Furthermore, if the lattice � is connected, and has a site
directly connected to three or more sites, and if the number of
particles satisfies 2 � M � N − 2, the strict inequality EB

0 <

EF
0 holds.
Proof. To write the matrix elements of the Hamiltonian (2),

we choose the occupation-number basis |φa〉 ≡ |{na
j }〉, where

M is the total number of particles satisfying
∑

j na
j = M . The

matrix elements of the number operator nj are the same for
hard-core bosons and spinless fermions in this basis. We begin

125153-2



PARTICLE STATISTICS, FRUSTRATION, AND GROUND- … PHYSICAL REVIEW B 97, 125153 (2018)

by defining the operator

KB,F ≡ −HB,F + C1. (3)

For convenience, we added an identity matrix with large
enough diagonal elements C such that all the eigenvalues κB,F

of matrix KB,F and thus all the diagonal matrix elements KB,F
aa

are positive. The relation of the matrix elements for bosonic
and fermionic operators can be summarized as

KB
ab =

{∣∣KF
ab

∣∣ (a �= b)

KF
aa (a = b)

= ∣∣KF
ab

∣∣. (4)

The difference between bosons and fermions is that, given
non-negative hopping amplitudes tjk , the matrix elements of
the bosonic operator KB are non-negative, while those of the
fermionic operator KF can be negative in sign. This difference
in signs generically leads to different ground-state energies
between bosons and fermions.

The ground state of the Hamiltonian HB,F corresponds
to the eigenvector belonging to the largest eigenvalue κB,F

max
of KB,F. Let |�0〉F = ∑

a ψa|φa〉F be the normalized ground
state for fermions. The trial state for the bosons can be
assumed as |�0〉B = ∑

a |ψa||φa〉B, where |φa〉B is the basis
state for bosons corresponding to |φa〉F. Then, by a variational
argument,

κB
max � B〈�0|KB|�0〉B =

∑
ab

|ψa||ψb|KB
ab

�
∑
ab

ψ∗
a ψbKF

ab = κF
max (5)

holds, implying EB
0 � EF

0 . The first part of Theorem 1 is thus
proved. As a simple corollary, the ground-state energies for a
given chemical potential μ also satisfy Eq. (1).

In order to prove the strict version of the natural inequality,
let us consider LS ≡ (KS)

n
, where S = B,F, for a positive

integer n. In the occupation-number basis, the matrix element
of L is expanded as

LS
ab =

∑
c1,...,cn−1

KS
ac1

KS
c1c2

KS
c2c3

. . .KS
cn−1b

, (6)

in which each term in the sum represents a particle hopping
process among the connected sites.

From the definition of LS and the relation (4) between KB

and KF, we have the inequality for matrix elements of LB,F:

LB
ab =

∑
c1,...,cn−1

KB
ac1

KB
c1c2

KB
c2c3

. . .KB
cn−1b

(7)

=
∑

c1,...,cn−1

∣∣KF
ac1

KF
c1c2

KF
c2c3

. . .KF
cn−1b

∣∣

�
∣∣∣∣∣

∑
c1,...,cn−1

KF
ac1

KF
c1c2

KF
c2c3

. . .KF
cn−1b

∣∣∣∣∣ = ∣∣LF
ab

∣∣. (8)

This applies, in particular, to the diagonal elements with b = a.
From Eq. (4), the matrix elements of KF and thus the am-

plitudes of the process in Eq. (6) can be negative for fermions,
while they are non-negative for bosons. The difference between
bosons and fermions shows up exactly when two particles are
exchanged. To make two-particle exchange process possible,

FIG. 1. A schematic example to show a two-particle exchange
process in six steps, where the four-site branch cluster is a subsection
of a real arbitrary lattice.

let us introduce a “branching” site directly connected to three
or more sites belonging to the lattice. An example of the
branching site connected to three sites is shown in Fig. 1. If
the number of particles falls in the range 2 � M � N − 2,
two particles can be exchanged from an initial state |φa〉 and
back to the same state in six hoppings, with the aid of the
branch structure. An example of particle exchange process on
a lattice with a branching site is demonstrated schematically
in Fig. 1. The contribution to the diagonal elements of bosons
LB

aa is always positive at n = 6, while the contribution to LF
aa

is negative when two particles are exchanged. On the other
hand, there is always a positive contribution to LB

aa and LF
aa

in the expansion of Eq. (6), at least from the invariant process
cj = a in which no particle moves in n steps. Thus, the strict
inequality LB

aa > |LF
aa| holds in this case.

When the lattice � is connected, any basis state |φa〉B

can be reached by consecutive applications of the hopping
term in KB, and thus the matrix KB

ab satisfies the connectivity.
Together with the property KB

ab � 0, KB
ab (and thus also LB

ab)
is a Perron-Frobenius matrix [9]. Applying a corollary of the
Perron-Frobenius theorem1 we find κB

max > κF
max and hence the

latter part of the theorem follows. �
We note in passing that a consequence of the Perron-

Frobenius theorem is that the ground state of bosons has a
nonvanishing amplitude B〈φa|�0〉B with a definite (say, posi-
tive) sign for every basis state |φa〉B. This may be understood
as a lattice version of the “no-node” theorem [10,11].

B. Natural inequality for spinful case

Let us now discuss the spinful case. Here, we compare
spinful hard-core bosons and spinful fermions on a finite
lattice, with spin 1

2 . While actual bosons are known to have only
integer spins, they can have pseudospin 1

2 , which is sufficient
for the present discussion. Here, the “hard-core bosons” means
that two or more particles with the same (pseudo)spin cannot
occupy the same site: njσ = 0,1, where σ =↑ , ↓. With this
constraint, we consider the Hamiltonian

H = −
∑
j �=k

∑
σ

(tjkc
†
jσ ckσ + H.c.) −

∑
jσ

μjnjσ

+
∑
j �=k

∑
σσ ′

Vjknjσ nkσ ′ +
∑

j

Ujnj↑nj↓, (9)

1See, for example, Theorem 8.4.5 of Ref. [9].
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which is a generalization of Eq. (2) with the introduction of
the spin degrees of freedom σ = ↑,↓.

Let us first discuss the case in which all Uj ’s are finite. Then,
the following simple generalization of Theorem 1 holds:

Theorem 2. (Natural inequality for spinful case with finite
Uj ’s). For any set of finite Uj ’s, if all the hopping amplitudes
tjk are real and non-negative, the inequality (1) holds for any
given number of particles M � 2N on a finite lattice � with N

sites. Furthermore, if the lattice � is connected, and has a site
directly connected to three or more sites, and if the number of
particles satisfies 3 � M � 2N − 3, the strict inequality holds.

The detailed proof including the restriction of filling, which
is a straightforward generalization of the proof of Theorem 1,
is given in Appendix A.

Now, let us discuss the case Uj = +∞. The first half of
Theorem 2, the nonstrict version of the inequality, remains
unaffected by taking the limit Uj = +∞. It is easily proved
by variational principle in the same manner as in the proof of
Theorem 1. However, the latter half of Theorem 2, the strict
inequality, is affected by taking the limit.

The proof of the strict inequality is based on the Perron-
Frobenius theorem, which requires the irreducibility of the ma-
trix. For spinless particles and spinful particles with finite Uj ’s,
when the lattice is connected, any pair of occupation-number
basis states |�a〉 and |�b〉 of the many-particle problem are
connected by consecutive application of particle hoppings.
This implies the irreducibility of the matrix representing the
many-body Hamiltonian. However, in the case of spinful
system with Uj = +∞, connectivity of the lattice does not
guarantee the irreducibility of the many-body Hamiltonian ma-
trix. An illustrative example is the Hubbard model with Uj =
+∞ at half-filling. Each site is occupied by a particle with
either spin up or spin down; there are many occupation-number
basis states corresponding to different spin configurations.
However, since there is no empty site, and double occupancy
with spin-up and -down particles is forbidden, each basis state
is not connected by hopping to any other basis state. Therefore,
in order to prove the strict inequality, we need some additional
condition which guarantees the irreducibility of the Hamil-
tonian matrix. In fact, the irreducibility of the Hamiltonian
matrix at Uj = +∞, and application of the Perron-Frobenius
theorem were discussed earlier by Tasaki [12,13] in the context
of Nagaoka’s ferromagnetism. Nagaoka’s ferromagnetism is a
mechanism of ferromagnetism in the Hubbard model with a
single hole doped into the half-filling with Uj = +∞, and
can be understood as a consequence of the Perron-Frobenius
theorem. For that, the irreducibility of the Hamiltonian matrix
in a certain basis is required. In Ref. [13], a sufficient condition
for the irreducibility was presented: if the entire lattice is
connected by exchange bonds, then the Hamiltonian matrix in
the occupation-number basis is irreducible. Here, “exchange
bond” [13] is defined by a pair of sites which belongs to a loop
of length three or four, and the whole lattice remains connected
via nonvanishing hopping amplitudes even when the two sites
are removed. Thus, we obtain the following:

Theorem 3. (Natural inequality for spinful case not above
half-filling). When Uj ’s are either +∞ or finite, if all the hop-
ping amplitudes tjk are real and non-negative, the inequality
(1) holds for any given number of particles M � N on a finite
lattice � with N sites. Furthermore, if the entire lattice � is

connected by exchange bonds, and if the number of particles
satisfies 3 � M � N − 1, the strict inequality holds.

The outline of the proof of Theorem 3, including the
restriction of filling, and the numerical verification of the
theorems are presented in Appendix B.

In summary, in this section we have presented three theo-
rems for the validity of the natural inequality for spinless and
spinful cases, respectively. Although the proofs of the sufficient
conditions for strict version of the natural inequality (see
Appendices A and B) are somewhat more involved, the basic
idea behind the proofs is the same as in that for Theorem 1.
That is, bosons have a strictly lower ground-state energy than
fermions, when the hopping amplitudes are non-negative and
an exchange of particles is allowed.

III. UNIFIED UNDERSTANDING OF FRUSTRATION AND
DIAMAGNETIC INEQUALITY

The role played by frustration is of central importance in
the proofs of the theorems. The terminology “frustration” is
often used for antiferromagnetically interacting spin system on
geometrically frustrated lattices, such as triangular, kagome,
and pyrochlore lattices. When there is no global state of the
system that minimizes every antiferromagnetic interaction,
there is some frustration. More generally, frustration may be
applicable to a system with competing interactions, when
the ground state does not minimize individual interaction
simultaneously [14].

To see that the sign of hopping amplitudes tjk in a many-
boson system is related to frustration, it is illuminating to map
the hard-core boson problem to a spin- 1

2 quantum spin system
[15]. The mapping is based on the equivalence between hard-
core boson operators and spin- 1

2 operators:

S+
j ∼ b

†
j , S−

j ∼ bj , Sz
j ∼ b

†
j bj − 1

2 . (10)

It is then easy to see that a hopping term for hard-core bosons
maps to an in-plane exchange interaction

−tjk(b†j bk + b
†
kbj ) ∼ J⊥

jk

(
Sx

j Sx
k + S

y

j S
y

k

)
, (11)

where J⊥
jk = −2tjk . Thus, the non-negative tjk corresponds to

ferromagnetic exchange interaction, in terms of the spin sys-
tem. When all the exchange couplings are ferromagnetic, there
is no frustration. Namely, every in-plane exchange interaction
energy can be minimized simultaneously by aligning all the
spins to the same direction in the xy plane. Going back to the
original problem of quantum particles, the direction of the spins
in the xy plane corresponds to the quantal phase of particles at
each site. If all the hopping amplitudes are non-negative, every
hopping term can be simultaneously minimized by choosing
a uniform phase throughout the system. In this sense, bosons
with non-negative hopping amplitudes are unfrustrated with
respect to their quantal phase.

Let us now consider the case of fermions. Since Fermi
statistics brings in negative signs even if all the hoppings tjk

are non-negative, it would be natural to expect that Fermi
statistics leads to some kind of frustration. However, it is
difficult to formulate this based on the above mapping to
an S = 1

2 spin system. To understand the frustration induced
by Fermi statistics in many-particle systems, we introduce
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an alternative mapping of the many-body Hamiltonian into
a single-particle tight-binding model. That is, we identify each
of the many-body occupation-number basis states |�a〉 with a
site on a fictitious lattice. If two occupation-number basis states
|�a〉 and |�b〉 are connected by Hamiltonian 〈�b|H|�a〉 �= 0,
there is a link connecting sites a and b in the fictitious lattice.
If we can start from an initial state, and return back to the same
state by successive applications of the Hamiltonian (2), there is
a loop in the fictitious lattice. For bosons, there is no extra phase
in the loop. In other words, the fictitious lattice for hard-core
bosons is flux free. Therefore, there is no frustration for bosons
because there is a constructive interference among all the paths.
In contrast, for fermions, in the original many-body problem, if
two particles are exchanged and the system returns back to the
initial state, the system acquires an extra π phase. The minus
sign introduced by Fermi statics is relevant to sign structure
[16]. Upon the mapping to the single-particle problem, this is
equivalent to the presence of a π flux in the corresponding loop
in the fictitious lattice. This can be interpreted as frustration,
which causes destructive interferences among different paths.

For a single-particle tight-binding model, introduction of a
flux always raises or does not change the ground-state energy,
which is known as diamagnetic inequality [17]. The first half
of Theorem 1, which states the non-strict inequality, may be
then regarded as a corollary of the diamagnetic inequality. On
the other hand, the latter half of Theorem 1 concerning the
strict inequality does not, to our knowledge, follow from known
results on the diamagnetic inequality. In fact, the arguments in
the proof of Theorem 1 can be applied to a strict version of the
diamagnetic inequality on general lattices. The general result
can be summarized as follows.

Theorem 4. (General diamagnetic inequality and its strict
version). Let us consider a single particle on a finite lattice 
,
with the eigenequation

−
∑
β∈


ταβψβ = Eψα. (12)

In general, ταβ is complex, with ταβ = τ ∗
βα . The ground-state

energy E0 for a given set of the hopping amplitudes {ταβ}
satisfies

E0({τ ′
αβ ≡ |ταβ |}) � E0({ταβ}). (13)

Furthermore, the strict inequality,

E0({τ ′
αβ ≡ |ταβ |}) < E0({ταβ}) (14)

holds, provided that the lattice 
 is connected and there is
at least one loop which contains a nonvanishing flux. A se-
quence of sites {α0,α1,α2, . . . ,αn}, which satisfies αl �= αl+1,
ταlαl+1 �= 0, and αn = α0 is called a loop. The loop contains a
nonvanishing flux when the product

τα0α1τα1α2τα2α3 . . . ταn−1αn
(15)

is not positive (either negative or not real).
The nonstrict version is the standard diamagnetic inequality

[17,18]. However, the strict inequality obtained here appears
new, also in the general context of diamagnetic inequality. The
detailed proof of Theorem 4 can be found in Appendix C.

Mapping of the original quantum many-particle problem
to the single-particle problem on a fictitious lattice provides a

unified understanding of frustration of quantal phase. When
there is a nonvanishing flux in the original many-particle
problem, we observed that there is a frustration among local
quantal phases, which we call hopping frustration. On the other
hand, when the particles in the original problem are fermions,
there is also a frustration among quantal phases introduced by
the Fermi statistics, which we name statistical frustration. In
the original many-particle problem, the statistical frustration
appears rather different from the hopping frustration. However,
upon mapping to the single-particle problem on the fictitious
lattice, both hopping frustration and statistical frustration are
represented by a nonvanishing flux in the fictitious lattice. This
provides a unified understanding of hopping and statistical
frustrations.

A system of many bosons with only non-negative hopping
amplitudes tjk are free of frustration. Introduction of any
frustration into such a system, for example magnetic flux
(hopping frustration), is expected not to decrease the ground-
state energy. This is a lattice version of Simon’s universal
diamagnetism of bosons [18]. However, in the many-fermion
system, where the statistical frustration exists, the effect of
introducing hopping frustration is a nontrivial problem. In
such a case, the ground-state energy may or may not decrease,
depending on the system in question. That is, diamagnetism is
not universal in spinless fermion systems. Correspondingly, the
orbital magnetism of fermions can be either paramagnetic or
diamagnetic, depending on the model [19]. Considering each
of the frustrations introduces a particular pattern of magnetic
flux in the fictitious lattice, it is certainly possible that in
some cases the hopping frustration may (partially) cancel
the effect of statistical frustration, so that the introduction
of the hopping frustration actually decreases the ground-state
energy. This reveals the fact that the natural inequality could
be violated by the introduction of hopping frustration. Some
concrete examples, in which the natural inequality is violated,
are demonstrated in the following section.

IV. VIOLATION OF THE NATURAL INEQUALITY

In the following, we discuss how the natural inequality can
be violated. Theorems 1 and 2 leave the possibility of violation
of the inequality in the presence of a hopping frustration,
that is, by choosing negative or complex hopping amplitudes
tjk . However, the hopping frustration is a necessary but not
sufficient condition to reverse the natural inequality. We will
demonstrate that the violation of natural inequality indeed
happens in several frustrated systems. For simplicity, we limit
ourselves to the comparison between spinless fermions and
hard-core bosons, with no interaction other than the hard-core
constraint. The case with density-density interaction will be
discussed at the end of this section.

A. Particles on a ring

We start with the best understood and solvable model in one
dimension:

H = −
N∑

j=1

(c†j cj+1 + H.c.). (16)
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The hard-core boson version of this model, which is equivalent
to the spin- 1

2 XY chain, can be mapped to free fermions on
a ring by Jordan-Wigner transformation [20,21]. Thus, the
energy eigenvalue problems of hard-core bosons and fermions
on a ring are almost the same, except for the subtle difference
in the boundary condition. For the periodic or antiperiodic
boundary conditions cN+1 ≡ ±c1, the Jordan-Wigner fermions
f̃j obey the boundary condition f̃N+1 = ∓eiπMf̃1, where M is
the number of Jordan-Wigner fermions (equals to the number
of bosons). If M is assumed as even, it implies that hard-core
bosons with the periodic (antiperiodic) boundary condition
are mapped to free fermions with the antiperiodic (periodic,
respectively) boundary condition.

Now, let us discuss the dependence of the ground-state
energy on the boundary condition. Assuming M = N/2 is
even, the ground-state energy density (ground-state energy per
site) is given as

ε0 = E0

N
= − 2

N

∑
k

cos k, (17)

where k is taken over all the momenta in the Fermi sea,
−π/2 � k < π/2. For the periodic boundary condition (PBC),
the wave number k is quantized as k = 2πn/N , while k =
π (2n + 1)/N for the antiperiodic boundary condition (APBC),
where n (−N/4 � n < N/4) is an integer.

The ground-state energy density asymptotically converges,
in the thermodynamic limit N → ∞, to the same integral for
either boundary condition. Nevertheless, it does depend on the
boundary condition for a finite N . The difference of ground-
state energy is exactly calculated as

EPBC
0

N
− EAPBC

0

N
= 2[1 − cos(π/N )]

N sin(π/N )
> 0 (18)

for any N > 1. The antiperiodic boundary condition gives the
lower ground-state energy. The leading order of difference can
be extracted in the limit of large N as

EPBC
0

N
= − 2

π
+ 2π

3N2
+ 2π3

45N4
+ O

(
1

N6

)
, (19)

EAPBC
0

N
= − 2

π
− π

3N2
− 7π3

180N4
+ O

(
1

N6

)
(20)

for the periodic and antiperiodic boundary conditions. The
leading term of O(1/N2) is also determined by conformal field
theory [22,23]. It can be seen that the noninteracting fermions
on a ring have a lower ground-state energy with the antiperiodic
boundary condition.

As a result, with periodic boundary condition, hard-core
bosons have a lower ground-state energy than fermions, in full
agreement with Theorem 1. On the other hand, the ground-state
energy of hard-core bosons is higher than that of fermions with
antiperiodic boundary condition. The antiperiodic boundary
condition can be understood as a result of insertion of π flux
inside the ring. This hopping frustration cancels the statistical
frustration so that the natural inequality is violated.

This example of tight-binding model may look trivial,
and indeed the calculation itself has been known for years.
Nevertheless, it is very useful in highlighting the central
physics of the problem, that is, the effect of the statistical

FIG. 2. (a) π -flux octagon-square lattice, in which a unit cell is
shown in green. (b) The lowest two bands of Hamiltonian (21) with
t = 1, t ′ = 0.1.

frustration of fermions can be canceled by the flux or hopping
frustration. The present finding can also be applied to con-
struction of more nontrivial examples, as we will discuss in
Sec. IV B.

B. Coupled rings

Since hard-core bosons have a higher ground-state energy
than fermions on a ring containing π flux inside the ring as
proved in Sec. IV A, we can construct a series of systems where
EB

0 > EF
0 , by taking many such small rings and connecting

them with weak hoppings. If the inter-ring hoppings are weak
enough, they are expected not to revert the inequality and EB

0 >

EF
0 would be kept [24].
We prove rigorously that the reversed natural inequality is

indeed still kept in coupled π -flux rings, connected by weak
hoppings, even in the thermodynamic limit. One example is
π -flux octagon-square model. The lattice structure is shown
in Fig. 2(a), where one unit cell is shown in green with
basis vectors �a1 = (3,0) and �a2 = (0,3). This lattice can be
deformed into the (topologically equivalent) 1

5 -depleted square
lattice [25,26], which is known for the model of the quasi
two-dimensional compound CaV4O9. Thus the octagon-square
lattice is also called as deformed 1

5 -depleted square lattice. It
is sometimes also called as decorated square lattice [27,28].
The hopping amplitudes on thick and broken lines are de-
noted by t and t ′, respectively. The Hamiltonian is given
by

H = −t
∑

〈i,j〉∈thick,oriented

eiπ/4c
†
i cj − t ′

∑
〈i,j〉∈broken

c
†
i cj + H.c.,

(21)

where “thick, oriented” and “broken” refer, respectively, to the
links drawn with arrows and those drawn as broken lines in
Fig. 2(a). We also assume t > t ′ > 0.

By the choice of eiπ/4 hopping phase on the oriented thick
lines, there is a π flux in every square. Therefore, it can be
regarded as a model of coupled π -flux rings by weak hopping
t ′. In order to prove EB

0 > EF
0 rigorously in the coupled

rings, we seek a lower bound for EB
0 and an upper bound

for EF
0 . If the former is higher than the latter, the desired

inequality is proved. We introduce the positive-semidefinite
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operators

A = t ′
∑

〈i,j〉∈broken

(c†i + c
†
j )(ci + cj ) � 0, (22)

B = t ′
∑

〈i,j〉∈broken

(c†i − c
†
j )(ci − cj ) � 0, (23)

where A � 0 means 〈�|A|�〉 � 0 for any state |�〉. Therefore,
the Hamiltonian for fermions and bosons can be written as

HF = H̃F − A =
∑
♦

hF
♦ − A, (24)

HB = H̃B + B =
∑
♦

hB
♦ + B, (25)

where hF
♦ = −t

∑4
i=1(eiπ/4c

†
i ci+1 + H.c.) + t ′

∑4
i=1 c

†
i ci and

hB
♦ = −t

∑4
i=1(eiπ/4c

†
i ci+1 + H.c.) − t ′

∑4
i=1 c

†
i ci , the cluster

Hamiltonians defined on a solid-line square for fermions
and bosons, respectively. Noticing h♦ commutes with each
other, the ground-state energy of H̃ is simply given by the
summation [29]

Ẽ0 =
∑
♦i

ε♦i
, (26)

where Ẽ0 and ε♦i
are the ground-state energy of H̃ and that

of h♦i
on ith π -flux square, respectively.

Because the operator B is positive semidefinite, the ground-
state energy of bosons satisfies

EB
0 = 〈�|HB|�〉 � 〈�|H̃B|�〉 � ẼB

0 =
∑
♦i

εB
♦i

, (27)

where |�〉 is assumed as the ground state of HB.
On the other hand, an upper bound of fermions can be

derived as

EF
0 = 〈�|HF|�〉 � 〈�̃|HF|�̃〉 � 〈�̃|H̃F|�̃〉

= ẼF
0 =

∑
♦i

εF
♦i

, (28)

where |�〉 and |�̃〉 are the ground states of HF and H̃F,
respectively.

By exact diagonalization, we obtain the ground-state en-
ergies ε

B,F
♦ (m) in given m particle sectors, shown in Table I

in Appendix D. The number of unit cells is assumed as N .
From the results of exact diagonalization, a lower bound for
bosons is given by EB

0 � −2N (t + t ′) when t ′/t � 2 − √
2,

or EB
0 � −N (

√
2t + 3t ′) when 2 − √

2 < t ′/t < 1. An upper
bound for fermions is given by the ẼF

0 , which is dependent
on the density pattern on the whole lattice. At half-filling, an
upper bound of fermions is obtained as

EF
0 � −2N (

√
2t − t ′). (29)

Thus, when the ratio falls in this range t ′/t < (
√

2 − 1)/2, we
have EB

0 > EF
0 .

Instead of searching an upper bound of fermions, the
ground-state energy of fermions can be exactly calculated
at certain filling. For convenience, t is set equal to 1. In
the single-particle sector, the exact dispersion relations are

obtained by Fourier transformation:

E
(1)
± = ±

√
(t ′)2 + 2 − 2t ′

√
1 − sin (3kx) sin (3ky),

E
(2)
± = ±

√
(t ′)2 + 2 + 2t ′

√
1 − sin (3kx) sin (3ky),

where (kx,ky) is the wave number which belongs to the reduced
Brillouin zone −π/3 � kx,y < π/3. The ground-state energy
of fermions at μ = 0, which corresponds to the half-filling, is
given as

EF
0 =

∑
kx ,ky

[E(1)
− (kx,ky) + E

(2)
− (kx,ky)]. (30)

Under the assumption that the lattice is of size 9L2, the number
of unit cells N equals L2. In the thermodynamic limit L → ∞,
the ground-state energy of fermions per unit cell at half-filling
is given by the integral of the lowest two bands [shown in
Fig. 2(b)] in the reduced Brillouin zone

EF
0

N
=−

∫ π

−π

dk̃x

2π

∫ π

−π

k̃y

2π
[

√
(t ′)2 + 2 + 2t ′

√
1 − sin k̃x sin k̃y

+
√

(t ′)2 + 2 − 2t ′
√

1 − sin k̃x sin k̃y]. (31)

It is easily verified that the reversed natural inequality holds
with small ratio of t ′/t , by comparison of the lower bound of
bosons and numerical integral of Eq. (31) with given value
of t ′. For example, when t = 1 and t ′ = 0.1, EB

0 � −2.2N >

EF
0 = −2.831 967N . When t ′ = 0.4, EB

0 � −2.8N > EF
0 =

−2.885 971N. The exact result is of course consistent with
the rigorous upper bound (29).

Our conjecture that the reversed inequality is kept in the
coupled π -flux rings with weak enough inter-ring hopping is
now verified in coupled-square lattice. Moreover, the validity
of the conjecture should not depend on the specific lattice.
As another example, a proof of the reversed inequality for
the breathing kagome lattice at certain filling, which can be
regarded as an realization of a coupled-triangle lattice, is
presented in Appendix E.

C. System with flux in 2D and 3D

As we discussed in Sec. IV A, the energy difference between
bosons and fermions on a ring is due to finite-size effect, and
indeed vanishes in the thermodynamic limit. This is rather
natural, as it is only the entire system as a ring that contains π

flux. As a simple extension of the idea, here we consider the
two-dimensional square lattice in a uniform magnetic field,
described by the Hamiltonian

H = −
∑
〈j,k〉

(tjkc
†
j ck + H.c.), (32)

where tjk = t exp(i�jk/�0) and t > 0. The flux passing
through every plaquette is

∑
� �jk = �. With periodic bound-

ary condition, the total flux is quantized as an integral multiple
of flux quantum (�0 = hc/e is 2π in our unit). The magnetic
field introduces frustration, through the existence of complex
hopping amplitudes tjk . To investigate all the possible values
of flux per plaquette, the string gauge [30] is employed. The
string gauge is constructed as follows. First, we choose (the
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center of) an arbitrary plaquette S as the origin, and draw an
oriented path (arrow) from the origin S to every other plaquette.
Each oriented path consists of straight segments connecting
the centers of neighboring plaquettes. Once such paths are
constructed, the vector potential on each link is set to 2πmn/N ,
where m is the total number of arrows cutting the edge from
the left to the right with respect to the direction of hopping,
and n is an arbitrary integer satisfying 0 � n < N . Since one
of the arrows terminates in each plaquette, the flux piercing the
plaquette is then � = n�0/N . At the origin S, where N − 1
arrows flow from, the flux appears to be � = −n(N − 1)�0/N

instead. However, this is equivalent to � = n�0/N since the
flux per plaquette is defined only modulo �0. In this way,
the uniform flux n�0/N is realized in every plaquette using
the string gauge, although the vector potential is generally not
uniform (translation invariant).

By exact diagonalization, the ground-state energies of
bosons and fermions are obtained with different particle
densities (ne = M/N , where M is the number of particles)
and various values of flux. The relative difference of the
ground-state energies in the 4 × 7 and 5 × 6 lattices is shown
in Fig. 3. Here, the ground-state energy density differences
between bosons and fermions is shown color coded in the two-
dimensional parameter space of the particle density ne and flux
density �/�0. The natural inequality holds in white regions,
while it is violated in colored regions. It should be noted that
the violation is not necessarily related to band topology. In
fact, in the entire region of the parameter space except for
� = 0, each of the single-particle bands is characterized by a
nonvanishing Chern number [31]. Nevertheless, the violation
of the natural inequality does not happen everywhere. Instead,
as shown in Fig. 3, the violation is nontrivially related to
particle density or filling fraction. (Nontrivial dependence on
the filling is also found in other models discussed in other
sections.) To understand the physical origin of the filling
dependence of the relative ground-state energy, one can recall
statistical transmutation [32,33] via a flux attachment. When
�/�0 = ne, the background magnetic field can be effectively
absorbed by attaching one flux quantum to each particle, at
the mean field level ignoring quantum fluctuations. The flux
attachment transforms fermions into bosons and vice versa. In
this picture, along the diagonal lines in the plot where �/�0 =
ne holds, fermions and hard-core bosons in the magnetic field
are mapped, respectively, to hard-core bosons and fermions
in zero field. According to Theorem 1, the hard-core bosons
have a lower ground-state energy than fermions in zero field.
It is thus implied that the violation of the natural inequality
would occur along the diagonal lines. It should be noted that
the flux attachment argument is not rigorous and its range
of validity is not established. Nevertheless, it is remarkable
that our numerical calculation indeed reveals the strongest
violation along the diagonal lines, as expected from the naive
flux attachment argument.

The effect of filling can also be understood in a different
way: the energy levels of free electrons (without a lattice or a
periodic potential) in a uniform magnetic field are quantized
into Landau levels, which can be regarded as completely flat
bands. In the presence of the lattice, each Landau level is split
into dispersive subbands. Nevertheless, one may still regard
them as descendants of the Landau level with small dispersion.
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FIG. 3. The energy density difference �ε = EB
0 /N − EF

0 /N be-
tween bosons and fermions on (a) 4 × 7 and (b) 5 × 6 square lattices,
where ne is the number of particles per site and �/�0 is the number
of the flux quanta per plaquette.

Since the main “disadvantage” of fermions for lowering the
ground-state energy is the Pauli exclusion principle which
forces some of the fermions to occupy higher-energy states,
less dispersive bands are helpful to reverse the natural in-
equality. (This mechanism will be discussed more explicitly in
Sec. IV D.) The filling ne = �/�0 corresponds to completely
filling the lowest Landau level, and thus can be advantageous
to reverse the natural inequality.

We note in passing that, although our numerical results in
Fig. 3 appear almost particle-hole symmetric, a careful exami-
nation shows that it is not exactly particle-hole symmetric. This
is because the finite-size lattices used in our calculations are not
bipartite, due to the limitation of the system sizes in the exact
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FIG. 4. Finite-size scaling of ground-state energies in two-
dimensional square lattice with (N/2 − 1)�0/N flux per plaquette
at filling fraction (N/2 − 1)/N . The fitting functions are EB

0 /N =
−0.7593 + 8.973/N2 + O(N−4) for hard-core bosons and EF

0 /N =
−0.9507 + 8.043/N2 + O(N−4) for fermions, respectively. The ex-
trapolated ground-state energy density for fermions matches well with
the exact result −0.958 091 in Eq. (33).

diagonalization calculation; the bipartiteness is needed for the
fermion system on a finite lattice to possess the particle-hole
symmetry.

We plotted Fig. 4 to show the finite-size scalings. Figure 4 is
the finite-size scaling with (N/2 − 1)�0/N flux per plaquette
near half-filling (N/2 − 1)/N . The exact half-filling on finite-
size lattices (N/2 particles on N sites) and the corresponding
�0/2 flux per plaquette are avoided to reduce the strong finite-
size effect (oscillatory behavior) due to commensuration, while
the extrapolation corresponds to the half-filling in the thermo-
dynamic limit. The extrapolation suggests that the fermions
have a lower ground-state energy in the thermodynamic limit.
Actually, we can prove [8] rigorously in the following that this
is indeed the case.

As proved by Lieb [34], the optimal energy minimizing flux
is π per plaquette for square lattice at half-filling. Let us discuss
the square lattice with π flux per plaquette, described by the
Hamiltonian (32). For convenience, we choose the gauge so
that the hopping amplitude tjk is +1 on the black links and −1
on the blue ones as shown in Fig. 5(a). By taking a 2 × 2 unit

FIG. 5. (a) The square lattice with π flux in each plaquette. The
brown cross represents a cluster of 12 sites. (b) The energy bands in
the first Brillouin zone.

cell (which is twice as large as the minimal magnetic unit cell),
the dispersion relation is E± = ±√

4 + 2 cos 2kx − 2 cos 2ky,

where (kx,ky) is the wave number which belongs to the reduced
Brillouin zone −π/2 � kx,y < π/2. The bands in the first
Brillouin zone are shown in Fig. 5(b). Each energy level
is doubly degenerate. The ground-state energy of fermions
at zero chemical potential, which corresponds to the half-
filling, is given as EF

0 = ∑
kx ,ky

2E−(kx,ky), where the factor
2 comes from the double degeneracy. For the square lattice of
size Lx × Ly (N = LxLy), kx,y is respectively quantized as
integral multiples of 2π/Lx,y . Thus, in the thermodynamic
limit Lx,y → ∞, the ground-state energy of the fermionic
model at μ = 0 is obtained exactly as

EF
0

N
= −1

2

∫ π

−π

dk̃x

2π

∫ π

−π

dk̃y

2π

√
4 + 2 cos k̃x − 2 cos k̃y

= −0.958 091. (33)

The extrapolated ground-state energy density of fermions from
finite-size scaling in Fig. 4 matches well with the exact result.

We consider the grand canonical ground-state en-
ergy of bosons at the same chemical potential (μ =
0). We rewrite the Hamiltonian H = ∑

α hα , where hα =
− 1

2

∑
〈j,k〉∈+α

(tjkc
†
j ck + H.c.) is the cluster Hamiltonian de-

fined on a 12-site cross-shaped cluster as shown in Fig. 5(a).
The whole lattice is covered by the brown cross-shaped clusters
with the same pattern of hopping amplitudes within the cluster,
whose centers are denoted by the black dots. Therefore, each
cluster overlaps with four neighboring clusters and each link
appears in two different clusters when periodic boundary
conditions are imposed. The factor 1

2 in hα compensates this
double counting. By Anderson’s argument [29,35,36], the
ground-state energy EB

0 of HB satisfies EB
0 � ∑

α εα
0 , where

εα
0 is the ground-state energy of hα . The ground-state energy

of hα on a cluster with a given particle number m obtained
by exact diagonalization is shown in Table II in Appendix D.
The grand canonical ground-state energy of the cross-shaped
cluster is obtained as εα

0 = −3.609 035. Assuming the number
of sites in the square lattice is N , we obtain

EB
0 /N � −3.609 035/4 = −0.902 259 > EF

0 /N, (34)

where N/4 is the number of clusters. Thus, hard-core bosons
have a higher ground-state energy than fermions at half-filling
(μ = 0), even in the thermodynamic limit, as expected from
extrapolation from finite-size scaling and statistical transmu-
tation argument [8,32,33,37,38].

We note that the choice of cluster decomposition is not
unique for a given model. In order to prove the reversal of
the natural inequality, an appropriate choice of the cluster
decomposition with a sufficiently high lower bound for the
ground-state energy of bosons relative to that of fermions is
necessary. Here, we have discussed the decomposition into
cross-shaped clusters, which can be handled relatively easily
but is still useful for proving the reversed natural inequality.
Decomposition into larger clusters is expected to give a more
precise estimation of a lower bound. Similar comment also
applies to the cluster decompositions discussed in Sec. IV D.

For other values of flux per plaquette or filling fraction, there
is no rigorous proof available at present. However, the finite-
size scaling of numerical data with �0/4 flux per plaquette at
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FIG. 6. Finite-size scaling of ground-state energies in two-
dimensional square lattice with �0/4 flux per plaquette at quarter
filling. The fitting functions are EB

0 /N = −0.5877 − 3.405/N2 +
O(N−4) for hard-core bosons and EF

0 /N = −0.6853 − 4.125/N2 +
O(N−4) for fermions, respectively.

quarter filling, shown in Fig. 6, suggests that fermions have a
lower ground-state energy in the thermodynamic limit.

The violation of the natural inequality in systems with flux
is not restricted to two dimensions. We have indeed proved
that the natural inequality could be reversed in a tight-binding
model on a three-dimensional pyrochlore lattice with flux [8].

D. Cluster decomposition in flat-band models

In this section, we present a rigorous proof that the reversed
natural inequality also holds in several flat-band models, even
in the thermodynamic limit. Although the existence of a flat
band is neither a necessary nor sufficient condition to violate
Eq. (1), it does tend to help: when the lowest flat band is
occupied by the fermions, there is no extra energy gain due
to Pauli exclusion principle. Therefore, the inversion of the
natural inequality has a better chance to be realized in flat-band
models. Here, we show that the inequality (1) is indeed violated
in a few examples with flat bands, by a cluster decomposition
technique.

First, we discuss the delta-chain model, for which the
violation of Eq. (1) was numerically found for small clusters
[39,40]. The Hamiltonian of the model can be written in the
following form [41,42]:

H =
N∑

j=1

a
†
j aj , (35)

where the a operator, which acts on each triangle, is defined as
aj = c2j−1 + √

2c2j + c2j+1. Periodic boundary condition is
used to identify c2N+1 with c1. The HamiltonianH corresponds
to a model with negative hopping amplitudes tjk [as defined in
Eq. (2)], which lead to frustration.

The model in the single-particle sector has two bands. The
lower flat band with zero energy is spanned by states annihi-
lated by aj ’s. We note that the Hamiltonian (35) is modified
from that in Ref. [39] by a constant chemical potential, so that
the flat band has exactly zero energy. Thus, the ground-state

FIG. 7. An example of decomposition of the delta-chain Hamil-
tonian to clusters with p = 4 unit cells including one decoupled site
at the top of the dashed triangle.

energy of the fermionic version of the model (35) is zero as
long as the filling fraction ν satisfies ν � 1

2 .
On the other hand, in general, construction of the ground

state of a system of many interacting bosons is not straight-
forward even if the single-particle states are known exactly.
However, the flat band in the geometrically frustrated antiferro-
magnet also implies the existence of nonoverlapping localized
zero-energy states. It was first pointed out in Ref. [43], and
was later applied to various problems [44,45]. In the case
of the delta chain, the ground-state energy EB

0 of bosons is
zero as long as ν � 1

4 since each boson can occupy different
nonoverlapping localized zero-energy states [43–45].

Now, let us derive a nontrivial lower bound for EB
0 for filling

fractions ν > 1
4 . We decompose the model into clusters, each

containing p unit cells:

H =
N/p−1∑

n=0

H(p)
n +

N/p∑
n=1

a†
npanp, (36)

where H(p)
n = ∑p−1

j=1 a
†
np+j anp+j is the Hamiltonian for the

solid triangles as in Fig. 7. Since the second term
∑N/p

n=1 a
†
npanp,

describing hoppings on dashed triangles, is positive semidef-
inite, the ground-state energy ẼB

0 of the first term H̃ =∑N/p−1
n=0 H(p)

n satisfies ẼB
0 � EB

0 . H̃ is a sum of mutually
commuting cluster Hamiltonians H(p)

n . Thus, ẼB
0 is simply

given by the sum of the ground-state energies of all clusters.
The particle number within each cluster is also conserved
separately in H̃. Let us choose p = 4 as in Fig. 7, so that
the cluster contains eight sites. The ground-state energy in
each sector with fixed particle number m is obtained by exact
diagonalization of the eight-site cluster, which is shown in
Table III in Appendix D. We find ε

(4)
0 (m) � �

(4)
DC = 0.372 605

for 4 � m � 8, while ε
(4)
0 (m) = 0 for 0 � m � 3.

If we consider the filling fraction in the range 3
8 < ν � 1

2 ,
it follows from Dirichlet’s box principle that there is at least
one cluster which contains four or more particles. Thus, in
this range, ẼB

0 � �
(4)
DC for any system size N , while EF

0 = 0.
Therefore, the inversion of the ground-state energies holds also
in the thermodynamic limit.

The outcome of the above argument depends on the cluster
size taken. In fact, the range of filling fraction ν for which
we have proved the violation of Eq. (1) is not optimal. In
Appendix F, using a different technique, we will extend the
range to 1

4 < ν � 1
2 ; the lower bound 1

4 is in fact optimal.
This method can be easily extended to other lattices. For

example, the standard nearest-neighbor hopping model on the
kagome lattice can be written as

H =
∑

α

a
†
�α

a�α
+

∑
α

a
†
�α

a�α
, (37)
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FIG. 8. The 12-site clusters of “Star of David” shape are shown
in solid lines on kagome lattice.

where �α and �α are elementary triangles pointing up and
down, respectively, of the kagome lattice, as shown in Fig. 8.
We define a�α

≡ cα1 + cα2 + cα3 , where α1,2,3 refer to the three
sites belonging to �α , and likewise for a�α

. The fermionic
version of the model has three bands, the lowest of which is a
flat band at zero energy [42,46,47]. Thus, EF

0 = 0 when ν � 1
3 .

For the ground-state energy of the bosonic version, we
can use the cluster decomposition technique similar to what
we have discussed above for the delta chain. Let us choose
the 12-site cluster of the “Star of David” shape, which is
shown by solid lines in Fig. 8. The ground-state energy
of the cluster in each sector with m particles is shown in
Table IV in Appendix D. The ground-state energy εcluster

0 of
each cluster is zero with m � 3, but is positive with m � 4.
Thus, invoking Dirichlet’s box principle again, Eq. (1) is
violated for filling fraction 1

4 < ν � 1
3 . This conclusion also

holds in the thermodynamic limit, where the system size N

is taken to the infinity while keeping the filling fraction ν

constant.

E. Extension to interacting systems

Throughout most of this paper, we limited the interactions
to the hard-core ones for technical simplicity: fermions are then
free, while bosons are subject only to the hard-core interaction.
Here, we comment briefly on the effect of the other possible
interactions. Theorems 1, 2, and 3 are actually valid even in
the presence of density-density interactions other than the hard-
core interaction. Introduction of additional density-density in-
teractions should not essentially modify the comparison of the
ground-state energies, as it would affect bosonic and fermionic
models in a similar manner. For example, the interaction terms
are introduced in diagonal terms in the matrix of Hamiltonian
in Theorem 1, which do not affect the conclusion of the
comparison. Therefore, in order to understand the essence of
physics in the present problem, it would suffice to consider the
hard-core interactions only.

That said, in fact, one can actually prove that the inequality
(1) is violated even in the presence of an additional density-
density interaction in the one-dimensional ring with π flux
discussed in Sec. IV A. This can be seen by noting that Jordan-
Wigner transformation applies regardless of the presence of
density-density interactions, and implies

EF
0 (� = π ) = EB

0 (� = 0), (38)

where the number of particles is assumed to be even. Then, we
see that a lattice version of Simon’s theorem [18] also applies

in the presence of the interaction

EB
0 (� = π ) � EB

0 (� = 0), (39)

giving EB
0 (� = π ) � EF

0 (� = π ). Furthermore, under appro-
priate assumptions, it is possible to prove the strict inequality
EB

0 (� = π ) > EF
0 (� = π ) in the presence of interaction, with

an argument similar to the proof of Theorems 1 and 4.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have proved that the ground-state energy
of hard-core bosons is lower than that of fermions if there is
no frustration in the hopping. The effect of the statistical phase
of fermions can then be understood as a frustration since it
results in destructive quantum interferences among different
paths. In fact, the phase introduced by Fermi statistics can be
effectively described by a magnetic flux, after the mapping to
the single-particle tight-binding model on a fictitious lattice
which represents the Fock space. In this sense, the nonstrict
version of the natural inequality is a corollary of the lattice
version of the diamagnetic inequality. On the other hand, we
also proved a strict version of the natural inequality, under
certain conditions. The key of the proof is the contribution
of an exchange process of two particles, which is exactly what
demonstrates the statistics of the particles. The argument is also
applied to prove the strict version of the diamagnetic inequality
on the lattice.

Once a magnetic flux is introduced in the original many-
particle problem, the hopping terms can be frustrated. The hop-
ping frustration can partially cancel the statistical frustration of
fermions, hinting at the possibility that the natural inequality
can be reversed in the presence of hopping frustration. We
proved rigorously that the natural inequality is indeed reversed
in the presence of frustration, in various examples. They
include one-dimensional π -flux ring, coupled rings in two
dimensions, systems with flux in 2D and 3D, flat-band models
by cluster decomposition technique. Finally, we demonstrated
an example of the violation of natural inequality with other
interactions than hard-core constraint.

In this paper, we focused on the case of hard-core bosons
for simplicity. However, Theorems 1, 2, and 3 can be readily
generalized to soft-core bosons. This is because hard-core
bosons can be regarded as a special limit of more general inter-
acting bosons. That is, we can introduce the onsite interaction
U
2 ni(ni − 1); the hard-core constraint can be then implemented
by taking U → +∞. The onsite interaction term is positive
semidefinite for bosons, if U � 0. Thus, the hard-core bosons
have a higher ground-state energy than that of soft-core bosons
at finite U . This implies the applicability of Theorems 1, 2, and
3 to the soft-core bosons.

Our analysis of the hard-core boson model also suggests that
the natural inequality for soft-core bosons could be reversed
by introducing the hopping frustrations. However, soft-core
bosons are closer to free bosons, which never violate the
natural inequality because of the simple argument based on
perfect BEC. Thus, the violation would be more difficult to
be realized in soft-core bosons, compared to the hard-core
bosons discussed in this paper. Other open problems include
comparison in the presence of other degrees of freedom such
as the orbital/flavor of particles. The nonstrict version of the
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theorems can be easily generalized to the case with multiple
orbitals/flavors.

In this paper, we have also discussed briefly the comparison
of the ground-state energies of spinful bosons and fermions.
The natural inequality still holds in the absence of hopping
frustration. Although we did not discuss explicitly for spinful
particles, the natural inequality is expected to be violated by
introducing appropriate hopping frustration.

Here, it should be recalled that physical magnetic field not
only introduces phase factors in hopping terms, but is also cou-
pled to the spin degrees of freedom via the Zeeman term. Thus,
the Zeeman term should be also taken into account, in order
to discuss a physical magnetic field applied to the system of
charged particles. The Zeeman term acts as different chemical
potentials for up-spin and down-spin particles. Thus, much of
the discussion in this paper is still applicable. For example,
in the absence of hopping frustration, the natural inequality
still holds even in the presence of the Zeeman term. Once
hopping frustration is introduced, the natural inequality can
be violated. However, exactly how the violation of the natural
inequality occurs does depend on the chemical potential, and
on the Zeeman effect in the case of spinful particles.

On the other hand, we also note that phase factors in hopping
terms and Zeeman coupling are two distinct effects, which in
principle can be controlled independently. In fact, for neutral
cold atoms, the phase factor in hoppings is usually introduced
as “synthetic gauge field” [48] instead of the physical magnetic
field. This does not produce Zeeman coupling, making it
possible to study the effect of hopping frustrations separately
from that of the Zeeman effect.
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APPENDIX A: PROOF OF THEOREM 2

Proof. Since the total number operator M = ∑
jσ njσ and

total magnetization Sz = 1/2
∑

j (nj↑ − nj↓) commute with
the Hamiltonian (9), one can diagonalize the Hamiltonian in
each sub-Hilbert space with fixed values of M and Sz. Each
sub-Hilbert space has definite numbers of up- and down-
spin particles. Let |φμ〉↑ ≡ |{nμ

j↑}〉 (μ = 1,2, . . . ,u) be the
occupation-number basis for up-spin particles, and |ψν〉↓ ≡
|{nν

j↓}〉 (ν = 1,2, . . . ,v) be the occupation-number basis for
down-spin particles. Then, we can take the direct product

|�a〉 = |ψν〉↓ ⊗ |φμ〉↑, where a = 1,2, . . . ,uv, as the basis of
the sub-Hilbert space mentioned above.

The Hamiltonian can be rewritten as

H = Ht + Hint, (A1)

Ht = 1↓ ⊗ H↑
t + H↓

t ⊗ 1↑, (A2)

where Hσ
t = −∑

j �=k(tjkc
†
jσ ckσ + H.c.). The matrix elements

of the number operator njσ are the same in this basis for hard-
core bosons and fermions. We introduce the operator KB,F ≡
−HB,F + C1 with a constant C. Choosing C large enough, we
make all the eigenvalues and all the diagonal matrix elements
ofKB,F positive. The matrix elements of bosonic and fermionic
Hamiltonians obey the relation

KB
ab =

{∣∣KF
ab

∣∣ (a �= b),

KF
aa (a = b),

(A3)

where the diagonal terms correspond to Hint and the off-
diagonal terms correspond to Ht. The nonstrict inequality is
easily proved by variational principle in the same manner
employed in the proof of Theorem 1. Here, we focus on the
discussion on strict natural inequality for spinful case with
finite Uj .

With finite Uj ’s, one site can be occupied by one spin-up
particle and one spin-down particle. Thus, spin-up particles
can move as spinless particles for any given configuration of
spin-down particles, and vice versa. Of course, the interaction
term Hint, which is diagonal in this basis, is affected by the
presence of particles with opposite spins. However, as far as the
irreducibility (connectivity) of Hamiltonian is concerned, one
can regard the system as two independent systems of hard-core
particles. As a consequence, when the lattice � is connected,
any pair of basis states |�a〉B and |�b〉B are connected to each
other by successive applications of the hopping term in KB.
Together with the propertyKB

ab � 0, KB satisfies the condition
of the Perron-Frobenius theorem. When the number of particles
M � 3, there are at least two particles with the same spin. The
condition M � 2N − 3 guarantees that there are at least two
spaces which can accommodate two particles with the same
spin. Thus, when the number of particles falls in the range
3 � M � 2N − 3, we can exchange two identical particles and
return back to the same state, based on the branch structure as in
Fig. 1. Therefore, when Uj ’s are finite, the lattice is connected
and has a branch structure, and 3 � M � 2N − 3, two-particle
exchange always happens. As in the proof of Theorem 1 for
the spinless case, the strict inequality EB

0 < EF
0 follows from

the Perron-Frobenius theorem. �

APPENDIX B: REMARKS ABOUT THE PROOF
OF THEOREM 3 AND DISCUSSIONS

The nonstrict inequality remains unaffected by taking Uj =
+∞. Here, we focus on a sufficient condition for strict natural
inequality with infinite repulsion for spinful case.

With infinite onsite repulsion, the maximum number of
particles is N . The condition M � 3 is to guarantee there
are at least two particles with the same spin such that they
can be exchanged. For a lattice connected by exchange bonds,
two particles on an exchange bond can be exchanged without

125153-12



PARTICLE STATISTICS, FRUSTRATION, AND GROUND- … PHYSICAL REVIEW B 97, 125153 (2018)

changing the configuration outside, by hopping a hole around
the loop on which both the exchange bond and the hole lie [13].
Hence, when the number of particles M satisfies 3 � M �
N − 1, two particles with the same spin can be exchanged on
an exchange-bond lattice by successive particle hoppings.

The property that the entire lattice is connected by exchange
bonds can be verified [13] in various common lattices, such as
triangular, square, simple cubic, fcc, or bcc lattices, in which
nearest-neighbor sites are connected by nonvanishing hopping
amplitudes. Thus, the above theorem holds for these lattices.

We also note that Nagaoka’s ferromagnetism only applies
to the system with single hole with respect to half-filling.
However, this restriction is only necessary to guarantee that
all the matrix elements are non-negative. The irreducibility of
the Hamiltonian matrix does not require that there is only one
hole. In fact, the breakdown of the positivity in the presence of
more than one hole in the Hubbard model with Uj = +∞
is precisely due to the Fermi statistics of the electrons. If
we consider the “Bose-Hubbard model” with spin- 1

2 bosons
instead of electrons, all the matrix elements are non-negative
in the occupation-number basis, for any number of holes. Thus,
the Bose-Hubbard model with spin- 1

2 bosons exhibit ferromag-
netism for any filling fraction [49]. This non-negativity of the
matrix elements for bosons is also essential for Theorem 3,
which holds for any filling fraction.

The proofs of Theorems 1 and 2 are insensitive to the
signs of the interaction terms Vjk and Uj . Namely, the natural
inequality holds no matter the interaction is repulsive or
attractive. The interesting aspect of the attractive interaction
is that it will induce the Cooper pair of fermions. In the case
of spinless fermions, the orbital part of the Cooper pair wave
function must be antisymmetric with respect to the exchange
of two fermions. This results in an extra cost in the kinetic
energy. Such a fermionic BEC state thus has a higher ground-
state energy than its bosonic counterpart, in full agreement of
Theorem 1.

In contrast, in the case of spinful fermions, with attractive
interaction, fermions could pair up in the nodeless s channel.
In this case, there is no obvious reason why the fermions
have a higher ground-state energy than bosons. Nevertheless,
according to Theorem 2, spinful fermions still have strictly
higher ground-state energy than corresponding bosons, even
when the pairing is in the nodeless s channel.

This can be interpreted physically in the following way. If
the pairing of two particles is completely robust, the problem
is reduced to the identical problem of bosonic “molecules,”
whether the original particles are fermions or bosons. Then,
the ground-state energies should be the same for fermions and
bosons. However, in general, the pairing is not completely
robust, and two pairs can (virtually) exchange each one of
their constituent particles. The amplitude for such a process has
negative sign only for fermions, leading to the nonvanishing
energy difference between fermions and bosons. The exception
occurs when the onsite attractive interaction between up- and
down-spin particles is infinite (Uj = −∞). Then, the pairs
are completely robust, and no virtual exchange of constituent
particles occurs; the ground-state energies for fermions and
bosons become identical in this limit. On the other hand, with
the infinite attraction, the irreducibility can not be satisfied.
Because a hopping of a molecule requires its breaking, which

FIG. 9. A four-site lattice with four spins at half-filling and Sz=0.

costs an infinite energy and is thus prohibited. This implies that
the bosonic molecules are completely localized in the model
(9). Thus, the natural inequality is reduced to the trivial equality
EB

0 = EF
0 in the limit Uj → −∞.

In the following, as an example, we numerically demon-
strate the above observations in spinful hard-core Bose-
Hubbard and Fermi-Hubbard models on a four-site lattice as
shown in Fig. 9. The Hamiltonian is given by

H = −t
∑
〈i,j〉

∑
σ

(c†iσ cjσ + H.c.) + U
∑

j

nj↑nj↓, (B1)

where t > 0, 〈i,j 〉 denotes a pair of neighboring sites, and
the hard-core constraint njσ = 0,1 is again imposed for the
bosons. We consider the spin- 1

2 bosons and fermions at half-
filling (the total number of particles per site ν = 1) and Sz = 0.
That is, on this four-site cluster, there are two up-spin particles
and two down-spin particles. The energy difference between
spinful bosons and spinful fermions (�E = EB

0 − EF
0 ) is

shown as a function of U = Uj in Fig. 10.
Conforming to Theorem 2, EB

0 � EF
0 holds for all range

of U , independent of the sign of U . Moreover, �E(U ) is
symmetric along U = 0 due to particle-hole symmetry of
Hubbard model at half-filling ν = 1 [50].

When U is finite, fermions have strictly higher ground-state
energy than bosons, again in agreement with the latter half of
Theorem 2. When U = +∞, on the other hand, the particles
are completely immobile at half-filling and thus no particle
exchange occurs. The ground-state energy is indeed exactly the
same for fermions and for bosons in this limit. Likewise, in the
limit of U = −∞, either bosons or fermions form completely
robust (and immobile) pairs, and the ground-state energies

20 10 0 10 20
0.6

0.5

0.4

0.3

0.2

0.1

0.0

U t

E
t

FIG. 10. Difference of ground-state energy (�E = EB
0 − EF

0 )
between hard-core bosons and fermions on the four-site lattice with a
branch in Sz = 0 sector with four spins. The absolute value of energy
difference decreases down to ∼10−8t around |U |/t = 100.
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TABLE I. The ground-state energies of fermions and hard-core
bosons on a thick-line square as shown in Fig. 2(a), where m is the
number of particles on a π -flux square. The results are used in the
proof of π -flux octagon-square model in Sec. IV B.

m εF
♦(m) εB

♦(m)

1 −√
2t + t ′ −√

2t − t ′

2 −2
√

2t + 2t ′ −2t − 2t ′

3 −√
2t + 3t ′ −√

2t − 3t ′

4 4t ′ −4t ′

are exactly the same. In the present case, this can also be
understood as a consequence of the particle-hole symmetry
at half-filling [50], which maps U → −U .

APPENDIX C: PROOF OF THEOREM 4

Proof. The proof is similar to that of Theorem 1. We can
define the matrices K,K′ by

Kαβ ≡ ταβ + Cδαβ, (C1)

K′
αβ ≡ τ ′

αβ + Cδαβ, (C2)

with a sufficiently large constant C so thatK andK′ are positive
definite. We then define L ≡ Kn and L′ ≡ K′n for the length n

of the loop with a nonvanishing flux. The positive definiteness
ofK andK′ implies thatL andL′ are also positive definite, and
thus all the diagonal matrix elements Lαα and L′

αα are strictly
positive. Similarly to the proof of Theorem 1, L′

αβ � |Lαβ |
holds for any α,β. In particular, the diagonal matrix elements
of L′ and L are expanded as

L′
α0α0

=
∑

α1,...,αn−1

K′
α0α1

K′
α1α2

. . .K′
αn−1α0

, (C3)

Lα0α0 =
∑

α1,...,αn−1

Kα0α1Kα1α2 . . .Kαn−1α0 . (C4)

TABLE II. The lowest energies of π -flux model on a 12-site cross-
shaped cluster, as shown in Fig. 5(a). Here, m is the number of particles
on the cluster. It shows that εα

0 (m = 6) is the lowest ground-state
energy. The results are used in the proof in Sec. IV C.

m εα
0 (m)

0 0
1 −1.096997
2 −2.013783
3 −2.629382
4 −3.086229
5 −3.415430
6 −3.609035
7 −3.415430
8 −3.086229
9 −2.629382
10 −2.013783
11 −1.096997
12 0

TABLE III. Ground-state energy ε
(4)
0 (m) of the cluster Hamilto-

nian H(4)
n for delta-chain model, as shown in Fig. 7, with m particles

in a cluster. It shows the ground-state energy of the eight-site cluster
is strictly positive when there are no less than four particles on this
cluster. The results are used in Sec. IV D.

m 1 2 3 4 5 6 7 8

ε
(4)
0 (m) 0 0 0 0.372605 1.838145 4.323487 8 12

Each term in the expansion satisfies

K′
α0α1

K′
α1α2

. . .K′
αn−1α0

�
∣∣Kα0α1Kα1α2 . . .Kαn−1α0

∣∣, (C5)

thanks toK′
αβ � |Kαβ |. By assumption, there is a nonvanishing

contribution to Lα0α0 from the loop of length n,

Kα0α1Kα1α2 . . .Kαn−1α0 = τα0α1τα1α2 . . . ταn−1α0 , (C6)

which is not positive. Here, we used the fact that the off-
diagonal elements of K and τ are identical. Combining with
the contribution from its reverse loop

Kα0αn−1Kαn−1αn−2 . . .Kα1α0 , (C7)

which is the complex conjugate of Eq. (C6), we find the strict
inequality

K′
α0α1

K′
α1α2

. . .K′
αn−1α0

+ c.c.

> Kα0α1Kα1α2 . . .Kαn−1α0 + c.c. (C8)

Thus, L′
α0α0

> Lα0α0 > 0. Invoking the Perron-Frobenius
theorem again, the strict diamagnetic inequality (14)
is proved. �

APPENDIX D: SUPPORTING RESULTS OF
DIAGONALIZATION INVOLVED IN THIS WORK

The results of numerical exact diagonalization on finite
lattices are presented here in Tables I–V to assist the proofs
in the main text.

TABLE IV. The lowest energies of cluster Hamiltonian Hcluster

on 12-site “Star of David” shape as shown in Fig. 8, in sectors with
different numbers of particles m. It shows the ground-state energy of
one cluster is strictly positive when the number of particles on this
cluster m � 4. The results are used in Sec. IV D.

m εcluster
0 (m)

1 0
2 0
3 0
4 0.311475
5 0.937767
6 1.706509
7 3.365207
8 5.196963
9 7.456468
10 10.393543
11 14
12 18
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TABLE V. The ground-state energies of fermions and hard-core
bosons on a thick-line up triangle as shown in Fig. 11(a), where m is
the number of particles on a triangle. The results are used in the proof
of π -flux hexagon-triangle model in Appendix E.

m εF
�(m) εB

�(m)

1 −t + 2t ′ −t − 2t ′

2 −2t + 4t ′ −t − 4t ′

3 6t ′ −6t ′

APPENDIX E: COUPLED TRIANGLES

The second example to show the natural inequality is
reversed in coupled rings as in Sec. IV B is the π -flux hexagon-
triangle lattice, which is shown in Fig. 11(a). This is actually a
breathing kagome lattice. In the vanadium oxyfluoride com-
pound (NH4)2[C7H14N][V7O6F18](DQVOF), the V4+ ions
realize a breathing kagome lattice [51], topological equivalent
to the hexagon triangle as we discussed here. One unit cell is
shown in green in Fig. 11(a), with basis vectors �a1 = (0,1) and
�a2 = (1/2,

√
3/2). The Hamiltonian is defined as

H = −t
∑

〈i,j〉∈thick, oriented

eiπ/3c
†
i cj − t ′

∑
〈i,j〉∈broken

c
†
i cj + H.c.,

(E1)

where “thick, oriented” and “broken” links are specified
in Fig. 11(a). This model can be regarded as triangles
with π flux, coupled by weak hopping t ′. To obtain a
lower bound for the ground-state energy of bosons and an
upper bound for that of fermions, the Hamiltonians are
written as HF = ∑

� hF
� − A and HB = ∑

� hB
� + B with

the same definitions of A and B in Eqs. (22) and (23),
where hF

� = −t
∑3

i=1(eiπ/3c
†
i ci+1 + H.c.) + 2t ′

∑3
i=1 c

†
i ci

π π

ππ

(a) (b)

(c)

FIG. 11. (a) π -flux hexagon-triangle lattice, in which a unit cell
is shown in green. (b) The first Brillouin zone. The basis vectors are
denoted by �b1 and �b2. (c) Dispersions of the lowest two bands with
t = 1, t ′ = 0.2.

and hB
� = −t

∑3
i=1(eiπ/3c

†
i ci+1 + H.c.) − 2t ′

∑3
i=1 c

†
i ci , the

cluster Hamiltonians defined on a solid-line pointing up
triangle. Therefore, we have EB

0 � ∑
�i

εB
�i

, EF
0 � ∑

�i
εF
�i

.
The ground-state energies in given m-particle sectors are
displayed in Table V in Appendix D. A lower bound for
bosons is now given by EB

0 � −N (t + 4t ′) when t ′/t � 1
2 or

EB
0 � −6Nt ′ when 1

2 < t ′/t < 1, where N is the number of
unit cells. An upper bound for fermions is given by ẼF

0 , which
also depends on the density pattern on the whole lattice. At
2
3 filling, we find EF

0 � −2N (t − 2t ′)N . According to the
results of exact diagonalization on a cluster, we find when
t ′/t < 1

8 , EB
0 � −N (t + 4t ′) > −2N (t − 2t ′) � EF

0 . Thus,
the reversal of the inequality is proved.

The second approach for the ground-state energy of
fermions is based on an exact evaluation. The dispersion
relations are (t = 1 is assumed)

E(1) = 1
2 (1 − t ′ −

√
9(t ′)2 + 6t ′ + 9 + 8t ′�(�k)),

E(2) = t ′ − 1,

E(3) = 1
2 (1 − t ′ +

√
9(t ′)2 + 6t ′ + 9 + 8t ′�(�k)),

where �(�k) = cos k1 + cos k2 − cos k3, k1,2 = �k · �a1,2 and
k3 = k1 − k2. The ground-state energy of fermions at 2

3 filling
is given by the integral of the lowest two bands in the Brillouin
zone, which is shown in Fig. 11(c):

EF
0 =

∑
kx ,ky

[E(1)(kx,ky) + E(2)]

=
√

3N

2

∫∫
BZ

dkx

2π

dky

2π
[E(1)(kx,ky) + E(2)], (E2)

where kx,y ∈ BZ as shown in Fig. 11(b). The basis
vectors �b1 and �b2 are chosen accordingly as 2π (1,

− 1/
√

3) and 2π (0, 2/
√

3), respectively. The reversed nat-
ural inequality holds when t ′ � t . For example, when t =
1 and t ′ = 0.1, EB

0 � −1.4N > EF
0 = −2.004 349N ; when

t ′ = 0.2, EB
0 � −1.8N > EF

0 = −2.017 037N .

APPENDIX F: OPTIMAL LOWER BOUND OF FILLING
FRACTION OF THE VIOLATION IN DELTA-CHAIN

MODEL

Let us improve the estimate of the range of the filling
fraction, for which the violation of Eq. (1) occurs on the
delta-chain model, as discussed in Sec. IV D. Our result is that
the violation occurs, namely the reversed inequality EB

0 > EF
0

holds, for 1
4 < ν � 1

2 . In fact, in this range of filling, the
ground-state energy of bosons is strictly positive while the
ground-state energy of fermions is zero.

To prove this, consider the Bose-Hubbard model (without
hard-core constraint) with finite onsite U > 0 in the enlarged
Hilbert space first:

H = Hhop + Hint,

Hhop =
N∑

j=1

a
†
j aj ,

Hint = U
2

2N∑
i=1

ni(ni − 1),
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FIG. 12. Schematic figure of mapping to particle configurations
in one-dimensional chain with nearest-neighbor exclusion. Localized
zero-energy states (valley states) are shown in blue lines.

where ni = c
†
i ci , and [ci,c

†
j ] = δij for bosons. The definition

of a operator is the same as aj = c2j−1 + √
2c2j + c2j+1. The

hard-core constraint can be implemented by taking U → ∞,
and this problem is reduced to Eq. (35) in this limit.

Obviously, the hopping term Hhop is positive semidefinite.
The onsite interaction, U term, is also positive semidefinite be-
cause U

2 ni(ni − 1) = U
2 c

†
i c

†
i cici for bosons. As a consequence,

none of the eigenvalues can be negative. Therefore, any state
with EB = 0 is a ground state. If such a ground state |�GS〉
exists, it satisfies

Hhop|�GS〉 = Hint|�GS〉 = 0, (F1)

namely, |�GS〉 a simultaneous zero-energy ground state ofHhop

and Hint. Therefore, we first seek zero-energy ground states of
Hhop and Hint, separately.

Localized-electron states are discussed in the field of flat-
band ferromagnet of Fermi-Hubbard model [41,42,46,52]. We
can construct the localized state for bosons in a similar way.
Consider the zero-energy ground state of Hhop first. Define
the b operator as bj = c2j − √

2c2j+1 + c2j+2. Because b

operators commute with any a operator, [ai,b
†
j ] = 0 for any

i and j , the single-particle flat band with EB
0 is spanned by

b
†
j |0〉. Note that these states b

†
j |0〉 are linearly independent but

not orthogonal to each other. The zero-energy state (valley
state) b

†
j |0〉 is shown in Fig. 12 by blue lines. It is the first

excited state of spin- 1
2 antiferromagnetic Heisenberg model

near saturation field, with single magnon trapped in the valley
of the delta chain [43–45]. The current setup corresponds to
the magnetic field exactly at the saturation field, so that these
trapped magnons are exactly at zero energy. The ground state
of Hhop can be constructed out of b operators as∣∣�B

0

〉 =
∑

{n1,...,nN }
f (n1, . . . ,nN )(b†1)n1 (b†2)n2 . . . (b†N )nN |0〉,

(F2)

where nj = 0,1,2, . . . and f (n1, . . . ,nN ) is the coefficient. It
is easy to confirm Hhop|�B

0 〉 = 0, by using the commutation
relation [ai,b

†
j ] = 0.

Now, we require those zero-energy ground states (F2) of
Hhop to satisfy Hint|�B

0 〉 = 0. This is equivalent to require
cici |�B

0 〉 = 0, which imposes restrictions on the coefficients
f (n1, . . . ,nN ). We first note that

c2
2j+1

∣∣�B
0

〉 =
∑

{n1,...,nN }
2nj (nj − 1)f (n1, . . . ,nN )

×(b†1)n1 . . . (b†j )nj −2 . . . (b†N )nN |0〉. (F3)

Then, the linear independence of b operators, together with
c2

2j+1|�B
0 〉 = 0, implies that f (n1, . . . ,nN ) = 0 if there exists

j such that nj > 1. We thus restrict our attention to the case
where nj = 0 or 1 for all j in the sum. We successively
find

c2
2j

∣∣�B
0

〉 =
∑

{n1,...,nN }
2nj−1njf (n1, . . . ,nN )

×(b†1)n1 . . . (b†j−1)nj−1−1(b†j )nj −1 . . . (b†N )nN |0〉,
(F4)

where nj = 0 or 1 has been applied. From the linear in-
dependence of b operators and c2

2j |�B
0 〉 = 0, we see that

f (n1, . . . ,nN ) = 0 if there exists j such that njnj−1 �= 0. This
implies that, for bosons, in the construction of the zero-energy
ground state, b† operators on adjacent valleys cannot be applied
on the vacuum |0〉. Thus, the zero-energy ground states are
in one-to-one correspondence with particle configurations in
one-dimensional chain with nearest-neighbor exclusion. This
mapping is schematically shown in Fig. 12. In the range
ν � 1

4 , we can find a particle configuration that satisfies
the exclusion rule. However, in the case ν > 1

4 we cannot
find such configuration, implying the absence of zero-energy
state.

The zero-energy ground states remain as ground states for
any U > 0, and hence in the limit U → ∞. Since the onsite
U term is positive semidefinite, no state joins the zero-energy
sector with increasing U . Therefore, the ground-state energy
of hard-core bosons (corresponding to infinite U ) is strictly
positive in the range of filling ν > 1

4 .

On the other hand, for fermions, {ai,b
†
j } = 0 holds for any i

and j . The zero-energy state for fermions in the range of filling
fraction ν � 1

2 can also be constructed by b operators,∣∣�F
0

〉 =
∑

{n1,...,nN }
f (n1, . . . ,nN )(b†1)n1 (b†2)n2 . . . (b†N )nN |0〉,

(F5)

where nj = 0, 1. It is easy to confirm that this is the zero-
energy state of H because Hhop|�F

0〉 = 0, and Hint vanishes.
We conclude the reversed inequality EB

0 > EF
0 holds in the

range 1
4 < ν � 1

2 .
From the above analysis, it also follows that both bosonic

and fermionic systems have exactly zero-energy ground states
for ν � 1

4 . Thus, the lower bound of the range of the filling

FIG. 13. One example of uncontractible cycle sets on honeycomb
lattice, which is constituted by two uncontractible cycles.
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fraction for the reversed inequality to hold, 1
4 , is in fact

optimal.
An argument similar to the above for the delta-chain

model can be employed for the kagome lattice, to extend
the range of filling fraction where the natural inequality is
violated. The zero-energy states for the kagome lattice (the line
graph of honeycomb lattice) are in one-to-one correspondence
with uncontractible cycle sets on the honeycomb lattice, as

defined in Ref. [53] in terms of graph theory. An example
of uncontractible cycle sets is shown in Fig. 13. It can then
be deduced that the zero-energy states exist for ν � 1

9 . The
uncontractible cycle sets are given by close-packed hard
hexagons [43,44,53] at the critical value ν = 1

9 , and do not
exist for ν > 1

9 . Therefore, the range of filling fraction in
which EB

0 > EF
0 holds on the kagome lattice, is extended to

1
9 < ν � 1

3 .
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