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Density functional theory (DFT) exploits an independent-particle-system construction to replicate the densities
and current of an interacting system. This construction is used here to access the exact effective potential and
bias of nonequilibrium systems with disorder and interactions. Our results show that interactions smoothen the
effective disorder landscape but do not necessarily increase the current due to the competition of disorder screening
and effective bias. This puts forward DFT as a diagnostic tool to understand disorder screening in a wide class of
interacting disordered systems.
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I. INTRODUCTION

How disorder and electron correlations shape material
properties is a major question of current condensed-matter
research [1]. The interest in this problem is many decades old
[2–8], and significant progress has been made in important
directions, e.g., in describing the correlation-induced Mott-
Hubbard [9] and the disorder-induced Anderson [10] metal-
insulator transitions. Yet a complete general understanding of
the joint effect of interactions and disorder remains elusive to
this day.

Advances in ultracold-atom experiments [11,12] have
boosted interest in scenarios where disorder and interactions
are simultaneously important and new implications emerge
from their interplay. An example of recently observed phe-
nomena [13] is many-body localization (MBL) [14,15], a new
experimental and theoretical paradigm in which several notions
of many-body physics blend coherently [16]. In fact, MBL is
part of a broad palette of situations. For example, disorder or in-
teractions alone can produce insulating behavior, but between
these limits, how they simultaneously affect conductance is not
fully settled [17–23]. In equilibrium, interactions can increase
or decrease conductivity in a disordered system [21,24,25].
Out of equilibrium, results for quantum rings [26] and quantum
transport setups [27] suggest that at fixed disorder strength the
current depends nonmonotonically on interactions.

To facilitate the description of disordered and interacting
systems, it would be useful to have a simple picture. A recent
example in this direction was the investigation of a reduced
quantity, the one-body density matrix, that established a link
between MBL, Anderson localization, and Fermi-liquid-type
features in closed systems [28,29]. Another possible reduced
description would be in terms of an independent-particle
Hamiltonian. In a traditional mean-field-intuitive description
of disorder vs interactions [22], the low-energy pockets of
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the rugged potential landscape attract high particle density,
but this is opposed by interparticle repulsion, resulting in a
flatter effective potential landscape; that is, disorder is screened
by interactions. It is not unambiguous how to define such a
potential, and different conclusions have been reached in the
literature [26,30,30–34]. The question is even more delicate
for open systems, where typical localization signatures are
unavailable [35]. As such, a simple, rigorous picture valid also
in the presence of reservoirs is of utmost importance.

Motivated by these arguments, we introduce here a picture
of disorder and interactions based on the Kohn-Sham (KS)
independent-particle scheme [36] of density functional theory
(DFT) [37,38]. In DFT, the exact density of the interacting
system can be obtained from a KS system subjected to an
effective potential veff (Fig. 1). For the density, veff is the
best effective potential in an independent-particle picture. We
propose that veff can be identified as the independent-particle
effective energy landscape in a disordered and interacting
system, which unambiguously defines disorder screening. To
assess disorder screening for conductance and currents, we
consider out-of-equilibrium systems. In extending DFT to
nonequilibrium, we also have to include the notion of an
effective bias [39–41].

Our main findings are the following: (i) Interactions
smoothen the effective landscape seen by the electrons (we
interpret this as disorder screening). (ii) A nonmonotonic
dependence of the current on the interaction strength cannot
be explained by disorder screening alone; an “effective bias”
(corresponding to a screening of the applied bias due to electron
correlations) has to be taken into account. (iii) The picture from
points (i) and (ii) applies to both isolated and open systems and
to different dimensionality. (iv) More generally, our work paves
the way to a rigorous understanding of the notion of effective
disorder [42] in a variety of situations, including open systems
in and out of equilibrium, a topic which is the object of recent
and fast-growing interest [35,43–45].

Systems considered. In this work, we focus on the transition
from the weakly to the strongly correlated regime and consider
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FIG. 1. Many-body and corresponding Kohn-Sham systems for
rings and 2D quantum transport setups. The interaction U , the
one-body potentials {vi}, and KS potentials {veff,i} are shown at
representative sites.

a single disorder strength. This specific choice is enough to
display how the competition of disorder and interaction is
captured within a DFT picture. We study quantum rings pierced
by magnetic fields and electrically biased quantum-transport
setups (Fig. 1). Both situations show the aforementioned
current crossover as a function of the interaction strength.
The rings are solved numerically exactly, while for quantum
transport we use the nonequilibrium Green’s function (NEGF)
formalism within many-body perturbation theory [46–51] to
obtain steady-state currents and densities. The effective poten-
tials and biases were found via a numerical reverse-engineering
algorithm [41] within nonequilibrium lattice DFT [52,53].

II. QUANTUM RINGS

We study disordered Hubbard rings with L = 10 sites and
N electrons that are spin compensated, i.e., N↑ = N↓ = N/2.
Currents are set by a magnetic field threading the rings via the
so-called Peierls substitution [54,55]. The Hamiltonian is

Ĥ = −T
∑

〈mn〉σ
ei

φ

L
xmn ĉ†mσ ĉnσ +

∑
mσ

(
vm+ U

2
n̂m,−σ

)
n̂mσ , (1)

where ĉ
†
mσ creates an electron with spin projection σ = ±1 at

site m. n̂mσ = ĉ
†
mσ ĉmσ is the density operator, and 〈· · · 〉 denotes

nearest-neighbor sites. φ is the Peierls phase, and xmn = ±1
depending on the direction of the hop from m to n. U is
the on-site interaction. We consider on-site energies with box
disorder of strengthW withvm ∈ [−W/2,W/2]. In passing, we
note that Peierls phases can be realized experimentally in cold
atoms by artificial gauge fields [56]. We study currents in ring
regimes via exact diagonalization, obtaining the many-body
ground-state wave function |ψ(φ)〉 and the corresponding
density matrix ρmn = 〈ψ(φ)|ĉ†nσ ĉmσ |ψ(φ)〉. This gives the
density at site m as nm = 2ρmm and the bond current as
Im+1,m = −4T Im [eiφ/Lρm,m+1]. As we are in a steady-state
scenario, all nearest-neighbor bond currents are equal, and the
current I ≡ Im+1,m for any lattice site m.

The corresponding effective KS Hamiltonian is [57,58]

ĤKS = −T
∑

〈mn〉σ
ei

φKS

L
xmn ĉ†mσ ĉnσ +

∑
mσ

vKS
m n̂mσ . (2)

The L + 1 effective parameters (vKS
m ,φKS) are found

by solving the KS equations (T + vKS)ϕν = εvϕν , where

(T )mn = −T ei
φKS

L
xmn for nearest neighbors and zero oth-

erwise and (vKS)mn = δmnv
KS
m . Imposing that the KS den-

sity nm = 2
∑N/2

ν=1 |ϕν(m)|2 and KS bond current I =
−4T

∑N/2
ν=1 Im [eiφKS/Lϕ∗

ν (m + 1)ϕν(m)] equal those from the
original interacting system determines (vKS

m ,φKS). No physical
meaning should be a priori given to the KS orbitals ϕν or the KS
eigenvalues εν ; they pertain to an auxiliary system giving the
exact density and current but not necessarily other quantities.

The KS potential, referred to as veff hereafter, is our
proposed measure of disorder screening. It can be split into
external (disorder) and Hartree-exchange-correlation parts:
veff = v + vHxc (similarly, φeff ≡ φKS = φ + φxc). Thus, in
DFT, the screening of disorder by interactions (i.e., when
|veff| < |v|) comes from vHxc. This is an improvement over
standard mean-field descriptions, in which the effective po-
tential does not include correlations and the applied phase is
unscreened.

Both veff and φeff are obtained by mapping the exact
many-body ring system into a DFT-KS one. In lattice models,
existence and uniqueness issues for such a DFT-based map can
occur [52,53,57,59–62]. Of relevance here, φ and φ + 2πkL

(where k is an integer) give the same current (uniqueness issue);
this periodicity also implies that the magnitude of the current
has an upper bound (existence issue). Further, a noninteracting
(or described within KS-DFT) homogeneous ring has energy
degeneracy for even Nσ (the degeneracy is lifted by many-body
interactions).

To circumvent these occurrences, we choose Nσ to be odd to
avoid degeneracies. Furthermore, we fix −π/L < φeff � π/L

in the reverse-engineering scheme. However, even with this
restriction, two different phases can yield the same current.
Practically, we consistently choose the region for φeff that
smoothly connects to φ for small U . Finally, in practice the
“maximal current” existence issue is largely mitigated since
the target current comes from a physical many-body system.

In the numerical reverse-engineering implementation of
the DFT map, φeff and veff are recursively updated until the
interacting many-body (MB) system and the KS system have
the same current and density. Using exact diagonalization,
we obtain the exact many-body density nMB and current IMB.
These quantities are then used as input to obtain φeff and veff

according to the protocol [41]

v
(k+1)
eff = v

(k)
eff + α1

(
n

(k)
KS − nMB

)
for all sites, (3)

φ
(k+1)
eff = φ

(k)
eff − α2

(
I

(k)
KS − IMB

)
, (4)

where (k) denotes the kth iteration and α1,α2 < 1 are conver-
gence parameters.

A. Quantum rings: Results

We consider two electron concentrations: half filling (HF,
N↑ = 5), and near quarter filling (NQF, N↑ = 3). Furthermore,
we take T = 1, i.e., the energy unit.

For reference, we start our discussion with homogeneous
rings (i.e., vi = 0, which gives a constant density ni = N/L

and a constant veff). In Fig. 2, we show HF and NQF currents
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FIG. 2. Current I and KS phase φeff in a ten-site homogeneous
ring with density n = 3/5 (NQF) and n = 1 (HF).

and the corresponding φeff as a function of the interaction
U for fixed external phase φ = −0.5. Both HF and NQF
currents I decrease monotonically with U but tend to zero
and nonzero values, respectively. This is consistent with Mott
insulator behavior at HF and metallic behavior otherwise for
the infinite (L → ∞) one-dimensional Hubbard model [63].
The homogeneity singles out the importance of the effective
phase. The KS orbitals are plane waves for any value of U , and
as such, the current is determined solely by φeff. This shows the
importance of the effective phase in our Hamiltonian picture
and highlights that standard mean-field descriptions, which
yield φeff = φ, cannot capture the correct physics.

We now address the effect of disorder in rings. We use M =
150 box-disorder configurations. For a given configuration, the
spread �X of a quantity X over the L = 10 sites is measured
by

(�X)2 = 1

L

L∑
m=1

(X̄ − Xm)2, X̄ = 1

L

L∑
m=1

Xm. (5)

Results are presented for (i) histograms collecting data from
each disorder configuration and (ii) arithmetic averages over
all M configurations. We examine the dependence on the
interactions U of the current I , φeff, �n, and �veff. The latter
is a measure of disorder screening (in the homogeneous case,
�veff = 0 for all U ).

With disorder (W = 2), for both NQF and HF the current I

is hindered by disorder at low U and by interactions at large U ,
with a maximum in between (Fig. 3). As for W = 0 (Fig. 2), for
HF I vanishes at very large U . The nonmonotonic behavior of
I results from competing disorder and interactions [21,26,27].
Conversely, the density spread �n decreases monotonically as
a function of U at both NQF and HF; that is, interactions favor a
more homogeneous density. For NQF, �n seems to tend to a
finite value for large U , while for the HF case, �n → 0, i.e.,
a fully homogeneous density.

In the KS system, �veff also decreases monotonically as a
function of U , tending to a finite value for NQF and to zero
for HF. This means that, as for the density, the exact veff for
a strongly correlated system is smoother than for a weakly
correlated system. Thus, we cannot simply look at the spread of
the density to predict the current through the system: Including
the effective phase is crucial.

The competition of disorder and interactions thus translates
into a competition of a decreasing effective potential spread
(favoring the current) and a decreasing effective phase (re-
ducing the current). Standard mean-field treatments [26] and
DFT treatments [64] in the local-density approximation fail
to explain the current drop since they take only the effective
potential into account: With an effective potential and no
effective phase, interactions can only increase the current and
not decrease it. This ends our discussion on exact treatments
of quantum rings.
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FIG. 3. Disorder vs interactions in ten-site rings near quarter filling (NQF, N = 6) and at half filling (HF, N = 10) for W = 2, φ = −0.5.
For �veff, histograms and disorder averages are shown. For φeff, I and �n disorder averages are reported.
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III. OPEN SYSTEMS

We study short clusters connected to semi-infinite leads,
with the Hamiltonian

Ĥ = ĤC + Ĥl + ĤCl, (6)

where C, l, and Cl label the cluster, lead, and cluster-lead-
coupling parts, respectively. With the same notation as for
rings,

ĤC = −T
∑

〈mn〉∈C,σ

ĉ†mσ ĉnσ +
∑
mσ

vmn̂mσ + U
∑
m

n̂m↑n̂m↓.

(7)

As in the case of the quantum rings, we consider box disorder,
vm ∈ [−W/2,W/2]. Depending on the cluster dimensionality,
the leads are either one-dimensional (1D; chain) or two-
dimensional (2D; strip) semi-infinite tight-binding structures.
The latter case is shown in Fig. 1. The lead Hamiltonian is
Ĥl = ∑

α Ĥα , and α = r (l) refers to the right (left) contact:

Ĥα = −T
∑

〈mn〉∈α,σ

ĉ†mσ ĉnσ + bα(t)N̂α. (8)

Here, bα(t) is the (site-independent) bias in lead α, and N̂α =∑
m∈α,σ n̂mσ is the number operator in lead α. Finally, the

lead-cluster-coupling ĤCl connects the edges of the central
region to the leads (Fig. 1) with tunneling parameter −T .
In the following, we put T = 1, which defines the energy
unit. We focus on the steady-state scenario with br (t) = 0 and
bl ≡ bl(t → ∞) = 1, beyond the linear regime. Our 1D and
2D clusters have L = 10 sites but are large enough to illustrate
the relevant physics and the scope of a DFT perspective.
Also, we put n↑ = n↓ = n (nonmagnetic case) and set the
temperature to zero.

A. Steady-state Green’s functions

Both our MB and KS treatments of open systems are based
on NEGF in its steady-state formalism. Thus, we keep our
presentation general and later specialize to MB or KS. To
describe the steady-state regime, we use retarded [GR(ω)] and
lesser [G<(ω)] Green’s functions:

GR(ω) = [ω1 − T − v − �R(ω)]−1, (9)

G<(ω) = GR(ω)�<(ω)GA(ω). (10)

Here, boldface quantities denote L × L matrices in site indices
of the cluster region. GA = (GR)† is the advanced Green’s
function, (T )mn = Tmn is the kinetic term of Eq. (7), and v is not
specified yet. The self-energy � contains MB and embedding
(emb) parts: �R/< = �

R/<

MB + �
R/<

emb . All correlation effects
are contained in the many-body self-energy �

R/<

MB , while the
embedding term accounts in an exact way for the left (l) and
right (r) leads [65]: �

R/<

emb = ∑
α=l,r �R/<

α . More explicitly,
�<

α (ω) = ifα(ω)�α(ω), where�α = −2 Im [�R
α ] and fα(ω) =

θ (−ω + μ + bα). Thus, information about the actual structure
of the leads, the bias bα , and the chemical potential μ enters
via fα and �R

emb. Explicit expressions of �R
emb exist for 1D and

2D [66] semi-infinite leads since they are determined by the
uncontacted-lead case.

For our system, the steady-state particle density and current
are spin independent. In each spin channel [67], with Il being
the left lead current and the spin labels omitted,

nk =
∫ ∞

−∞

dω

2πi
G<

kk(ω), (11)

Il =
∫ ∞

−∞

dω

2πi
Tr{�l(ω)[G<(ω) − 2πifl(ω)A(ω)]}, (12)

where the spectral function is 2π A = i(GR − GA). Both the
interacting MB system and the KS system are described by
Eqs. (9)–(12). We now specialize the discussion to the separate
cases.

1. The interacting MB system

Here, (v)ij = δij vi are the disordered on-site energies, and
bα is the applied bias. While the NEGF formalism provides
a formally exact description for open systems, in practice
the MB self-energies �

R/<

MB need to be approximated. We
consider the self-consistent �

R/<

MB = �
R/<

MB [GR,G<] second
Born approximation [27,65,68,69], keeping all diagrams up
to second order. While the numerical details depend on the
chosen approximation, our conclusions do not, as discussed
in more detail below. We solve the equations self-consistently,
with the convergence rate improved with the Pulay scheme
[69,70]. Fully self-consistent NEGF calculations guarantee the
satisfaction of general conservation laws [71,72], in particular
the continuity equation [73]. In the context of steady-state
transport, the continuity equation leads to the condition that
Il = −Ir ≡ I .

2. The independent-particle KS system

Being an independent-particle system, �R/<

MB = 0. Thus, the
KS system is described exactly by steady-state NEGF. Further,
(v)ij ≡ δij vi,eff and bα ≡ beff,α are found iteratively to make
the KS and MB density and current the same [41]. The same
iteration protocol as for the quantum rings was used, Eqs. (3)
and (4), replacing φeff with beff. The embedding self-energies in
the KS and MB systems differ only by the bias (effective in KS,
applied in MB). We restrict beff,r = 0 and define beff = beff,l .

The KS independent-particle scheme permits us to write
the Meir-Wingreen formula, Eq. (12), in the Landauer-Büttiker
form I = ∫ μ+beff

μ
dω
2π
TKS(ω), with TKS = Tr[�l GR�r GA] be-

ing the KS transmission function. Although recast in
a Landauer-Büttiker form used for independent-particle
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FIG. 4. Density n, effective potential veff, effective bias beff, and
current I (multiplied by 4 for convenience) for a specific one-
dimensional disordered wire with W = 2 and bias b = 1 for U = 0
and 6.
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FIG. 5. Histograms of �n, �veff, I , and beff and their arithmetical averages (dots) for the 2D quantum transport system of Fig. 1 with
disorder strength W = 3 and bias b = 1. The corresponding statistical errors σx = x̄√

M
are comparable to or smaller than the dot sizes and thus

are not shown. Results for the 1D open system exhibit similar trends.

systems, we stress that the KS current still equals the true
current of the original interacting system.

B. Open systems: Results

In the following, we put μα = 0 (half-filled leads). To
address the behavior of veff in quantum transport setups, we
find it useful to start with one disorder configuration and
two interaction values for a biased ten-site one-dimensional
chain (Fig. 4). At U = 0, the density nk is nonuniform since
veff = v and beff = b. For U = 6, both nk and veff (now in-
corporating correlations) become smoother: Interactions thus
provide a smoother energy landscape also for open systems.
However, IU=6 < IU=0, even if the effective energy landscape
is smoother. This is due to beff, which at U = 6 is much smaller
than b [40,41,74].

To corroborate this analysis, we consider the 2D open
system of Fig. 1. Results from 150 disorder configurations for
�n, �veff [defined as for rings, Eq. (5)], I , and beff are shown
in Fig. 5 [75].

The current through the system is a nonmonotonic function
of U , while �n and �veff decrease monotonically. At low U ,
beff almost equals b, and I increases since �veff decreases. At
larger U , however, the drop in beff grows, and I is smaller.
This is why I shows a crossover. Thus, the competition
between disorder and interactions in open systems transfers to
a competition between the smoothness of the energy landscape
favoring current flow and screening of the effective bias

hindering such flow. We have performed the same analysis
for one-dimensional linear chains, with the same qualitative
results (not shown).

While the second Born approximation is quite accurate
at low interaction strengths [68,76,77], one can, of course,
question the quantitative agreement for higher interaction
strengths. We find no reason to question the qualitative results
of the approximation, however, since the behavior is similar
for the quantum rings, which were treated exactly, and also
other calculations suggest similar conclusions [21,24,25]. In
order to further confirm the aforementioned qualitative be-
havior, we also performed calculations for selected disorder
configurations (not shown) using the T -matrix approximation
[68,78–80], which takes higher-order processes into account
in the self-energy. For all interaction strengths considered in
this work, we found the same qualitative behavior as for the
second Born approximation.

IV. CONCLUSIONS

We introduced an exact independent-particle characteriza-
tion of coexisting disorder and interaction effects based on
density-functional theory (DFT). Its scope as a diagnostic for
disorder screening was shown for open-sample geometries
and small quantum rings. The many-body treatment of the
quantum rings was exact, which allowed us to unambiguously
characterize disorder screening. For open systems, where no
exact solutions are available, we used nonequilibrium Green’s
functions (NEGF) with biased reservoirs treated exactly and
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electronic correlations treated via the second Born approxima-
tion. We stress that the use of an approximation was simply an
expedient way to provide an input to our reverse-engineering
algorithm; more sophisticated methods can, of course, be used
for the same purpose.

Our DFT-based analysis consistently shows that interac-
tions smoothen the energy landscape in disordered systems out
of equilibrium for both closed quantum rings and open one-
and two-dimensional quantum transport systems. In line with
earlier qualitative pictures from the literature, it is tempting to
think that the spread in the effective potential or the density can
be taken as a measure of the conductance of a system. That is
not the case, as this picture is not accurate enough to explain
the nonmonotonic behavior for the current when changing the
interaction strength. To make the picture complete, the effec-
tive bias (phase) has to be taken into account. The fact that the
quantum rings and the one-dimensional and two-dimensional
quantum transport systems yield the same behavior reinforces
our conclusions that the independent-particle picture is general
and can be applied to a wide range of systems.

Based on this interpretation, we can provide a simple
explanation of why mean-field theories can predict a too
high current in disordered systems. These methods neglect
the correlation screening of the disordered potential and fully
neglect the screening of the applied bias. To improve the
picture, correlation effects need to be added.

To conclude, within our Hamiltonian independent-particle
picture, strong correlation effects are behind the appearance
of the effective potential and bias, and this is the essence of
disorder screening. As possible extensions of our approach,
we mention applications to real materials and the general-
ization to finite temperatures [81] to describe, for example,
the many-body localized regime. These are deferred to future
work.
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