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A honeycomb hexagonal metallic lattice is equivalent to a triangular atomic one and cannot create Dirac
cones in its electromagnetic wave spectrum. We study in this work the low-frequency electromagnetic band
structures in isogonal hexagonal metallic lattices that are directly related to the honeycomb one and show that
such structures can create Dirac cones. The band formation can be described by a tight-binding model that allows
investigating, in terms of correlations between local resonance modes, the condition for the Dirac cones and the
consequence of the third structure tile sustaining an extra resonance mode in the unit cell that induces band shifts
and thus nonlinear deformation of the Dirac cones following the wave vectors departing from the Dirac points.
We show further that, under structure deformation, the deformations of the Dirac cones result from two different
correlation mechanisms, both reinforced by the lattice’s metallic nature, which directly affects the resonance
mode correlations. The isogonal structures provide new degrees of freedom for tuning the Dirac cones, allowing
adjustment of the cone shape by modulating the structure tiles at the local scale without modifying the lattice
periodicity and symmetry.
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I. INTRODUCTION

Artificial graphenes mimic the electronic band structures of
atomic lattices by creating Dirac conical singularities in their
dispersion relations [1]. Many such systems, involving various
mechanisms, have been reported, including semiconductor
[2] and molecular [3] honeycomb structures confining two-
dimensional electron gases, cold atoms trapped in honeycomb
optical lattices [4,5], polaritons excited in a honeycomb lattice
of coupled micropillars [6], photon-phonon polaritons excited
on a honeycomb lattice in an optomechanical crystal [7], pho-
tonic crystals of hexagonal [8] and honeycomb [9] dielectric
structures, honeycomb arrays of solid [10] and hollow [11]
cylinders controlling acoustic waves propagations, etc. Collec-
tive plasmon modes in honeycomb lattices of metallic particles
have also been proposed [12,13]. Artificial graphenes enable
us to probe Dirac-cone-related physical properties inaccessible
in atomic structures, allowing structure configurations and
modulations difficult to realize in the latter, and have potential
application in material design. As one class of such systems,
photonic crystals can be coupled to the electromagnetic (EM)
emissions and affect their dispersion relations, allowing us
to optically probe the properties of Dirac cones. Various
phenomena have been studied, such as conical diffraction, gap
solitons, pseudodiffusive transmission, the quantum Hall-like
effect, and the zero refractive index [14–17].

Dirac cones can emerge in triangular [15,16,18], honey-
comb [14,15], and square [17] lattices in dielectric photonic
structure, where the cone formation can be described by a
nearly-free-photon approximation [8]. Concerning the metallic
photonic structures, Dirac cones have been, until now, found in
triangular lattices [19,20] rather than in the honeycomb one. In
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fact, a honeycomb metallic lattice is equivalent to a triangular
atomic one. Indeed, in a metallic lattice, the low-frequency EM
frequency bands are formed by local resonance modes confined
inside the structure tiles [21,22]. For a honeycomb lattice, the
local resonance modes follow the dual triangular distribution
and cannot create Dirac cones. However, for a triangular lattice,
the local resonance modes can be formed inside the triangular
tiles [20] and thus follow the dual honeycomb distribution.
Such a lattice is equivalent to a honeycomb atomic one, and
Dirac cones can emerge.

A honeycomb lattice can be modulated to form isogonal
hexagonal tilings [23] that contain two kinds of tiles, i.e.,
regular and isogonal hexagons, without changing the lattice
hexagonal symmetry. In this work we study the low-frequency
EM band structures in isogonal hexagonal metallic lattices and
show that such structures can create Dirac cones. We explore,
in the framework of a tight-binding (TB) model, the condition
of the Dirac cones in the presence of a third structure tile in
the unit cell in terms of the local resonance modes and their
mutual correlations and investigate the deformation induced
by the third mode in band structures departing from the Dirac
point. We discuss the band evolution following the structure
deformation and show that the Dirac cone undergoes deforma-
tions through two ways; both are related to the anisotropy in the
correlations, reinforced by the lattice’s metallic nature. Finally,
we discuss the consequences of various parameters controlling
the band structures in the vicinity of the Dirac point and show
that it is possible to adjust the Dirac cone shape by modulating
the relative sizes of the two kinds of tiles.

II. LOW-FREQUENCY BAND STRUCTURES

A. Structures and tiles

An isogonal hexagonal structure with unit-cell size a is
displayed in Fig. 1; it belongs to the symmetry group D6
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FIG. 1. An isogonal hexagonal tiling, constructed by tiles A and
B (B1 and B2). The unit cell, with parameter a, is delimited by dashed
lines. The relative sizes of these tiles, as well as the shapes of the B
tiles, can be modulated by varying l without changing a.

and is constructed by two kinds of tiles. The A tiles are
regular hexagons, whiles the B tiles (denoted by B1 and B2

for opposite orientations) are isogonal hexagons. By adjusting
the common edge length between two neighboring isogonal
hexagons, we can modulate the lattice pattern at the local scale
without changing the lattice periodicity and symmetry group.
Considering the edge length l between the tiles B1 and B2,
for l = a/3, all the tiles are regular hexagons, and we have
a hexagonal honeycomb tiling. Otherwise, the lattice remains
an isogonal tiling as long as a > l > 0. As a matter of fact, it
corresponds to the IG 92 tiling in the classification of Ref. [23].
Metallic cylinders, with radius r and the dielectric constant
set to negative infinity, are placed at the lattice nodes in an air
background to form the metallic lattices. The radius r is chosen
as one tenth of the hexagon’s long diagonal when l = a/3, i.e.,
r = a/15, corresponding to a filling rate of 9.67%.

The tiles are physically delimited by the metallic cylinders
at the vertices and show a cavitylike effect by confining
TM-polarized (electrical field perpendicular to the lattice
plane) EM resonance modes inside. Figure 2 displays the
lowest-frequency modes formed inside A and B1 tiles for
l = 0.31a, obtained by solving Maxwell’s equations for in-
dividual tiles using the finite-difference time-domain (FDTD)
method. These modes have an electrical-field maximum at the
tile center, with eigenfrequencies ωA and ωB1 = 1.1959 and
1.2781[ωa/(2πc)] and quality factors QA and QB1 = 128.3
and 142.5.

(a) (b)

FIG. 2. Electric-field distributions of the lowest-frequency TM
resonance modes formed inside individual (a) A and (b) B1 tiles for
l = 0.31a.
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FIG. 3. Diagrams of the first three bands for l = a/3, 0.31a, and
0.35a. The FDTD solutions are represented by various symbols, while
those obtained with the tight-binding model are shown by solid lines.

B. Numerical solutions

The EM frequency band diagrams for the first three bands
for the TM polarization are obtained by solving Maxwell’s
equations using the FDTD method and are displayed in Fig. 3.
Three l lengths, l = a/3, 0.31a, and 0.35a, are considered.

For l = a/3, the three band branches result from the folding
of a single band since the unit cell is a supercell containing three
identical hexagons in this configuration. The degeneracy is
partially lifted for l �= a/3, and the Dirac point KD is obtained
at theK point between the second and third bands for l = 0.31a

(<a/3) and between the first and second bands for l = 0.35a

(>a/3).
The electric-field distributions of the two bands concerned

at KD are displayed in Fig. 4, which shows that only the
resonance modes formed inside the isogonal hexagonal tiles
B1 and B2 (see Sec. II A) are involved at the Dirac point. It
is thus natural that the frequency level of the Dirac point is
lowered or raised following l. This is simply because the Dirac
point frequency is determined by the frequency level of the
resonance mode inside the B tiles that inversely scales with
the tile size (see Sec. II C).

C. Tight-binding description

In order to understand the contributions of different local
resonance modes in the Dirac cone formation, let us consider
the band structures in the framework of a TB model.

A TB description of the EM band structures in similar
structures based on local resonance modes inside the struc-
ture tiles has previously been discussed [22]. Here we in-
vestigate the Dirac cone formation and evolution, and we
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FIG. 4. Electric-field distributions of the two bands involved in
the Dirac point for (a) and (b) l = 0.31a and (c) and (d) l = 0.35a.
The plus and minus signs indicate the polarities.

consider the problem in a more general situation, where the
nonorthogonality between local modes should be taken into
account to describe the frequency band formation.

Recalling that, in a classical TB model [24], the crystal
wave function can be expressed as the sum of local mode wave

functions |φq〉 defined inside individual tiles,

|�k(r)〉 =
∑
m

eikRm

√
N

∑
q

bq(k)eikdp |φq(r − Rm − dq)〉, (1)

with
∑

m and
∑

q summing, respectively, over the unit cells
and over the modes inside the cell. The coefficient bq gives the
amount of the local mode |φq〉 in the crystal wave function.
In the present case, the local modes are the resonance modes
formed inside individual A and B1 (B2) tiles (see Sec. II A). |φq〉
corresponds to the electric-field distributions of these modes.

The crystal Hamiltonian can be written as H = H0 +
�U (r), with H0 = − c2

ε
∇2 being the Hamiltonian of an in-

dividual local mode and �U being the correction due to the
interactions with the other modes. c is the light velocity in
vacuum. ε stands for the dielectric constant of the medium
filling the tile. Its value is unity in the present case, where air
is chosen as the background.

We define the following terms:

αpq = 〈φp|φq〉, βq = −〈φq |�U (r)|φq〉,
γpq = −〈φp|�U (r)|φq〉. (2)

The overlap and energy integrals, αpq and γpq , describe,
respectively, the overlap and energy transfer between neigh-
boring modes, while the βq term describes the energy-level
shift of a local mode.

In the present case, due to the low filling rate, and thus
the large tile edge openings w′

1 (w′′
1 ) and w′

2 (w′′
2 ; Fig. 1), the

nonorthogonality between local modes cannot simply be ne-
glected, and the overlap integrals should be taken into account
to describe the entire band structure. Restraining the integrals
α and γ to those between the first-neighbor modes, the crystal
eigenfrequencies ωk are given by the characteristic equation

det

⎡
⎢⎣

ω2
A − βA − ω2

k −ξ
[
γAB1 − αAB1

(
ω2

B1
− ω2

k

)] −ξ ∗[γAB2 − αAB2

(
ω2

B2
− ω2

k

)]
−ξ ∗[γAB1 − αAB1

(
ω2

A − ω2
k

)]
ω2

B1
− βB1 − ω2

k −ξ
[
γB1B2 − αB1B2

(
ω2

B2
− ω2

k

)]
−ξ

[
γAB2 − αAB2

(
ω2

A − ω2
k

)] −ξ ∗[γB1B2 − αB1B2

(
ω2

B1
− ω2

k

)]
ω2

B2
− βB2 − ω2

k

⎤
⎥⎦ = 0, (3)

with

ξ = eikya/
√

3 + 2e−ikya/2
√

3cos(kxa/2) (4)

and ωA and ωB1(B2) being the eigenfrequencies of the resonance
modes in individual A and B1 (B2) tiles, |φA〉 and |φB1(B2)〉.
As a matter of fact, for symmetry reasons, it is not necessary
to distinguish B1 and B2 in Eq. (3). They will both be denoted
as B in the following.

The eigenfrequencies ωA and ωB can be obtained by solving
Maxwell’s equations using the FDTD method for individual
A and B tiles (see Sec. II A). The parameters α, β, and γ

can be obtained by fitting Eq. (3) with the FDTD curves. The
obtained values are listed in Table I. The same frequency bands
calculated with these parameters are also plotted in Fig. 3.
All the FDTD curves are well reproduced. Indeed, the band
structures are well described by the TB model.

We may observe in Table I the band parameter variations
following l. As a matter of fact, for l lower or greater than a/3,

the tile edge opening between the A and B tiles w′
1 (w′′

1 ) is
greater or lower than that between neighboring B tiles w′

2 (w′′
2 ;

see Fig. 1). As the neighbor distance remains unchanged, the
correlations between |φA〉 and |φB〉, αAB and γAB, are stronger
or weaker than those between neighboring |φB〉, αBB and γBB.
Concerning the mode frequencies, the size of the A tile is larger
or smaller than that of the B tile. As the resonance wavelength
scales with the tile size, ωA is lower or higher than ωB .

D. Band structures in the vicinity the Dirac point

At the K point, the off-diagonal elements in the matrix of
Eq. (3) all vanish. ω2

k takes the values ω2
A − βA and ω2

B − βB ,
the latter being a degenerate double root and corresponding to
the Dirac point frequency. The Dirac point is determined by
only the |φB〉 modes, without involving |φA〉. This corroborates
the electric-field distributions in Fig. 4.

The TB model allows further investigating the band struc-
tures in the vicinity of the Dirac point in the presence of
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TABLE I. The local resonance mode energy levels ω2, overlap integrals α, energy integrals γ , and energy-level shifts β for l = 0.31a, a/3,
and 0.35a. All the energy values are normalized according to (ωa/2πc)2.

l/a ω2
A ω2

B αAB αBB γAB γBB βA βB

0.31 1.4302 1.6336 0.0362 0.0243 0.0429 0.0289 0.0002 0.0057
1/3 1.5559 1.5559 0.0308 0.0308 0.0373 0.0373 −0.0001 −0.0001
0.35 1.6718 1.5116 0.0285 0.0390 0.0348 0.0443 0.0085 0.0019

|φA〉. As a matter of fact, for wave vector k in the vicinity
of the Dirac vector KD , ξ is weak, and the contribution of the
overlap integrals α to the band structure can be neglected. For
simplicity, we define

�ω2
AB = (

ω2
A − βA

) − (
ω2

B − βB

)
(5)

and

�Ek = ω2
k − (

ω2
B − βB

)
, (6)

where �ω2
AB represents the energy-level difference between

|φA〉 and |φB〉 and �Ek is the crystal energy level relative to
that of |φB〉.

Equation (3) can be rewritten as

det

⎡
⎢⎣

�ω2
AB − �Ek −ξγAB −ξ ∗γAB

−ξ ∗γAB −�Ek −ξγBB

−ξγAB −ξ ∗γBB −�Ek

⎤
⎥⎦ = 0, (7)

with its polynomial form being(
�ω2

AB − �Ek

)[
(�Ek)2 − |ξ |2γ 2

BB

] + 2|ξ |2γ 2
AB�Ek

− (ξ 3 + ξ ∗3)γ 2
ABγBB = 0. (8)

For sufficiently weak ξ , the last two terms on the left side of
Eq. (8) can be neglected. We get, close to KD ,

ω2
k = ω2

A − βA,ω2
B − βB ± |ξ |γBB. (9)

The Dirac band branches close to KD can be considered
to be essentially determined by the correlations between
neighboring |φB〉, with their slopes at KD determined by γBB

(normalized by 2ωB). The Dirac cones have an isotropic form
at KD .

For k departing from KD , the last two terms in Eq. (8)
become non-negligible. As a matter of fact, these terms lead
to band frequency shifts from those of Eq. (9) unless the band
branch is not coupled to |φA〉 (see below). As can be checked
in Eq. (8), the sign of the frequency shifts will depend on
that of �ω2

AB. For �ω2
AB < 0 (e.g., l = 0.31a), the Dirac band

branches will be shifted up, while, in the opposite case (e.g.,
l = 0.35a), they will be shifted down. In fact, the shift direction
is in agreement with the perturbation theory that interacting
bands repel each other.

The Dirac band shift effect due to the coupling with |φA〉
is illustrated in Fig. 5, where the Dirac band branches in the
vicinity of KD , along kKM and kK� , calculated using the TB
model [Eq. (3)] with αAB and γAB set to zero, together with the
FDTD solutions, are displayed. The FDTD and TB (αAB = 0,
γAB = 0) curves are tangent at KD , confirming the above dis-
cussion concerning the band slopes that are determined by γBB

at KD . The up- and downshifts of the band branches resulting
from the coupling with |φA〉 for larger �k can clearly be seen.

The shift magnitudes increase following �k, and the signs of
the shifts are also in agreement with the above discussion.

We note that the lower Dirac branches in the kKM direction
and the higher branches in the kK� direction remain unshifted.
To further investigate the involvements of |φA〉 and |φB〉 in the
band formation, let us consider the coefficients bq (k) in Eq. (1),
which give the contribution of each resonance mode to the
crystal wave function and can be obtained using the TB model
from the matrix in Eq. (3). Considering the bq(k) values along
kKM and kK� departing from KD , the absolute bq(k) values
at �k = 0.01(2π/a) and 0.1(2π/a) for the first three bands
are listed in Table II. We can see |qA| = 0 for both the lower
Dirac branches in the kKM direction and the higher branches in
the kK� direction. Indeed, these branches are formed by only
|φB〉 and are not coupled to |φA〉. Concerning the other band
branches, |bA| is much weaker than |bB | at �k = 0.01(2π/a).
This confirms that the Dirac bands are essentially formed
by |φB〉 close to KD . For larger �k, i.e., �k = 0.1(2π/a),
the |bA| values increase by one order of magnitude, and the
contributions of |φA〉 to the Dirac band branches are stronger,
corroborating the band shift increases.

E. Structure compression effect

Let us consider the Dirac cone evolution in the presence of
structure anisotropy in these lattices. We introduce a uniaxial

−0.02
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0.01
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0.1 0 0.1

0
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ω
k
−

√
ω

2 B
−

β
B

(ω
a
/
2π

c)

Δ
kK

Γ

ΔkKM

Γ

M

ΔkKM (2π/a) ΔkKΓ (2π/a)

FIG. 5. The Dirac band branches in the vicinity of KD (2π/3a,
2π/

√
3a) along kKM and kK� . The squares and diamonds represent

the results obtained with the FDTD method, while the dashed and
dash-dotted lines show the curves calculated using the TB model with
αAB and γAB set to zero for l = 0.31a and l = 0.35a, respectively.
The band frequencies are plotted in ωk −

√
ω2

B − βB for a direct
comparison between the two configurations.
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TABLE II. The absolute values of the coefficients bA and bB of Eq. (1) at different �kKM and �kK� (magnitude in units of 2π/a) for the
first three bands for l = 0.31 and 0.35a, obtained from the tight-binding model.

�kKM = 0.01 �kK� = 0.01 �kKM = 0.1 �kK� = 0.1

l/a Band |bA| |bB | |bA| |bB | |bA| |bB | |bA| |bB |
0.31 First 0.9999 0.0116 0.9999 0.0119 0.9906 0.0967 0.9831 0.1293

Second 0 0.7071 0.0168 0.7070 0 0.7071 0.1821 0.6953
Third 0.0163 0.7070 0 0.7071 0.1361 0.7005 0 0.7071

0.35 First 0 0.7071 0.0172 0.7070 0 0.7071 0.1517 0.6989
Second 0.0175 0.7070 0 0.7071 0.1759 0.6961 0 0.7071
Third 0.9998 0.0123 0.9999 0.0121 0.9845 0.1239 0.9886 0.1065

compression along the y axis by reducing the height of the
unit cell by a factor δ. It is known [25,26] that, in atomic
structures, anisotropy in the neighbor-site interactions leads to
Dirac cone anisotropy and Dirac point shift and, eventually,
to Dirac point merging and an energy gap opening. The
anisotropy is reinforced in the metallic triangular lattice [20].
We show here that, in these isogonal structures, the Dirac
cones undergo anisotropic deformation due to not only the
anisotropy in the correlations between neighboring |φB〉 but
also that between |φA〉 and |φB〉 when departing from KD .
Both these anisotropies are reinforced by the metallic nature
of the lattice.

The ξγ and ξα terms in Eq. (3) should be replaced in the
presence of the deformation field by ζγ ′ + ηγ ′′ and ζα′ + ηα′′,
with

ζ = eikya(1−δ)/
√

3,
(10)

η = 2e−ikya(1−δ)/2
√

3cos(kxa/2),

1.2

1.3

1.4

a/
2 

 c
ω

   
  π

ΓΓ MK

δ = 0.05
δ = 0.10
δ = 0.15

FIG. 6. The first three bands for l = 0.31a following the structure
compression δ. The FDTD solutions are represented by various
symbols, while those obtained with the tight-binding model are shown
by solid lines.

γ ′ and α′ representing the integrals along y and γ ′′ and α′′
representing those in the other directions.

The band diagrams for δ = 0.05, 0.10, and 0.15 for l =
0.31a and l = 0.35a, obtained using the FDTD method, are
displayed in Figs. 6 and 7. The band parameters, obtained
by fitting these curves using the TB model and taking into
account the relations in Eq. (10), with ωA and ωB obtained with
the FDTD method for deformed individual tiles, are shown in
Table III and Fig. 8. The frequency bands calculated with these
parameters are plotted together with the FDTD curves in the
same figures. Again, the band structures are well reproduced
by the TB model. The Dirac points KD are shifted towards the
M point following the structure compression. We note that, for
l = 0.31a (Fig. 6), the Dirac point merging does not lead to
a gap opening between the second and third bands due to the
upshift of the second band along the � − K and M − � paths,
resulting from the coupling with |φA〉.

Let us consider again the band structures in the vicinity of
KD . Taking into account Eq. (10), the polynomial equation (8)

1.2

1.3

1.4

a/
2 

 c
ω

   
  π

Γ K ΓM

δ = 0.05
δ = 0.10
δ = 0.15

FIG. 7. The first three bands for l = 0.35a following the structure
compression δ. The FDTD solutions are represented by various
symbols, while those obtained with the tight-binding model are shown
by solid lines.
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TABLE III. The local resonance mode energy levels ω2 and
energy-level shifts β for l = 0.31a and 0.35a, following the compres-
sion factor δ. All the values are normalized according to (ωa/2πc)2.

l = 0.31a l = 0.35a

δ = 0.05 δ = 0.10 δ = 0.15 δ = 0.05 δ = 0.10 δ = 0.15

ω2
A 1.5289 1.6489 1.7719 1.7866 1.9192 2.0635

ω2
B 1.7475 1.8783 2.0273 1.6195 1.7414 1.8787

βA 0.0055 0.0077 −0.0135 0.0081 0.0196 −0.0072
βB 0.0024 0.0032 −0.0045 0.0017 0.0064 0.0015

will take the following form:(
�ω2

AB − �Ek

)
[(�Ek)2−(ζγ ′

BB + ηγ ′
BB)(ζ ∗γ ′

BB+η∗γ ′′
BB)]

+ 2(ζγ ′
AB + ηγ ′′

AB)(ζ ∗γ ′
AB + η∗γ ′′

AB)�Ek

− [(ζγ ′
AB + ηγ ′′

AB)2(ζγ ′
BB + ηγ ′′

BB) + (ζ ∗γ ′
AB + η∗γ ′′

AB)2

× (ζ ∗γ ′
BB + η∗γ ′′

BB)] = 0. (11)

For k close to KD , the terms from the second to fourth lines in
Eq. (11) can be neglected. We get

ω2
k = ω2

A − βA,

ω2
B − βB ±

√
(ζγ ′

BB + ηγ ′
BB)(ζ ∗γ ′

BB + η∗γ ′′
BB). (12)

The Dirac cone is anisotropic at KD due to the anisotropy
in the correlations between |φB〉. This is similar to the cases
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FIG. 8. The variation of the overlap and energy integrals along
the compression axis y (α′ and γ ′) and in the other two directions (α′′

and γ ′′) following the deformation factor δ for (a) and (b) l = 0.31a

and (c) and (d) l = 0.35a. The solid lines are guides to the eye.
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FIG. 9. The Dirac band branches in the vicinity of KD along kKM

and ky in the presence of a compression deformation of δ = 0.10.
The squares and diamonds represent the results obtained with the
FDTD method, while the dashed and dash-dotted lines show the
curves calculated using the TB model with α′

AB, α′′
AB, γ ′

AB, and γ ′′
AB

all set to zero for l = 0.31a and l = 0.35a, respectively. The band
frequencies are plotted in ωk −

√
ω2

B − βB for a direct comparison
between the two configurations.

discussed in Refs. [25,26], with the particularity that, in the
present case, γ ′

BB increases while γ ′′
BB decreases following the

structure deformation, as shown in Fig. 8.
For k departing from KD , the last two terms in Eq. (11)

lead to band frequency shifts from those of Eq. (12). This
is illustrated in Fig. 9, where the Dirac band branches for
δ = 0.10 in the vicinity of KD and along kKM and ky , calculated
using the TB model with α′

AB and α′′
AB and γ ′

AB and γ ′′
AB set to

zero, are displayed together with the FDTD solutions. It is
obvious that the Dirac cone, becoming anisotropic due to the
anisotropic correlations between neighboring |φB〉, undergoes
further band shifts for increasing �k, and the shifts are much
stronger along ky than along kKM. This can be related to the
increasing γ ′

AB and decreasing γ ′′
AB following the structure

deformation (Fig. 8).
The above results can be compared to Table IV, in which

the absolute bq(k) values for δ = 0.10 obtained using the
TB model are listed. It shows that, like for the undeformed
structures, the Dirac band branches close to KD are essentially
determined by |φB〉, with the contribution of |φA〉 being weak;
however, for larger �k, the contributions of |φA〉 become
much stronger. Moreover, for the same magnitude of �k, the
contributions of |φA〉 are much stronger along ky than along
kKM. In addition, like for the undeformed structures, the lower
Dirac band branches along kKM are not coupled to |φA〉.

The anisotropies, both at KD and when departing from
the KD point, are reinforced by the metallic nature of the
lattice. Indeed, as shown in Fig. 8, the mode correlations along
the y axis, α′

AB and γ ′
AB and α′

BB and γ ′
BB, increase while

those in the other directions, α′′
AB and γ ′′

AB and α′′
BB and γ ′′

BB,
decrease following the deformation factor δ. This confirms the
phenomenon obtained for the triangular structure [20]. The
neighbor-mode correlations depend on the neighbor distance
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TABLE IV. The absolute values of the coefficients bA and bB of Eq. (1) at different �kKM and �ky (magnitude in units of 2π/a) for the
first three bands for l = 0.31 and 0.35a under a compression deformation of δ = 0.10, obtained with the tight-binding model.

�kKM = 0.01 �ky = 0.01 �kKM = 0.1 �ky = 0.1

l/a Band |bA| |bB | |bA| |bB | |bA| |bB | |bA| |bB |
0.31 First 1.0000 0.0061 0.9999 0.0122 0.9977 0.0476 0.9859 0.1185

Second 0 0.7071 0.0124 0.7071 0 0.7071 0.1272 0.7014
Third 0.0087 0.7071 0.0122 0.7071 0.0675 0.7055 0.1099 0.7028

0.35 First 0 0.7071 0.0148 0.7070 0 0.7071 0.1368 0.7005
Second 0.0087 0.7071 0.0149 0.7070 0.0697 0.7054 0.1441 0.6997
Third 1.0000 0.0061 0.9998 0.0147 0.9976 0.0488 0.9804 0.1392

and, in a metallic lattice, the edge opening between neighboring
tiles. In the present case, the neighbor distances are reduced
by the factor δ along the y axis, while the corresponding
edge lengths, and thus the edge openings, e.g., w′

1 and w′
2 in

Fig. 1, remain unchanged. In the other directions, the neighbor
distances are reduced by a factor of about 1

2δ sin(π/6), while
the corresponding edge lengths are more strongly reduced
by a factor of about

√
3

2 δ cos(π/6). The reductions of the
corresponding edge openings, e.g., w′′

1 and w′′
2 in Fig. 1, are still

stronger due to the nonzero cylinder radius r . Therefore, the
neighbor-mode correlations increase along the compression
axis and decrease along the other directions.

III. DISCUSSION

As discussed in Sec. II D, the correlations between different
neighbor modes have different consequences on the shape of
the Dirac cones. In fact, Dirac cones are obtained for �ω2

AB �=
0, with their slope at KD determined by the energy integral
γBB between neighboring modes |φB〉. Let us further consider
the role played by the energy integral and the energy-level
difference between modes |φA〉 and |φB〉, γAB and �ω2

AB, on
the band shifts departing from KD .

The analytical solution of Eq. (8) is tedious. However, the
roots have simple forms along certain high-symmetry axes. As
a matter of fact, we get along kKM

ω2
k = ω2

A − βA + δω2
k ,

= ω2
B − βB + |ξ |γBB − δω2

k , (13)

= ω2
B − βB − |ξ |γBB

and along kK�

ω2
k = ω2

A − βA + δω2
k ,

= ω2
B − βB + |ξ |γBB, (14)

= ω2
B − βB − |ξ |γBB − δω2

k ,

where

δω2
k = 1

2

[ − (
�ω2

AB ∓ |ξ |γBB
)

±
√(

�ω2
AB ∓ |ξ |γBB

)2 + 8|ξ |2γ 2
AB

]
, (15)

with ∓ for the kKM and kK� directions and ± for �ω2
AB > 0 and

< 0. In fact, Eqs. (13) and (14) yield the maximum (δω2
k) and

minimum (zero) shift magnitudes for the Dirac cone and also

confirm that |φA〉 is not involved in the formation of the lower
Dirac band branch along kKM and the higher branch along kK� .

For k close to KD , Eq. (15) takes the approximative form

δω2
k ≈ 2|ξ |2γ 2

AB

�ω2
AB ∓ |ξ |γBB

, (16)

with ∓ for the kKM and kK� directions. And the corresponding
frequency band branches can be expressed as

ωk ≈ ωB − 1

ωB

(
β

2
∓ γBB

2
|ξ | + γ 2

AB

�ω2
AB

|ξ |2
)

, (17)

with ∓ for the upper branch along kKM and the lower
branch along the kK� direction. The frequency band shifts are
quadratic in |ξ |, deviating from the linear relation in |ξ | at KD .
The shift magnitude scales with the ratio γ 2

AB/�ω2
AB.

It is possible to modulate the Dirac cone shape through the
common edge length l between neighbor isogonal tiles without
modifying the lattice periodicity and breaking the structure
symmetry. On the one hand, by varying l, we can modulate
the edge opening between the tiles, w′

1 (w′′
1 ) and w′

2 (w′′
2 ). This

allows controlling γAB and γBB. On the other hand, since the
resonance mode frequency inside a tile scales inversely with
the tile size, the l variation allows us to modulate the relative
frequency levels of |φA〉 and |φB〉, thus controlling the energy-
level difference �ω2

AB.
The Dirac cone structures for l = 0.31a and 0.35a already

provide an example, in particular concerning the band slopes
at KD and the band shift directions when departing from KD .
Here we further illustrate the cone variations, especially in
relation to γAB and �ω2

AB. Consider the cases of l = 0.32a

and 0.34a. As compared to the cases of l = 0.31a and 0.35a,
respectively, the edge openings w′

1 (w′′
1 ) and w′

2 (w′′
2 ), as well

as the sizes of the A and B tiles, are closer to each other in each
configuration. Following the procedure described in Sec. II, we
get the TB model band parameters that are listed in Table V.
Notably, compared to those in Table I, in each configuration,
the values of γAB and γBB, as well as those of ω2

A and ω2
B , are

closer to each other (as a matter of fact, they all tend to the
values for l = a/3 given in Table I). The magnitudes of �ω2

AB
are reduced so that those of the γ 2

AB/�ω2
AB ratios increase,

the latter changing from −0.0093 and 0.0079 [(ωa/2πc)2] for
l = 0.31a and 0.35a to −0.0129 and 0.0232 [(ωa/2πc)2] for
l = 0.32a and 0.34a. Consequently, the Dirac cone slope atKD

will increase for l = 0.32 and decrease for l = 0.34 compared
to l = 0.31a and 0.35a, respectively, and the band shifts due
to the correlations between |φA〉 and |φB〉 will increase in both
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TABLE V. The local mode energy levels ω2, overlap integrals α, energy integrals γ , and energy-level shifts β for l = 0.32a and 0.34a. All
the energy values are normalized according to (ωa/2πc)2.

l/a ω2
A ω2

B αAB αBB γAB γBB βA βB

0.32 1.4759 1.6006 0.0331 0.0252 0.0404 0.0316 0.0008 −0.0016
0.34 1.6035 1.5395 0.0297 0.0326 0.0361 0.0401 0.0056 −0.0023

cases. The Dirac band branches in the vicinity of KD for these
two configurations, calculated using the TB model [Eq. (3)]
with αAB and γAB set to zero, are plotted in Fig. 10, together
with the FDTD solutions. Compared to those in Fig. 5, the
variations predicted above can clearly be seen.

Finally, as the upper and lower Dirac band branches are
shifted in the same direction for a given �ω2

AB value, with
different shift magnitude distributions following the k direc-
tion, the Dirac cone deformation due to the coupling with |φA〉
breaks the mirror symmetry between the upper and lower parts
in the vicinity of KD implied by Eq. (9), where only the corre-
lations between neighboring |φB〉 are taken into account. The
cone still displays, however, a threefold rotational symmetry.

Indeed, the symmetry of the cone is imposed by the
local symmetry in the crystals and, in the TB model, by
the characteristic equation [Eq. (3)], where the parameter ξ

[Eq. (4)] has threefold symmetry. The roots of Eqs. (13) and
(14), as well as the frequency band shifts in Fig. 10, are, in
fact, distributed modulo 2π/3 following k orientation. Indeed,
the threefold symmetry is well illustrated by the isofrequency
lines obtained from Eq. (3), displayed in Fig. 11, which shows,
moreover, that, for both the up- and downshifts, the maxima
and the minima (zero) of the shift magnitude are distributed
along kKM and kK� modulo 2π/3 for the upper part of the
cone; however, for the lower part, the maxima and the minima
(zero) of the shift magnitude are distributed along kK� and kKM

modulo 2π/3.

0.01

−0.01

−0.02
0.1 0 0.1

0

KD

ω
k
−

√
ω

2 B
−

β
B

(ω
a
/
2π

c)

Δ
k K

Γ

ΔkKM

Γ

M

ΔkKM (2π/a) ΔkKΓ (2π/a)

FIG. 10. The Dirac band branches in the vicinity of KD (2π/3a,
2π/

√
3a) along kKM and kK� . The squares and diamonds represent

the results obtained with the FDTD method, while the dashed and
dash-dotted lines show the curves calculated using the TB model with
αAB and γAB set to zero for l = 0.32a and l = 0.34a, respectively.
The band frequencies are plotted in ωk −

√
ω2

B − βB for a direct
comparison between the two configurations.

The trigonal deformation of the Dirac cone, as illustrated
in Fig. 11, leads to anisotropies in the group velocity and the
refraction index and directly impacts the EM wave dynamics
in the vicinity of the Dirac point. By adjusting the l value
that allows modulating the orientation and the magnitude of
the cone deformation, it will be possible to control the wave
propagation and, in particular, trigger the polarized EM beam
propagation [27] and alter the conical diffraction [14]. To the
best of our knowledge, these phenomena have not yet been
reported for metallic structures.

As a matter of fact, the trigonal deformation breaks the
valley degeneracy around two inequivalent Dirac points (K
andK ′) and can lead to valley-polarized EM beam propagation.
We can observe beam splitting along the y axis (the armchair
orientation) and collimation along the x axis (the zigzag
orientation) for both l < a/3 and l > a/3. The frequency level
at which the beam polarization occurs relative to the Dirac point
frequency can be adjusted through the l value. Concerning the
conical diffraction, for l close to a/3, the diffraction rings will
undergo trigonal distortion, with opposite orientations for l <

a/3 and l > a/3 around the same Dirac point. Moreover, given
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)

Δ
k

y
(2

π
/
a
)

Δ
k

y
(2

π
/
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)

Δkx (2π/a) Δkx (2π/a)

Δkx (2π/a) Δkx (2π/a)

FIG. 11. Isofrequency lines (solid lines) for the Dirac cones in
the vicinity of KD (2π/3a, 2π/

√
3a), with (a) the upper and (b)

lower parts for l = 0.32a and (c) the upper and (d) lower parts for
l = 0.34a. The dash-dotted lines represent the curves calculated with
αAB and γAB set to zero. The thick lines represent the first Brillouin
zone boundaries.
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sufficient evolution time, the diffraction rings will be doubled if
those associated with both the upper and lower parts of the cone
are excited. In fact, rings associated with the upper part will
propagate faster than those associated with the lower part for
l < a/3 and vice versa for l > a/3. These phenomena can be
checked by measuring the wave transport for different l values.

It is useful to point out that the mechanism described in the
present work, based on the resonance modes confined inside
the tiles, is valid for only the low-frequency EM bands with
TM polarization. In fact, TM waves can couple to longitudinal
charge oscillations along the metallic cylinder axis and lead to
resonance modes inside the tiles with vanishing electric field
at the cylinder surface. In addition, the bands considered in
the present work are the lowest-frequency ones, formed by the
lowest-frequency resonance modes, similar to the TM01 mode
in a cylindrical cavity. Higher-order modes can also be confined
in the tiles and form Dirac singularities but at higher frequency
levels. In a general way, higher-frequency bands, with shorter
wavelengths, tend to involve spatially more extended modes
and can no longer be well described in terms of local resonance
correlations. Concerning the TE polarization (magnetic field
perpendicular to the lattice plane), TE waves cannot couple
to longitudinal charge oscillations, and at low filling rate, the
TE band structures remain similar to those of the free space.
Surface plasmon modes, associated with individual cylinders,
can be excited and form flat bands, but only in the frequency
range close to the surface plasmon frequency of the metal
material [28,29].

In practice, for experiments in the microwave range, a
lattice with a = 20 mm and l = 7 mm (= 0.35a) will yield
a Dirac frequency of about 18.5 GHz. Such structures can

easily be fabricated mechanically. For the near-infrared range,
the geometrical parameters will scale down to the micron or
submicron range, and more demanding lithographic patterning
techniques will be needed.

IV. CONCLUSION

In summary, we studied the low-frequency EM band
structures in honeycomb-related isogonal hexagonal metallic
lattices containing two kinds of tiles, the regular hexagonal
ones and the isogonal hexagonal ones, using the FDTD method
and in the framework of a TB model. Contrary to a regular
honeycomb metallic lattice, an isogonal hexagonal one can
generate Dirac cones in its spectrum that are determined by the
correlations between the resonance modes formed inside the
isogonal hexagonal tiles and have isotropic slope at the Dirac
points. The Dirac band branches are, however, shifted in fre-
quency following wave vectors departing from the Dirac points
due to the correlations with the resonance modes sustained by
the hexagonal tiles, inducing nonlinear trigonal deformation
of the Dirac cones. The Dirac cone evolution under structure
deformation is also affected by the modes inside the hexagonal
tiles since the structure deformation induces anisotropy not
only in the mode correlations between the isogonal tiles
but also in that between the isogonal and hexagonal tiles.
Both these anisotropies are reinforced by the lattice’s metallic
nature. An isogonal hexagonal lattice provides more degrees
of freedom for tuning the Dirac cone shape, which can be
adjusted, without altering the lattice periodicity and symmetry
by adjusting the structure configuration at local scale and thus
modulating the resonance mode correlations.
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