
PHYSICAL REVIEW B 97, 125145 (2018)

Universal thermodynamics of the one-dimensional attractive Hubbard model
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The one-dimensional (1D) Hubbard model, describing electrons on a lattice with an on-site repulsive interaction,
provides a paradigm for the physics of quantum many-body phenomena. Here, by solving the thermodynamic
Bethe ansatz equations, we study the universal thermodynamics, quantum criticality, and magnetism of the 1D
attractive Hubbard model. We show that the compressibility and the susceptibility of the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO)-like state obey simple additivity rules at low temperatures, indicating an existence of two
free quantum fluids. The magnetic properties, such as magnetization and susceptibility, reveal three physical
regions: quantum fluids at low temperatures, a non-Fermi liquid at high temperatures, and the quantum fluid to
non-Fermi liquid crossover in between. The lattice interaction is seen to significantly influence the nature of the
FFLO-like state in 1D. Furthermore, we show that the dimensionless Wilson ratio provides an ideal parameter to
map out the various phase boundaries and to characterize the two free fluids of the FLLO-like state. The quantum
scaling functions for the thermal and magnetic properties yield the same dynamic critical exponent z = 2 and
correlation critical exponent ν = 1/2 in the quantum critical region whenever a phase transition occurs. Our
results provide a rigorous understanding of quantum criticality and free fluids of many-body systems on a 1D
lattice.
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I. INTRODUCTION

How to capture the essential features of many-body physics
through a simple model is always of great importance in
condensed matter physics. In this regard, the Hubbard model
[1] has long provided an active area of research since it
was put forward as an instance of a Mott insulator and
later considered as a potential high-Tc superconductor. The
Hubbard model has thus become a prototypical strongly
correlated system, which provides rich many-body phenom-
ena, such as a Mott transition, superconductivity, spin-charge
separation, and a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state. However, the Hubbard model, as a simplification of
interacting fermions on realistic lattices, can be analytically
resolved in neither two dimensions (2D) nor three dimensions
(3D). The one-dimensional (1D) case within a single band
is integrable, firstly solved by Lieb and Wu in terms of the
Yang-Baxter equation [2,3] and the nested Bethe ansatz [4]
(see Ref. [5] for an extensive review). More specifically,
since Lieb and Wu’s seminal work, the 1D repulsive Hubbard
model has been investigated in various aspects, including,
but not restricted to, thermodynamic properties in the ground
state [6–11], low-lying excitations [12–19], finite tempera-
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ture thermodynamics [16,20–24], and correlation functions
[25–35].

The thermodynamics of the 1D Hubbard model is accessi-
ble through two alternative approaches—the thermodynamic
Bethe ansatz (TBA) equations [20] and the quantum transfer
matrix method [36]. The former is established on the so-
called “string hypothesis” and Yang-Yang grand canonical
ensemble approach [37], whereas the latter stems from the
lattice path integral formulations for the partition function [38].
In principle, the low-lying excitations can be constructed with
the help of the TBA equations in the zero temperature limit and
by the logarithm of the Lieb-Wu equations [16,18,19]. Despite
these systematic approaches and other methods employed for
the study of the ground-state properties [4,6–11] and low-
lying excitations [12–15,17], a complete understanding of the
universal thermodynamics and quantum criticality of the 1D
Hubbard model has not yet been achieved. The key reason
for preventing the solution of this problem is the difficulty of
finding a suitable generating function for the equation of state
at low temperatures.

On the other hand, the correlation functions are also ex-
tremely difficult to calculate directly using the Bethe wave
function. For a 1D conformally invariant system, the critical
exponents determining the power law decay of correlation
functions are connected with finite-size corrections to the
ground-state energy [39–41]. The 1D repulsive Hubbard model
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is conformally invariant only in the vicinity of Fermi points.
The conformal field theory (CFT) approach provides one
method to obtain the asymptotics of correlation functions [42].
The low-lying excitations provide a practicable opportunity for
an investigation of long distance asymptotics of correlation
functions [25], where the finite-size corrections are accessible
through the Bethe ansatz method [26]. However, difficulties
involved in the actual calculations of correlation functions
usually prevent full access to the many-body correlations
[27–31].

The mechanism of Cooper pairing in the 1D attractive
Hubbard model has attracted attention [32] due to the discovery
of high-temperature superconductors. In particular, the FFLO-
like pair correlation and spin correlations are consequently
investigated by various methods, such as density-matrix renor-
malization group [33], quantum Monte Carlo [34], and CFT
[35,43]. The nature of the FFLO-like pair correlation was
predicted in expansion dynamics of the attractive Hubbard
model trapped in 1D [44]. Very recently, trapping cold atoms
on optical lattices becomes a promising method to simulate
the many-body physics of the Hubbard model [45–52]. In
particular, ultracold atoms offer an ideal platform for testing
results predicted from 1D exactly solvable models [50].

It is understood that the macroscopic behavior of 1D
materials, such as the spin compound Cu(C4H4N2)(NO3)2 [53]
and the heavy fermion material YbNi4P2 [54], demonstrates
a type of 3D Fermi liquid behavior [55,56]. The motivation
of the present work is to provide understanding of free fluid
nature and quantum criticality in the context of the 1D attractive
Hubbard model. Firstly, the 1D attractive Hubbard model plays
an important role in understanding many-body phenomena
such as superconductivity, BEC-BCS crossover and FFLO-like
correlation [33], with several publications touching upon it
[6,9,11,17–19,22,24,32]. Secondly, one expects to find uni-
versal behavior for this model, including thermodynamics,
quantum criticality, and Luttinger liquid properties. Thirdly,
regarding the complicated FFLO state, it is highly desirable to
obtain simple rules to describe the nature of quantum liquids in
the attractive Hubbard model. Last, but not least, the interplay
of this work with experiments with ultracold atoms [45–52]
may broaden our knowledge of many-body physics through
1D exactly solvable models.

This paper is organized as follows. In Sec. II, we present
a derivation of the TBA equations for the 1D attractive
Hubbard model and determine the ground-state phase diagram.
In Sec. III, we derive the equation of state in the strong-
coupling regime. In Sec. IV, using the equation of state, we
obtain various analytical results for the thermodynamics and
magnetism, which are relevant to experimental study. We also
investigate quantum criticality and obtain the universal scaling
forms of thermodynamic quantities. In Sec. V, we demonstrate
the free fluid nature of the FFLO phase through the simple
additivity rules of the thermodynamic quantities. We find that
the compressibility Wilson ratio is very powerful in identifying
the Fermi liquid/Tomonaga-Luttinger liquid phases in the
low-temperature phase diagram. The last section, Sec. VI, is
reserved for a summary and conclusion. We conclude this
section by noting that this paper provides a fuller and more
detailed account of our key results presented elsewhere [35].

II. THERMODYNAMICS: THE YANG-YANG APPROACH

A. Thermodynamic Bethe ansatz equations

The 1D Hubbard model is described by the Hamiltonian

H = −
L∑

j=1

∑
a=↑,↓

(c†j,acj+1,a + c
†
j+1,acj,a)

+u

L∑
j=1

(1 − 2nj,↑)(1 − 2nj,↓), (1)

where c
†
j,a and cj,a are the creation and annihilation operators

of fermions with spin a (a =↑ or a =↓) at site j in a 1D
periodic lattice of length L, nj,a = c

†
j,acj,a is the corresponding

particle number operator, and u represents an on-site inter-
action between particles (u > 0 for repulsion and u < 0 for
attraction). By means of the Bethe ansatz, the eigenenergies of
the Hamiltonian are given by E = −2

∑N
j=1 cos kj + u(L −

2N ), where the quasimomenta {kj } satisfy the Lieb-Wu equa-
tions [4]

exp(i kjL) =
M∏

α=1

sin kj − �α + i u

sin kj − �α − i u
, (2)

N∏
j=1

sin kj − �β + i u

sin kj − �β − i u
= −

M∏
α=1

�α − �β + 2 i u

�α − �β − 2 i u
, (3)

where {�β} denote spin rapidities, j = 1,2, . . . ,N , β =
1, . . . ,M , with N and M the total particle number and spin-
down particle number, respectively.

Similar to the analysis [20] used for the repulsive case u >

0, one finds that the roots to the Bethe ansatz equations (2) and
(3) for the attractive Hubbard model can be divided into three
categories: single real k, k-� string, and �-� string, which
constitute the string hypothesis. They are given by [19,22] (1)
single real k’s; (2) the αth k-� string of length m, for which
there are 2m k’s,

k1
α = arcsin

(
�′

α

m + i m |u|),
k2
α = arcsin

(
�′

α

m + i (m − 2) |u|),
k3
α = π − k2

α,

...

k2m−2
α = arcsin

(
�′

α

m − i (m − 2) |u|),
k2m
α = arcsin

(
�′

α

m − i m |u|), (4)

accompanied by m spin rapidities

�′
α

m,j = �′
α

m + i (m + 1 − 2j ) |u|, (5)

in � space, where j = 1,2,3, . . . ,m and �′
α

m is the real center
of the k-� string, see Fig. 1.

(3) The βth �-� string of length m,

�
m,j

β = �m
β + i (m + 1 − 2j ) |u|, (6)

where j = 1,2,3, . . . ,m, and �m
α is the real center of the �

string. The � strings represent the spin wave bound states in
the spin sector.
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FIG. 1. A schematic configuration of the k-� strings of length
1, 2, and 3. The k-� bound states are formed by the charge momenta
and spin rapidities displayed within the dashed boundaries. In each
k-� bound state, sin k’s share a real part with the spin rapidities.
A length-m k-� string contains m rapidities in � space and 2m

quasimomenta in k space. In contrast to the two component Fermi
gas, many electrons on a 1D lattice are allowed to form a bound state
of multiparticles.

In the above equations, we denoted Mm, M ′
m, and Me as

the number of � strings of length m, of k-� strings of length
m, and of single real k’s, respectively. It is easy to see that
M = ∑∞

m=1 m(Mm + M ′
m) and N = Me +∑∞

m=1 2mM ′
m.

Substituting the string hypothesis into the Lieb-Wu equa-
tions and taking logarithms leads to the discrete nested BA
equations

kj L = 2π Ij +
∞∑

m=1

M ′
m∑

α=1

θ

(
sin kj − �′

α
m

m|u|
)

+
∞∑

m=1

Mm∑
α=1

θ

(
sin kj − �m

α

m|u|
)

, (7)

N−2M ′∑
j=1

θ

(
�n

α − sin kj

n|u|
)

= 2πJn
α +

∞∑
m=1

Mm∑
β=1

�nm

(
�n

α − �m
β

n|u|
)

,

(8)

2L Re
[

arcsin
(
�′

α

n + i n |u|)]
= 2π J ′

α

n +
N−2M ′∑

j=1

θ

(
�′

α
n − sin kj

n|u|
)

+
∞∑

m=1

M ′
m∑

β=1

�nm

(
�′

α
n − �′

β
m

|u|

)
, (9)

where M ′ = ∑∞
m=1 mM ′

m is the total number of �’s involved
in the k-� strings, θ (x) = 2 arctan (x), and

�nm(x) =
{

θ
(

x
|n−m|

)+ 2θ
(

x
|n−m|+2

)+ · · · + 2θ
(

x
n+m−2

)+ θ
(

x
n+m

)
if n �= m

2θ
(

x
2

)+ 2θ
(

x
4

)+ · · · + 2θ
(

x
2n−2

)+ θ
(

x
2n

)
if n = m

. (10)

The quantum numbers Ij , J n
α , and J ′

α
n are either integers or

half-odd integers, stemming from the multivaluedness of the
logarithmic functions. They are determined by the relations

Ij =
{

integers if
∑∞

m=1(M ′
m + Mm) is even

half-odd integers if
∑∞

m=1(M ′
m + Mm) is odd

,

J n
α =

{
integers if N − Mn is odd

half-odd integers if N − Mn is even
,

J ′
α

n =
{

integers if N − M ′
n is odd

half-odd integers if N − M ′
n is even

.

With the help of the string hypothesis, the eigenenergies are

E = −2
N−2M ′∑

j=1

cos kj − 2uN + uL

−4
∞∑

n=1

M ′
n∑

α=1

Re
[√

1 − (
�′

α
n + i n |u|)2]

. (11)

We now introduce counting functions for the quan-
tum numbers, y(kj ) = 2π Ij/L, zn(�n

α) = 2π Jn
α /L, and

z′
n(�′

α
n) = 2π J ′

α
n
/L. Considering the thermodynamic limit,

N,M,L → ∞ with N/L,M/L finite, we further define the

distributions
dy(k)

dk
= 2π [ρp(k) + ρh(k)],

dzn(�)

d�
= 2π

[
σp

n (�) + σh
n (�)

]
,

dz′
n(�)

d�
= 2π

[
σ ′

n

p(�) + σ ′
n

h(�)
]
,

where ρp, σ
p
n , σ ′

n
p (ρh, σh

n , σ ′
n
h) are root densities of particles

(holes) in quasimomenta of excess fermions, �-string param-
eter space, and k-� string space, respectively. Then one can
derive the densities of excess fermions, �-spin strings and k-�
strings, with

ρp(k) + ρh(k)

= 1

2π
− cos k

∞∑
n=1

∫ ∞

−∞
d�an(sin k − �)

× [σp
n (�) + σ ′

n

p(�)
]
, (12)

σh
n (�) =

∫ π

−π

dk an(sin k − �)ρp(k)

−
∞∑

m=1

Anm ∗ σp
m(�), (13)
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σ ′
n

h(�) = 1

π
Re

[
1√

1 − (� + i n |u|)2

]

−
∞∑

m=1

Anm ∗ σ ′
m

p(�) −
∫ π

−π

dk an(sin k − �)ρp(k),

(14)

where the function

an(x) = 1

2π

2n|u|
(n|u|)2 + x2

.

As usual, ∗ stands for the convolution (f ∗ g)(�) =∫∞
−∞ f (� − �′)g(�′)d�′, namely,

Anm ∗ f (x) = δn,m f (x) +
∫ ∞

−∞

dy

2π

d

dx
�nm

(
x − y

|u|
)

f (y).

Here we denoted the derivative of the function �nm as

1

2π

d

dx
�nm(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a|n−m|(x) + 2a|n−m|+2(x)

+ . . . + an+m(x) if n �= m

2a2(x) + 2a4(x) + . . .

+2a2n−2(x) + a2n(x) if n = m

.

The root distribution functions (12)–(14) determine spin
and charge excitations, spin dynamics, and full energy spectra.
In the grand canonical ensemble, the Gibbs free energy per site
can be expressed in terms of these root densities in different
sectors:

f = e − μnc − 2B m − T s =
∫ π

−π

dk (−2 cos k − μ − 2u − B)ρp(k)

−
∞∑

n=1

∫ ∞

−∞
d�σ ′

n

p(�)
[
4Re

√
1 − (

�′
α

n + i n |u|)2 + n(2μ + 4u)
]+

∞∑
n=1

∫ ∞

−∞
d� 2nB σp

n (�) − T s + u, (15)

where μ is the chemical potential, B is the magnetic field, and T is the temperature. In the above equations, nc is the particle
density, m = N−2M

2L
is the magnetization, and s is the entropy per site.

Following the Yang-Yang grand canonical description [37], the entropy per site is explicitly given by

s =
∫ π

−π

dk {(ρp(k) + ρh(k)) ln(ρp(k) + ρh(k)) − ρp(k) ln ρp(k) − ρh(k) ln ρh(k)}

+
∞∑

n=1

∫ ∞

−∞
d�

{(
σ ′

n

p(�) + σ ′
n

h(�)
)

ln
(
σ ′

n

p(�) + σ ′
n

h(�)
)− σ ′

n

p(�) ln σ ′
n

p(�) − σ ′
n

h(�) ln σ ′
n

h(�)
}

+
∞∑

n=1

∫ ∞

−∞
d�

{(
σp

n (�) + σh
n (�)

)
ln
(
σp

n (�) + σh
n (�)

)− σp
n (�) ln σp

n (�) − σh
n (�) ln σh

n (�)
}
. (16)

In the following, we only consider the physics with B � 0 and μ � 0.
In the thermodynamic equilibrium, the true equilibrium state can be determined by the minimization of the free energy with

respect to the densities. Carrying out a variation of (15) under the restriction of (12)–(14), we obtain the TBA equations for the
attractive Hubbard model in the form

εu(k) = −2 cos k − μ − 2u − B +
∞∑

n=1

∫ ∞

−∞
d�an(sin k − �)ε′−

n (�) −
∞∑

n=1

∫ ∞

−∞
d�an(sin k − �)ε−

n (�), (17)

εn(�) =
∫ π

−π

dk cos k an(sin k − �)εu−(k) + 2nB +
∞∑

m=1

Tnm ∗ ε−
m(�), (18)

ε′
n(�) = −4Re

√
1 − (� + i n |u|)2 − n(2μ + 4u) +

∫ π

−π

dk cos k an(sin k − �)εu−(k) +
∞∑

m=1

Tnm ∗ ε′−
m (�), (19)

where we have denoted

εu−(x) = T ln
(
1 + e−εu(x)/T

)
,

ε′−
n (x) = T ln

(
1 + e−ε′

n(x)/T
)
,

ε−
n (x) = T ln

(
1 + e−εn(x)/T

)
.

In the above equations, we defined the dressed energies

εu(k) = T ln ζ (k) = T ln ρh(k)/ρp(k),

εn(�) = T ln ηn(�) = T ln σh
n (�)/σp

n (�),

ε′
n(�) = T ln η′

n(�) = T ln σ ′
n

h(�)/σ ′
n

p(�).
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The convolution Tnm ∗ f (x) = Anm ∗ f (x) − δn,mf (x) is de-
fined by convention.

The TBA equations (17)–(19) indicate that the dressed
energies εu(k), εn(�), ε′

n(�) describe the excitation energies,
which are subject to interactions among the bound states of
electrons, spin wave fluctuations, magnetic field, and chemical
potential. They contain full thermal and magnetic fluctuations
in both spin and charge degrees of freedom. Therefore from
these equations we can determine the thermal and magnetic
properties of the model in full temperature regimes.

After some algebra, the Gibbs free energy per site is
consequently given by

f = u −
∫ π

−π

dk

2π
εu−(k)

−
∞∑

n=1

∫ ∞

−∞

d�

π
Re

[
1√

1 − (� + i n |u|)2

]
ε′−
n (�). (20)

This result builds up analytical access to the full thermody-
namics of the model.

B. Zero-temperature phase diagram

In the zero temperature limit, most dressed energies are
nonnegative and thus make no significant contributions to the
free energy (20). We observe that in the ground state, there
exist only unpaired fermions and bound pairs of fermions.
The spin �-� strings (18) are suppressed due to the fact
that in the FFLO-like phase IV, the spin wave bound states
ferromagnetically couple to the Fermi sea of the unpaired
fermions. The driving term in the TBA equation (18) is positive
due to this ferromagnetic ordering. At T → 0, the �-� strings
are gapped. The driving term in the TBA equation (19) can be
positive when n � 2 due to the negative chemical potential.
Taking the limit T → 0, the corresponding TBA equations
(17) and (19) thus reduce to coupled linear integral equations,
called the dressed energy equations,

εu(k) = −2 cos k − μ − 2u − B

−
∫ A

−A

d�a1(sin k − �)ε′
1(�), (21)

ε′
1(�) = −2μ − 2

∫ π

−π

dk cos2 k a1(sin k − �)

−
∫ Q

−Q

dk cos k a1(sin k − �)εu(k)

−
∫ A

−A

d�′ a2(� − �′)ε′
1(�′), (22)

where the integration boundaries Q and A represent the Fermi
points of these two kinds of states (pairs and single fermions).
In Eq. (22), we used the expression

4Re
√

1 − (� − i n|u|)2 − 4n|u|

=
∫ π

−π

dk

π

cos2 k 2n|u|
(nu)2 + (sin k − �)2

.

The integration boundaries are determined by εu(±Q) = 0 and
ε′

1(±A) = 0.

Within the intervals [−Q,Q] and [−A,A], the dressed en-
ergies are negative, i.e., εu(k) � 0 and ε′

1(�) � 0. This means
that particle states occupy all vacancies in the two Fermi seas.

With the help of (12)–(14), the root densities for quasimo-
mentum k and spin rapidity � in the k-� string of length 1 at
zero temperature are expressed as

ρ(k) = 1

2π
− cos k

∫ A

−A

d�a1(sin k − �)σ ′
1(�), (23)

σ ′
1(�) = 1

π
Re

1√
1 − (�+ i |u|)2

−
∫ Q

−Q

dk a1(sin k − �)ρ(k)

−
∫ A

−A

d�′ a2(� − �′)σ ′
1(�′). (24)

In the grand canonical ensemble, we explicitly write down
the above root densities, which satisfy the two conditions∫ Q

−Q
dk ρ(k) + 2

∫ A

−A
d�σ ′

1(�) = N/L and
∫ A

−A
d�σ ′

1(�) =
M/L = N↓/L. Thus the total particle density is given by nc =
N/L = ∫ Q

−Q
dk ρ(k) + 2

∫ A

−A
d�σ ′

1(�) and the magnetization

per site by m = (N − 2M)/(2L) = 1
2

∫ Q

−Q
dk ρ(k).

By varying the integration boundaries Q and A, the system
possesses different fillings and quantum phases. A phase
transition occurs when the dressed energies exactly satisfy
εu(0) = 0, εu(π ) = 0 or ε′

1(0) = 0. Consequently, we can
determine five phases, (I) vacuum, (II) fully polarized state,
(III) half-filling state, (IV) partially polarized state, i.e., FFLO-
like state, and (V) fully paired state. The phase boundary
between (I) and (V) is determined by ε′

1(0) = 0 together
with the condition Q = 0. Then the TBA equation (22) leads
to the critical field value μc = 2|u| − 2

√
1 + u2. The phase

boundary between (I) and (II) and between (II) and (III) are
determined by the conditions A = 0, εu(0) = 0 and by A = 0,
εu(π ) = 0, respectively. With regard to the boundaries for the
FFLO-like phase, the situation is much more subtle. The phase
boundary between (II) and (IV) is determined by ε′

1(0) = 0 and
εu(Q) = 0, while the phase boundary between (IV) and (V) is
determined by εu(0) = 0 and ε′

1(A) = 0.
The phase boundaries in the ground-state phase diagram,

Fig. 2, are summarized as follows: (1) (I-V)

μc1 = 2|u| − 2
√

1 + u2, (25)

(2) (I-II)

μc2 = −B − 2u − 2, (26)

(3) (II-III)

μc3 = 2 − B − 2u, (27)

(4) (II-IV)

μc4 = 2|u| − 2
√

1 + u2

−
∫ Q

−Q

dk cos k a1(sin k)[cos Q − cos k], (28)

Bc4 = 2
√

1 + u2 − 2 cos Q

−
∫ Q

−Q

dk cos k a1(sin k)[cos Q − cos k], (29)

with Q ∈ [0,π ].
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FIG. 2. Ground-state phase diagram of the 1D attractive Hub-
bard model with |u| = 1 in the μ-B plane. In the phase diagram,
the critical fields are μc = 2|u| − 2

√
1 + u2 < 0, Bc1 = 2|u| − 2 +

2
∫∞

−∞ dω
J1(ω) exp(−|u|ω)

w cosh(uω) , and Bc2 = 2 + 2|u|. The different phases are
denoted by (I) vacuum, (II) fully polarized state, (III) half-filling
state, (IV) partially polarized state, and (V) fully paired state. The
phase boundaries are defined by Eqs. (25)–(33). For comparison, the
low-temperature phase diagram is given in Fig. 9.

(5) (IV-V) This phase transition occurs if the critical
magnetic field is sufficient to break the bound state of fermions,
whose boundary in principle is fixed by

ε′
1(�) = −2μ − 2

∫ π

−π

dk cos2 k a1(sin k − �)

−
∫ A

−A

d�′ a2(� − �′)ε′
1(�′), (30)

ε′
1(A) = 0, (31)

μ = −2 − 2u − B −
∫ A

−A

d�a1(�)ε′
1(�). (32)

When A � 1, the density for pairs of fermions is low, the phase
boundary could be obtained by iteration, i.e., by applying Tay-
lor expansion to (30) with respect to �, it can be approximately
resolved by iteration. The solution of (31) gives A in terms of
μ and B, then we derive the phase boundary by substituting
the above results for A into the Eqs. (30) and (32). By iteration,
we finally obtain

μc5 ≈ 2|u| − B − 2

+ 4
√

2

π |u|α1
[μc5 + 2(

√
1 + u2 − |u|)] 3

2 . (33)

Here, at low-energy physics, only length-1 k-� strings are in-
volved. From the TBA equations (17)–(19), we may introduce
the parameters αn and βn to indicate the interacting effect of
the length-n k-� bound states on a lattice in the low-density
regime. They are given by

αn =
∫ π

−π

dk
2n |u| cos2 k(n2u2 − 3 sin2 k)

π (n2u2 + sin2 k)3
,

βn =
∫ π

−π

dk an(sin k).

In general, αn represents the lattice effect in the length-n k-�
strings. Meanwhile, if A  1, the phase boundary is given
by (A23) and (A29) in Appendix A, where we have used the
Wiener-Hopf method to solve the TBA integral equations.

From the dressed energy equations (21) and (22) the
complete phase diagram at zero temperature is shown in
Fig. 2. This phase diagram was also obtained by the Shiba
transformation, which builds up a mapping between repulsive
and attractive regions in the ground state of the Hubbard
model [5]. However, once we are concerned with the low-
temperature thermodynamics, correlation functions, and quan-
tum criticality, the Shiba transformation does not work in actual
calculations, see the analysis of the ground-state properties
of the attractive Hubbard model [27–31]. This is mainly
because the different spin-spin strings, k-� strings and excess
fermions have different cutoff processes (the cutoff strings, see
Appendix B) at low-temperature physics. For example, the spin
fluctuation term (the third term) in the unpaired dressed energy
can be safely ignored in the strongly attractive Hubbard model
at low temperatures. However, the counterpart of such a spin
fluctuation term in the repulsive Hubbard model essentially
determines the antiferromagnetic ordering. Even in the repul-
sive regime, such spin string dynamics, quantum criticality,
and scaling functions still lack an analytical calculation. The
ground-state properties of the attractive Hubbard model were
initially studied by Woynarovich [11]. In this paper, using the
TBA equations (17)–(19), we obtain exact results for the FFLO
pairing correlation, universal thermodynamics, and quantum
criticality of the 1D attractive Hubbard model. Our study
provides a precise understanding of the universal low-energy
physics of interacting fermions with pairing and depairing on
a 1D lattice.

III. EQUATION OF STATE

The TBA equations describe the full thermodynamics of
the model. At low temperatures, quantum liquid behavior and
critical scaling in the thermodynamics should be obtained from
the TBA equations (17)–(19). However, the analysis of such
coupled nonlinear integral equations provides a formidable
challenge. In particular, it is challenging to solve infinitely
many coupled nonlinear integral TBA equations, i.e., the
desired analytical or numerical solution is not achievable
by solving the whole set of TBA equations. This obstacle
prevents us to understand the microscopic Cooper pairing
mechanism and many-body phenomena for this model. On
the other hand, in the FFLO-like phase IV, the spin wave
bound states ferromagnetically couple to the Fermi sea of the
unpaired fermions. In this phase, except two gapless excitations
in the sectors of bound pairs and excess fermions, there exist
a spin wave ferromagnetic fluctuation, which is no longer a
linear dispersion. Bosonization or Tomonaga-Luttinger liquid
(TLL) theory [57] are not available once such a ferromagnetic
ordering is involved in the low-temperature physics. A similar
situation was studied in the 1D two-component Bose gas [58].

Moreover, the TLL is not applicable to the quantum critical
region near a phase transition. Here we proceed with an analyt-
ical investigation of the low-energy physics of the 1D attractive
Hubbard model beyond the scope of the TLL approaches. In
order to obtain the universal thermodynamics and quantum
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criticality of the 1D attractive Hubbard model, we first solve the
TBA equations (17)–(19) analytically in the strong-coupling
regime. We will derive the equation of state which is crucial
for the investigation of the quantum criticality of the model.
These results can be helpful to understand current experimental
developments in ultracold atoms [45–50].

In the following discussion, we mainly concentrate on the
low-density regime. In general, it is very difficult to find
universal characteristics of quantum liquids in quantum many-
body systems, for example, for the Gaudin-Yang Fermi gas
[59]. Under the assumption that the density of pairs and the
bound states of multiple fermions are low and the interaction
is strong, the TBA equations (17)–(19) can be rewritten as

εu(k) = −2 cos k + 2ā cos2 k − μ − 2u − B +
∞∑

n=1

pb
n

+ ā − T e−2B/T e−K̄ I0(K̄) + o

(
1

|u|4
)

, (34)

ε′
n(�) = −2nμ + ηn − d1

πn|u| − d2

π (n|u|)3

+�2

[
d1

π (n|u|)3
− ϕn

]
+ o

(
1

|u|4
)

, (35)

where K̄ = ∫ π

−π
dk
2π

cos k ln(1 + e−εu(k)/T ) and I0(x) is the
zeroth-order modified Bessel function, which stems from the
spin-wave contributions. In the above equations, we denoted

d1 = 2π −
∫ π

−π

dk cos k εu−(k),

d2 = −π

2
−
∫ π

−π

dk cos k sin2 k εu−(k),

ηn =
∞∑

m=1

∫ ∞

−∞
d�Tnm(�)ε′−

m (�),

ā = 1

2

∞∑
n=1

∫ ∞

−∞
d�

[
bn(�) − 4bn(�)�2

(nu)2 + �2

]
ε′−
n (�),

ϕn =
∞∑

m=1

∫ ∞

−∞
d�Qnm(�)ε′−

m (�),

with bn(�) = an(�)
(nu)2+�2 and

Qnm(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b|n−m|(x) + 2b|n−m|+2(x) + . . .

+2bn+m−2(x) + bn+m(x) if n �= m

2b2(x) + 2b4(x) + . . .

+2b2n−2(x) + b2n(x) if n = m

. (36)

The results (34) and (35) are valid for the low-density limit and
strong-interaction regime.

Substituting Eqs. (34) and (35) into (20), the pressure per
unit length is given by p = pu +∑∞

n=1 pb
n + |u| with

pu = T

∫ π

−π

dk

2π
ln
(
1 + e−εu(k)/T

)
,

pb
n = T

∫ ∞

−∞

d�

π
Re

[
1√

1 − (� + i n |u|)2

]

× ln
(
1 + e− ε′n (�)

T

)
. (37)

Using the results (34) and (35) and taking integration by parts
within the above expressions for the effective pressures (37),
we then obtain the set of coupled equations

pu = T ln
(
1 + e(μ+2u+B−∑∞

n=1 pb
n+ā−2)/T

)
− 2ā

π

∫ 1

−1
dx

x2/
√

1 − x2

1 + e2x/T /z
+ 2ā

1 + e4/T /z2

+ 2

π

∫ 1

−1
dx

arccos(−x)

1 + e2x/T /z
+ o

(
1

u4

)
, (38)

pb
n = T

[
1 − 1

4(nu)2

]
ln(1 + e2nμ/T )

+ 2Dn

π

[
1 − 1

4(nu)2

] ∫ ∞

0
dx

arctan
√

x

1 + eDnx/T /ζn

+ o

(
1

u4

)
, (39)

which serve as the equations of state.
In the above equations,

Dn = d1

πn|u| − (nu)2ϕn,

z = e(μ+2u+B−∑∞
n=1 pb

n+ā)/T ,

ζn = e
(2nμ−ηn+ d1

πn|u| +
d2

π(n|u|)3 )/T
.

We also defined the auxiliary functions

d1 = 2π − 4
∫ 1

−1
dx

√
1 − x2

1 + e2x/T /z

− 4ā

∫ 1

−1
dx

x3/
√

1 − x2

1 + e2x/T /z
+ o

(
1

u4

)
,

d2 = −π

2
− 4

3

∫ 1

−1
dx

(1 − x2)3/2

1 + e2x/T /z
+ o

(
1

u4

)
,

ā =
∞∑

n=1

Dn

π (nu)2

∫ ∞

0
dx

√
x/(1 + x)2

1 + eDnx/T /ζn

+ o

(
1

u4

)
,

ηn =
∞∑

m=1

Tξ
nm(m) + o

(
1

u4

)
,

ϕn =
∞∑

m=1

Tφ
nm(m) + o

(
1

u6

)
. (40)

In these equations, we define Tx
nm(m) = xm

|n−m| + 2xm
|n−m|+2 +

· · · + 2xm
n+m−2 + xm

n+m, with xm
0 = 0 (x = η,φ) and auxiliary

functions

ξm
p = T ln(1 + e2mμ/T )

+ 2Dm

π

∫ ∞

0
dx

arctan
(

m
p

√
x
)

1 + eDmx/T /ζm

,

φm
p = T

2(pu)2
(1 + e2mμ/T )
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+ m

p

Dm

πu2

∫ ∞

0
dx

√
x/(p2 + m2x)

1 + eDmx/T /ζm

+ Dm

π (pu)2

∫ ∞

0
dx

arctan
(

m
p

√
x
)

1 + eDmx/T /ζm

. (41)

These functions are indicative of the sophisticated many-
body effects induced by k-� strings of different lengths. A
more detailed derivation of the above result is presented in
Appendix B.

In order to conceive the universal behavior of the system,
we need to further simplify the equations of state (38) and
(39). To this end, we utilize the conditions |μ

T
|  1 and

strong interaction |u|  1, which suppress the large length
k-� strings in this physical regime. We observe that no larger
length-n k-� bound states than n = 1 exist in the FFLO phase
IV at low temperatures. Then the pressure per unit length
simplifies to p = pu + pb + |u|, where pu and pb are given
by

pu = T ln
(
1 + e(μ+2u+B−pb−2)/T

)
+ 2

π

∫ 1

−1
dx

arccos(−x)

1 + e2x/T /z1
+ o

(
1

u2

)
, (42)

pb = 2D1

π

∫ ∞

0
dx

arctan
√

x

1 + eD1x/T /ζ
+ o

(
1

u2

)
, (43)

where z1 = e(μ+2u+B−pb)/T , ζ = e(2μ−η+ d1
π |u| )/T and the above

auxiliary functions with n = 1 read

D1 = d1

π |u| − u2ϕ, (44)

d1 = 2π − 4
∫ 1

−1
dx

√
1 − x2

1 + e2x/T /z1
+ o

(
1

u2

)
, (45)

η = 2D1

π

∫ ∞

0
dx

arctan
(

1
2

√
x
)

1 + eD1x/T /ζ
+ o

(
1

u2

)
, (46)

ϕ = D1

2πu2

∫ ∞

0
dx

√
x/(4 + x)

1 + eD1x/T /ζ

+ D1

4πu2

∫ ∞

0
dx

arctan
(

1
2

√
x
)

1 + eD1x/T /ζ
+ o

(
1

u4

)
. (47)

Here we only consider the corrections up to order 1/|u| in the
strong-coupling regime |u|  1. The equations of state (42)
and (43) give a very good approximation of the low-energy
physics. In Fig. 3, we demonstrate the accuracy of these
equations compared to the numerical results obtained from
the TBA equations (17)–(19). The peaks in the susceptibility
and the discontinuities of the first derivative of the density
reveal important behavior of the model near quantum phase
transitions.

The pressures (42) and (43) could be further approximately
resolved by appropriate iteration. For the low-density regime
nc � 1, we expand the numerators in the pressure pb and the
auxiliary functions η and ϕ with respect to a small value of x

in these integrals. Then we can represent η and ϕ in terms of

pb. After iteration we thus obtain pb ≈ −T
3
2 f 3

2
/

√
d1
|u| − πpb

8 ,

where we have defined fs = Lis[− exp( 1
T

(2μ − pb

2 + d1
π |u| ))]

in terms of the polylog function Lis(x). Using this expression

FIG. 3. A comparison between the analytic results (42) and (43)
and the numerical results obtained from the TBA equations (17)–(19).
We set up natural units in the plots. The upper and the lower panels
respectively show the density and susceptibility vs magnetic field
across phases V, IV, II, and III at a fixed chemical potentialμ = −0.08,
temperature T = 10−4 and interaction strength u = −10. The sudden
changes in the density and susceptibility show subtle scaling behavior
near phase transitions.

for pb and after some lengthy algebra, we finally obtain the
closed form expressions

pb = − 1√
πD0

T
3
2 f̃ 3

2
+ o

(
1

u2
,T 2

)
, (48)

pu = T ln
(
1 + e(μ+2u+B−pb−2)/T

)
+ 2

π

∫ 1

−1
dx

arccos(−x)

1 + e2x/T /(z0 e−pb/T )
+ o

(
1

u2
,T 2

)
(49)

for the two pressures, with the auxiliary functions

d0 = 2π − 4
∫ 1

−1
dx

√
1 − x2

1 + e2x/T /z0
+ o

(
1

u2
,T 2

)
, (50)

D0 = d0

|u|π + 1

8

√
|u|
d0

T
3
2 g 3

2
+ o

(
1

u2
,T 2

)
. (51)

In results (48) and (49), f̃s = gs − 1
2

√
|u|
d0

T
1
2 gs gs−1, z0 =

e(μ+2u+B)/T and gs = Lis[−e(2μ+ d0
|u|π )/T ]. The pressures (48)

and (49) give deep insight into quantum scaling in the critical
regimes.

IV. QUANTUM CRITICALITY

Quantum phase transitions occur in the attractive Hubbard
model at zero temperature as the external magnetic field and
chemical potential are varied across any phase boundary in
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Fig. 2. In general, near a quantum critical point, the model is
expected to show universal scaling behavior in the thermody-
namic quantities due to the collective nature of many-body
effects [60]. We see that the 1D attractive Hubbard model
is an ideal model to explore such a universal scale-invariant
description on a 1D lattice, which can be determined by the
power-law scaling of the various thermodynamic properties.
The behavior of the thermodynamic quantities is governed by
scaling functions with critical exponents in the V-shaped region
fanning out to finite temperatures from the quantum critical
point. In order to calculate the thermodynamic quantities which
contain enough thermal and quantum fluctuations to describe
quantum criticality, we here use the form of the equation of
state with the results given in (42), (43), and (45)–(47) for the
pressure terms. We observe that first-order derivatives of these
pressures with respect to μ or B form a set of linear equations.
Solution to this set of linear equations directly leads to the
particle density nc = ( ∂p

∂μ
)
B

and magnetization m = 1
2 ( ∂p

∂B
)
μ

.
Similarly, one can derive the second-order derivatives of the
pressures, the compressibility κ = ( ∂n

∂μ
)
B

and the susceptibility

χ = ( ∂m
∂B

)
μ

. The corresponding scaling laws can be obtained
in the different physical regimes.

At very low temperatures, spin fluctuation in the FFLO-like
phase is suppressed, as are the bound states of higher k-�
strings for |μ/T |  1. In this regime, the thermodynamics
of the model is governed by a two-component TLL or say
two-component Fermi liquid consisting of excess fermions and
of hard-core bosonic charge bound states. The leading low-
temperature correction to the free energy is given by

f ≈ f0 − πT 2

6

(
1

v1
+ 1

v2

)
, (52)

where f0 is the ground-state free energy and v1 (v2) is the sound
velocity of excess fermions (bound pairs). This result is valid
for arbitrary interaction strength. When the particle density is
very low, i.e., n1,2 � 1, we explicitly obtain the two velocities

v1 ≈ 2πn1

[
1 + 4

n2

|u| + 12

(
n2

|u|
)2
]
,

v2 ≈ π n2

√
2α1

β1

[
1 + 1

β1

(
2

n1

|u| + n2

|u|
)

+ 3

β2
1

(
2

n1

|u| + n2

|u|
)2
]
, (53)

where the lattice parameters

α1 =
∫ π

−π

dk
2|u| cos2 k (u2 − 3 sin2 k)

π (sin2 k + u2)3
,

β1 =
∫ π

−π

dk a1(sin k), (54)

are functions of |u| representing the lattice effect [61]. In
the above equations, n1,2 stands for the densities of excess
fermions and the bound pairs, respectively. We plot the two
lattice parameters against interaction strength in Fig. 4. We
shall see that the critical exponents and thermodynamics of the
model are subject to these two parameters. The susceptibility is
independent of temperature so that the dimensionless Wilson

FIG. 4. The lattice interacting parameters for the length-1 k − �

strings as a function of the interaction strength u. The parameter α1

strongly affects the band dispersion of bound pairs. The parameter β1

presents a lattice contribution to the free energy of the pairs.

ratio reaches a constant (we will study this nature of the Fermi
liquid in the next section). The TLL validates only in the region
below the crossover temperatures, where the entropy or specific
heat retains a linear temperature-dependence, see the dashed
lines in Fig. 5. The entropy in the temperature-magnetic field
plane displays the visible areas of the critical regions (QC)
near different critical points. In what follows, we will derive
the scaling functions for the critical regions.

Using the equation of state with the pressures (42), (43),
and (45)–(47), we can further derive the scaling forms of the
thermodynamic quantities in the critical regimes. Analytic
results for the scaling functions help to understand the
microscopic origin of quantum criticality of the 1D attractive
Hubbard model. For convenience, we first simplify the

FIG. 5. Contour plot entropy vs magnetic field B for the 1D
attractive Hubbard model. The numerical calculation is performed by
solving the TBA equations (17)–(19) with a fixed chemical potential
μ = −0.828 and interaction u = −1. The crossover temperatures
(white dashed lines) fanning out from the critical points separate
different TLL phases from the quantum critical regimes. The linear
temperature-dependent entropy breaks down when the temperature
is greater than these crossover temperatures. Here, TLLu and TLLb,
respectively, stand for the TLLs of unpaired fermions and bound pairs.
TLLm stands for the two-component TLL of the FFLO-like state.
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auxiliary functions

δ = 1

π

∫ 1

−1
dx

1

1 + e2x/T /z̄0

x√
1 − x2

,

γ = 1

π

∫ 1

−1
dx

1

1 + e2x/T /z̄0

1√
1 − x2

,

γ ′ = 1

πT

∫ 1

−1
dx

e2x/T /z̄0

(1 + e2x/T /z̄0)2

1√
1 − x2

,

δ′ = 1

πT

∫ 1

−1
dx

e2x/T /z̄0

(1 + e2x/T /z̄0)2

x√
1 − x2

, (55)

where z̄0 = exp (μ + 2u + B + T
3
2 g 3

2
/
√

πD0) with D0 given
in (51). By virtue of results (42), (43), and (45)–(47), the
closed form expressions for thermodynamic quantities can be
derived. For strong attraction, we have the relations

nc = γ + (1 − γ )
∂pb

∂μ
, (56)

m = 1

2

[
γ + (1 − γ )

∂pb

∂B

]
, (57)

κ =
(

1 − ∂pb

∂μ

)2

γ ′ + (1 − γ )
∂2pb

∂μ2
, (58)

χ = 1

2

[(
1 − ∂pb

∂B

)2

γ ′ + (1 − γ )
∂2pb

∂B2

]
, (59)

for thermodynamic quantities. Here we calculated the
derivatives of the pressures:

∂pb

∂μ
= −

τ
1
2
(
2f 1

2
− τf 3

2

)
�t

, (60)

∂pb

∂B
= −

2 δτ
1
2
(
f 1

2
− τf 3

2

)
|u|�t

, (61)

∂2pb

∂μ2
= −

f− 1
2

(
16π − √

πτ
3
2 f 3

2

)
4D0τ

1
2 �3

t

, (62)

∂2pb

∂B2
= −

2δ′τ
1
2
(
f 1

2
− τf 3

2

)
|u|�t

−
πδ2f− 1

2

u2D1τ
1
2
(
4f 1

2
− τf 3

2

)
�4

t

× (16
√

πf 1
2
− 8τ

1
2 f 2

1
2

− 5τ
3
2 f 1

2
f 3

2
− 4

√
πτf 3

2

)
(63)

with τ = T/D0 and �t = √
π − 1

2τ
1
2 f 1

2
+ 1

8τ
3
2 f 3

2
. These

results constitute very accurate results for the thermodynamics.
The asymptotic results for the thermodynamic properties
(56)–(59) have been demonstrated in Fig. 3.

The universality class of quantum criticality is determined
by the critical exponents. As we have seen in Fig. 2, the
1D attractive Hubbard model has a rich phase diagram. At
least one branch of the density of states shows sudden change
when the driving parameters vary across the phase boundary in
the phase diagram. The singular behavior of thermodynamic
properties is uniquely determined by the critical exponents,
which are independent of the microscopic details of the system.
Indeed, quantum criticality of quantum many-body systems
depends solely on the dimensionality and the symmetry of the

Hamiltonian. Here we expand the above equations of state for
the thermodynamic quantities in the limit |μ − μc| � T . We
derive the scaling forms of the thermodynamics at quantum
criticality and thus read off the critical exponents.

We find that the suddenly changed density of state usually
results in a quantum phase transition, so that the thermodynam-
ical properties can be cast into the forms of universal quantum
scaling functions in the critical region. For example, for the
phase transition from the fully paired phase V to the FFLO-
like state IV, thermodynamic quantities of excess fermions
display the singular parts in the scaling functions, whereas
the thermodynamic properties of the bound pairs present the
regular parts. In contrast to the attractive SU(2) Fermi gas, the
half-filling phase in the attractive Hubbard model contributes
a constant regular part to the thermodynamic quantities due to
its unique band filling.

Our results for the scaling functions of particle density, mag-
netization, compressibility and susceptibility are summarized
as follows.

(1) Phase transition (I-V),

nc = −
√

2|u|
π

T
1
2 Li 1

2

(
− exp

(
2μ − 2μc1

T

))
, m ≈ 0,

κ = −2

√
2|u|
π

T − 1
2 Li− 1

2

(
− exp

(
2μ − 2μc1

T

))
, χ ≈ 0.

(64)

(2) Phase transition (I-II),

nc = − 1

2
√

π
T

1
2 Li 1

2

(
− exp

(
μ − μc2

T

))
,

m = − 1

4
√

π
T

1
2 Li 1

2

(
− exp

(
μ − μc2

T

))
,

κ = − 1

2
√

π
T − 1

2 Li− 1
2

(
− exp

(
μ − μc2

T

))
,

χ = − 1

4
√

π
T − 1

2 Li− 1
2

(
− exp

(
μ − μc2

T

))
. (65)

(3) Phase transition (II-III),

nc = 1 + 1

2
√

π
T

1
2 Li 1

2

(
− exp

(
−μ − μc3

T

))
,

m = 1

2
+ 1

4
√

π
T

1
2 Li 1

2

(
− exp

(
−μ − μc3

T

))
,

κ = − 1

2
√

π
T − 1

2 Li− 1
2

(
− exp

(
−μ − μc3

T

))
,

χ = − 1

4
√

π
T − 1

2 Li− 1
2

(
− exp

(
−μ − μc3

T

))
. (66)

(4) Phase transition (II-IV),

nc = nb4 + λ1T
1
2 Li 1

2

(
− exp

(
2(μ − μc4)

T

))
,

m = mb4 + λ2T
1
2 Li 1

2

(
− exp

(
2(μ − μc4)

T

))
,

κ = κb4 + λ3T
− 1

2 Li− 1
2

(
− exp

(
2(μ − μc4)

T

))
,
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χ = χb4 + λ4 T − 1
2 Li− 1

2

(
− exp

(
2(μ − μc4)

T

))
. (67)

(5) Phase transition (V-IV),

nc = nb5 + λ5 T 1/2Li1/2

(
− exp

(
μ − μc5

T

))
,

m = − 1

4
√

π
T 1/2 Li1/2

(
− exp

(
μ − μc5

T

))
,

κ = κb5 + λ6 T −1/2 Li−1/2

(
− exp

(
μ − μc5

T

))
,

χ = − 1

4
√

π
T −1/2Li−1/2

(
− exp

(
μ − μc5

T

))
. (68)

In the above scaling forms some constants are given in
Appendix C. These scaling forms can be cast into the form of
well known universal scaling laws. For example, the universal
scaling laws for the density and compressibility read [60,62–
64]

n(μ,B,T ) = n0(μ,B,T ) + T d/z+1−(1/νz)G
(

μ − μc

T 1/νz

)
,

κ(μ,B,T ) = κ0(μ,B,T ) + T d/z+1−(2/νz)F
(

μ − μc

T 1/νz

)
, (69)

where n0 and κ0 are the regular parts, i.e., the background
values before the phase transition. Meanwhile, G(x) = Li 1

2
(x),

F(x) = Li− 1
2
(x) give the scaling functions in the singular parts.

From the above scaling forms, we read off the dynamical
exponent z = 2 and correlation critical exponent ν = 1/2. This
scaling theory is valid for all phase transitions across the phase
boundaries in the phase diagram 2. Such universal scaling laws
are demonstrated in Fig. 6 for various phase transitions.

The above scaling forms are observed to give the same
critical exponents which characterize the universality class
of free-fermion criticality. An intuitive explanation for this
result is that the phase transitions occurred in the 1D Hubbard
model have a common feature: at least one branch of Fermi sea
vanishing, namely εu,b(0) = 0. This naturally leads to a change
in dispersion, i.e., a linear dispersion vanishes while a quadratic
dispersion is created when the phase transition occurs. This
change in dispersion underlies a universality class of quantum
criticality, see also the recent studies of the 1D interacting Bose
gas [65] and the 1D Heisenberg spin chain [66].

Moreover, the phase V in the phase diagram Fig. 2 shows
a gapped phase (fully paired phase), where the susceptibility
reveals a particular exponential decay at low temperatures.
Using the equation of state with the pressures (42), (43), and
(45)–(47), we further show that the susceptibility decays ex-
ponentially with the energy gap induced by the ferromagnetic
ordering, namely,

χ ≈ T −1/2

4
√

π
e−�/T , (70)

where the energy gap is given by � = εu(0) = −2 − μ −
2u − B + pb with pb = 4(2π−q3/3)

3|u|π (1 + 2|u|πμ

2π−q3/3 )
3
2 . This result

can also be obtained by applying Sommerfeld expansion in
Eq. (48). We approximately obtain the susceptibility χ ≈

FIG. 6. Scaling laws for thermodynamic quantities vs chemical
potential at different temperatures. The intersection points in (a), (b),
(c), and (d) give the critical points for phase transitions (I-II), (II-III),
(II-IV), and (I-V), respectively.
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1
2γ ′ ≈ − T −1/2

2
√

π
Li− 1

2
(−e−�/T ) from Eq. (59). In the next sec-

tion, we further demonstrate the macroscopic nature of the
susceptibility in the FFLO phase.

V. FREE FLUIDS AND ADDITIVITY RULES

Fermi liquid theory is believed to break down in 1D
strongly correlated systems due to the absence of well defined
quasiparticles [57]. Consequently, the TLL theory is generally
believed to describe the collective low-lying excitations in
1D many-body systems. Despite such a big difference in the
microscopic origins of the two low-energy theories, both the
Fermi liquid and the TLL share a common feature—a small
distortion of the Fermi surface or Fermi points results in the
universal low-energy physics of many-body systems. From
the results of the last section, we observed that at very low
temperatures, the low-energy physics of the FFLO-like state is
governed by the universality class of a two-component TLL.
However, in view of the macroscopic properties of the 1D
attractive Hubbard model, we argue that such a universality
class of two-component TLL reveals an important nature of
free fluids. In order to show this elegant nature, we will
introduce two effective chemical potentials for the excess
fermions and bound pairs on a 1D lattice. Then we will
show that the thermodynamic properties in the FFLO-like
phase behave like two independent free fluids. In particular,
we find simple additivity rules for the compressibility and
susceptibility which represent a universal characteristic of
quantum liquids at the renormalization fixed point.

Prior to a discussion of the free fluids, we first make
an approximation for the zero temperature TBA equations
Eqs. (21) and (22) in the low-density regime,

ε1(k) = k2 − μ1 − a1 � ε2(k), (71)

ε2(�) = α1�
2 − α1μ2 − a1 � ε1(�) − a2 � ε2(�), (72)

where am � εn(x) = ∫ yc

−yc
dy am(x − y)εn(y) with yc being the

Fermi point of εn(y), i.e., εn(yc) = 0. In the above equations,
we introduced the effective chemical potentials for excess
fermions and bound pairs as

μ1 = μ + B + 2u + 2, (73)

μ2 = 2

α1
(μ + 2

√
u2 + 1 − 2|u|). (74)

The effective chemical potential of the bound pairs reveals a
deep physical insight into the crossover from Bose-Einstein
condensate (BEC) to Bardeen-Cooper-Schrieffer (BCS) su-
perconductor. Later, we shall see these effective chemical
potentials reveal an important free quantum liquid nature. We
will show that for the balanced case the effective chemical
potential μ2 varies from the kinetic energy of bound pairs to the
free Fermi energy when the interaction changes from negative
infinity to zero. This reveals a 1D analog of the BEC-BCS
crossover. This form of the TBA equations is useful to access
the ground-state properties, such as sound velocities, stiffness
and effective chemical potentials. By virtue of Eqs. (71) and

(72), we rewrite the free energy per site (20) as

f = u +
∫ kc

−kc

dk

2π
ε1(k) +

∫ �c

−�c

d�

2π
β1ε

2(�), (75)

where εu = ε1 and ε′
1 = ε2.

We now proceed to calculate the TLL parameters of the
model and compare them with those of the 1D attractive SU(2)
Fermi gas [59]. The basic idea is to express the effective
chemical potentials in terms of the Fermi points by employing
iteration of Eqs. (71) and (72). Using the fact that the two
dressed energies vanish at their corresponding Fermi points, we
express those Fermi points in terms of the densities of excess
fermions and bound pairs. We shall see that this process leads
to a separation of two free fluids in the ground-state energy per
site.

In order to simplify the lengthy iterations, we firstly rescale
the TBA equations (71) and (72) by defining ε̃n = εn/u2, μ̃n =
μn/u

2, ỹc = yc/|u|, and ãn(x) = n
π

1
n2+x2 . Then we introduce a

vector presentation of the rescaled TBA equations. In view of
the properties of even functions, we utilize the base {k2n} and
{�2n} (n = 0,1,2, . . .) to expand these scalar equations, thus
we have, respectively,

�ε 1 = �V 1 − A1(�̃c) �ε 2, (76)

�ε 2 = �V 2 − A1(k̃c) �ε 1 − A2(�̃c) �ε 2. (77)

The vectors �V 1 = [−μ̃1,1,0, . . .]t and �V 2 =
[−α1μ̃2,α1,0, . . .]t are the driving terms and the superscript
t represents transpose operation. The matrix An(ỹc)�ε
corresponds to the integral

∫ ỹc

−ỹc
dy ãn(x − y)ε̃(y).

Furthermore, as we only retain the first few leading terms,
�ε n and An(ỹc) can be expanded as sums of a few leading
orders with respect to yc, i.e., �ε n = �ε n

(0) + �ε n
(1) + �ε n

(2) + . . . and
An(ỹc) = An

(1)(ỹc) + An
(3)(ỹc) + An

(5)(ỹc) + . . .. More details of
the latter expansion are presented in Appendix D. Substituting
these expansions into the TBA equations of vectorial form
Eqs. (76) and (77), and sorting terms order by order, leads to
the set of equations

�ε 1
(0) = �V 1, �ε 2

(0) = �V 2,

�ε 1
(1) = −A1

(1)(�̃c)�ε 2
(0),

�ε 2
(1) = −A1

(1)(k̃c)�ε 1
(0) − A2

(1)(�̃c)�ε 2
(0),

�ε 1
(2) = −A1

(1)(�̃c)�ε 2
(1),

�ε 2
(2) = −A1

(1)(k̃c)�ε 1
(1) − A2

(1)(�̃c)�ε 2
(1),

�ε 1
(3) = −A1

(1)(�̃c)�ε 2
(2) − A1

(3)(�̃c)�ε 2
(0),

�ε 2
(3) = −A1

(1)(k̃c)�ε 1
(2) − A2

(1)(�̃c)�ε 2
(2) − A1

(3)(k̃c)�ε 1
(0)

− A2
(3)(�̃c)�ε 2

(0). (78)

It is easy to solve the above vectorial forms �ε 1
(r) and �ε 2

(r) with r =
1,2,3. We then substitute these results into the scalar expression
of the rescaled TBA equations. Together with ε̃n(ỹc) = 0 and
the expansion μ̃n = μ̃(2)

n + μ̃(3)
n + μ̃(4)

n + · · · , we then obtain
a set of recurrence equations for μ̃(2)

n , μ̃(3)
n , and μ̃(4)

n . Here we
observe that the expansions for chemical potentials begin from
n = 2 due to the fact that ε̃1(k̃c) = −μ̃1 + k̃2

c + o(k̃3
c ) = 0, i.e.,
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μ̃1 = k̃2
c + o(k̃3

c ). Similarly for μ̃2. We solve these equations
and then express the solution as the vectorial equation[

μ̃1

α1μ̃2

]
=
(

I + 2

3
T
)[

k̃2
c

α1�̃
2
c

]
, (79)

where the matrix T is given by

T = 1

π

[
0 2�̃c

2k̃c �̃c

]
. (80)

Finally, the free energy per site Eq. (75) is expressed in terms
of Fermi points kc and �c, with result

f = − 2

3π

(
k3
c + α1β1�

3
c

)+ u. (81)

We now proceed to obtain the particle densities in terms
of the Fermi points. To this end, we turn to the total particle
density nc and magnetization m̄ per site based on Eq. (75),

nc = − ∂f

∂μ
= −

∫ kc

−kc

dk

2π

∂ε1

∂μ
− β1

∫ �c

−�c

d�

2π

∂ε2

∂μ
,

m̄ = − ∂f

∂B
= −

∫ kc

−kc

dk

2π

∂ε1

∂B
− β1

∫ �c

−�c

d�

2π

∂ε2

∂B
.

In order to get closed forms for these two properties, we first
take partial derivatives of Eqs. (71) and (72) with respect to μ

and B, respectively. Then we rewrite these integral equations
in terms of the vectorial forms similar to Eqs. (76) and (77)
Finally, by lengthy iteration and after some manipulations, we
obtain [

ñ1

ñ2

]
= 1

π

(
I − T + T2)t[ k̃c

β1�̃c

]
, (82)

where ñr = nr/|u| (r = 1,2) with n1 = m̄ and n2 =
(nc − n1)/2 being respectively the densities for the excess
fermions and bound pairs. Here the redefined m̄ = 2m is intro-
duced according to the original TBA equations. An inverse of
Eq. (82) gives the cutoff momenta in terms of the densities n1,2:

kc ≈ πn1

3∑
n=0

(
2n2

|u|
)n

,

�c ≈ πn2

β1

3∑
n=0

[
2n1 + n2

β1|u|
]n

. (83)

For the next step, substituting Eq. (83) into (81), leads to
separating the ground-state energy per site into the energies of
excess fermions and bound pairs, with result

e = e1 + e2 + eb. (84)

Here, eb is the binding energy and the subscripts 1 and 2 denote
the excess fermions and bound pairs, respectively. The terms
are given explicitly by

e1 = π2

3
n3

1

[
1 + 2

(
2n2

|u|
)

+ 3

(
2n2

|u|
)2
]
, (85)

e2 = π2

3

α1n
3
2

β2
1

[
1 + 2

(
2n1 + n2

β1|u|
)

+ 3

(
2n1 + n2

β1|u|
)2
]
, (86)

eb = −(2u + 2)n1 − 4(u +
√

u2 + 1)n2. (87)

As usual, we define a dimensionless interaction strength γs =
2|u|/ns (s = 1,2) [59]. Using the relation

Ks = π/

√
3e(γs) − 2γs

de(γs)

dγs

+ 1

2
γ 2

s

d2e(γs)

dγ 2
s

, (88)

the Luttinger parameters for the excess fermions and bound
pairs can be directly worked out to be

K1 = 1, K2 = 2
√

2
β1√
α1

[
1 − 2

β1 γ2
+ 1

(β1 γ2)2

]
. (89)

We note that the Luttinger parameter K2 in the fully paired
phase depends explicitly on the lattice parameters α1 and β1.
This behavior is different from the constant value K2 = 4 for
the bound pairs phase of the strongly attractive SU(2) Fermi
gas [59]. In the limits u → 0 and ns/|u| small, the lattice
parameters α1 → 2, β1 → 2. Thus we have K2 = 4, which
is the same as for the SU(2) Fermi gas. The two limits u → 0
and ns/|u| � 1 represent the lattice-gas mapping between 1D
attractive Hubbard model and SU(2) Fermi gas [9].

Beside this framework of the TLL theory, we also find
that for the low-density case, the chemical potentials for the
unpaired fermions and pairs are given explicitly by

μ1 = πn2
1A

2
1 + 4π2α1

3β3
1 |u|n

3
2A

3
2, (90)

μ2 = π2 n2
2

β2
1

A2
2 + 4π2

3α1|u|n
3
1A

3
1 + 2π2

3β3
1 |u|n

3
2A

3
2, (91)

where A1 = 1 + 2n2
|u| + ( 2n2

|u| )
2

and A2 = 1 + 2n1+n2
β1|u| +

( 2n1+n2
β1|u| )

2
, which indicate interacting effects among pairs

and unpaired fermions. We observe that the chemical potential
μ2 tends to the kinetic energy of bound pairs in the BEC limit
|u| → ∞. Whereas in the weak coupling limit, |u| → 0, μ2

tends to the Fermi energy of the free fermions on a 1D lattice.
The effective chemical potentials (90) and (91) reveal that the
thermodynamic quantities could be separable, i.e., the total is
equal to a sum of the effective thermodynamic quantities of
two individual constituents.

Here, we further derive the additivity rules for the compress-
ibility and susceptibility. For the compressibility, using the
standard thermodynamic relationκ = ( ∂nc

∂μ
)
B

, the derivatives of
the density and effective chemical potentials for fixed magnetic
field could be further expressed as dnc = dn1 + 2 dn2 and
dμ1 = α1

2 dμ2 = dμ, respectively. Inserting these relations

into the definition of compressibility, κ = ∂nc

∂μ
|
B

= dn1+2dn2
dμ

,
we thus obtain

κ = κ1 + 2

α1
κ2. (92)

Here the effective compressibilities of excess fermions and
bound pairs are defined as κ1 = ( ∂n1

∂μ1
)
B

and κ2 = 2( ∂n2
∂μ2

)
B

.
Details are given in Appendix D. The additivity rule (92) for
the compressibility can be confirmed numerically, as shown in
Fig. 7(a).

For the susceptibility in the canonical ensemble, defined as
χ̄ = ( ∂m̄

∂B
)
nc

, it is straightforward to see dnc = dn1 + 2dn2 = 0
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FIG. 7. Additivity rules: (a) compressibility κ and (b) spin sus-
ceptibility χ vs magnetic field B for the attractive Hubbard model
with u = −1 and μ = −0.8282. The red dashed lines show the result
obtained from the additivity rules (92) and (93). At low temperatures,
all compressibility and susceptibility curves collapse into the zero
temperature ones obeying the additivity rules. In the vicinity of the
critical points, such free fluids nature beaks down.

and dB = dμ1 − α1
2 dμ2, and thus the additivity rule

1

χ̄
= 1

χ̄1
+ α1

2

1

χ̄2
. (93)

Here, χ̄1 = ( ∂n1
∂μ1

)
nc

and χ̄2 = 2( ∂n2
∂μ2

)
nc

are the effective sus-

ceptibilities for excess fermions and bound pairs, respectively.
These explicit expressions for the effective thermodynamic
quantities can be found in Appendix D. The additivity rule
(93) for the susceptibility can also be confirmed numerically,
as shown in Fig. 7(b). Similar to the observation concerning
TLL parameters, the additivity rules for the 1D attractive
Hubbard model also reduce to those for the SU(2) Fermi gas
through the lattice-gas mapping. In Appendix D, we calculate
the individual compressibility and susceptibility explicitly.

The simple additivity nature of the thermodynamics at low-
temperatures characterizes the universal low-energy physics
of the FFLO-like state of the 1D attractive Hubbard model.
In this sense, the additivity rules reflect the universal nature of
the multicomponent TLL in 1D. The simple additivity rule thus
reveals the significant two free fluid nature of the FFLO phase,
as predicted in the expansion dynamics of the FFLO state in 1D
[44]. The macroscopic magnetic properties in the FFLO-like

FIG. 8. Numerical results for the magnetization vs logarithm of
the temperature for different magnetic fields. Here we have set a
fixed chemical potential μ = −0.14 and interaction strength u = −7.
For magnetic field B > Bc = 12.11065 (phase IV), three regions
are clearly displayed: The free fluids region at low temperatures,
non-Fermi liquid region at higher temperatures, and a crossover in
between. For magnetic field B < Bc (phase V), the magnetization
displays the gapped nature of a non-Fermi liquid phase.

phase show the properties of the ordinary higher-dimensional
Fermi liquid, see Fig. 8. This figure shows that in the free fluids
region the magnetization is nearly temperature independent.
In the non-Fermi liquid region, thermal fluctuations gradually
overwhelm quantum fluctuations. Thus the magnetization has a
uniform temperature dependence for different magnetic fields,
indicating paramagnetism. The non-Fermi liquid crossover
region reveals a scaling invariance, which was studied in
Sec. IV. Such Fermi liquidlike features have been found in
the spin compound Cu(C4H4N2)(NO3)2 [53] and the heavy
fermion material YbNi4P2 [54]. The study of Fermi and non-
Fermi liquids in 1D has received significant recent interest
[56,67,68].

Using the explicit expressions for the compressibility (92)
and susceptibility (93), we may calculate the Wilson ratio,
which is a dimensionless ratio defined as the susceptibility
or compressibility over the specific heat divided by the tem-
perature. The Wilson ratio is the ratio describing quantum
fluctuations and energy thermal fluctuations. Both the Fermi
liquid and TLL give a constant Wilson ratio [59], i.e., two types
of fluctuations are on equal-footing in temperature scaling.
However, near a critical point, the dimensionless Wilson ratios
exhibits a sudden enhancement indicating a sudden change
in the density of state. Therefore the Wilson ratios serves as a
powerful tool for distinguishing the phases of a quantum liquid
and for determining the finite temperature phase diagram as
well.

The compressibility Wilson ratio RW is determined by

Rκ
W = π2k2

B

3

κ

Cv/T

= π

(
κ1 + 2

α1
κ2

)/(
1

v1
+ 1

v2

)
, (94)

where we have used Eq. (52) to calculate the specific heat
and set the Boltzmann constant to kB = 1. This Wilson ratio
vanishes in both phases I (vacuum) and III (half-filling phase).
In the limit nc/|u| → 0 the compressibility Wilson ratio
for phases II and IV are, respectively, Rκ

W = 1 and Rκ
W =
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FIG. 9. Finite temperature phase diagrams obtained from contour
plots of the Wilson ratios. The plots in (a) and (b) are determined
from the susceptibility Wilson ratio R

χ

W and from the compressibility
Wilson ratio Rκ

W, respectively. Here, u = −1 and T = 0.001. The red
balls and green balls represent up spin and down spin, respectively.
Both diagrams agree well with the zero temperature phase diagram
Fig. 2, despite the fact that the plot in (a) cannot distinguish phase I
and V due to the vanishing susceptibility in these two phases.

2
√

2β1/
√

α1. These results turn out to be the same as for
the strongly attractive SU(2) Fermi gas [59] when the limit
u → 0 is applied. On the other hand, the susceptibility Wilson

ratio is defined by R
χ

W = 4
3 ( πkB

μB gL
)
2 χ

Cv/T
with Bohr magneton

μB and Lande factor gL. Figure 9 shows a contour plot of
each type of Wilson ratio, which demonstrates the macroscopic
feature of the Fermi liquid nature. This figure also presents the
low-temperature phase diagram in the B-μ plane.

VI. CONCLUSION

In summary, we have presented a framework to determine
the nature of quantum criticality and quantum liquids in the
1D attractive Hubbard model. We have obtained the universal
thermodynamics of the model by solving the TBA equations. In
particular, we have analytically derived the equation of state
at low temperatures, from which we have obtained effective
chemical potentials of excess fermions and bound pairs, along

with the density, compressibility, susceptibility, and specific
heat in terms of the chemical potential μ, magnetic field B,
temperature T , and interaction strength constant. At quantum
criticality, the scaling forms of these thermal and magnetic
properties have been obtained. The dynamical exponent z =
2 and correlation critical exponent ν = 1/2, indicating the
universality class of criticality of free fermion theory.

Our results provide strong evidence for the existence of
two free fluids of bound pairs and of unpaired fermions, which
were noticed in the expansion dynamics of the FFLO state
in 1D [44]. Regarding the nature of the two fluids in the
attractive Hubbard model, we have shown that in the low-
density regime the interaction effect resulting from the paired
and unpaired fermions can be absorbed into effective chemical
potentials of two noninteracting ideal gases. Consequently,
the additivity rules in the compressibility and susceptibility
of the 1D attractive Hubbard model hold as long as the
dimensionless Wilson ratio remains a constant. This behavior
significantly reflects the free fluids nature in thermodynamic
properties of the model. In this phase, the FFLO pair correlation
function

Gp(x,t) = 〈�†
↑(x,t)�†

↓(x,t)�↑(0,0)�↓(0,0)〉

≈ Ap,1
cos(π (n↑ − n↓)x)

|x + i v1 t |2θ1 |x + i v2 t |2θ2

+Ap,2
cos(π (n↑ − 3n↓)x)

|x + i v1 t |2θ3 |x + i v2 t |2θ4
, (95)

shows a typical spatial oscillation, which is a characteristic of
the FFLO state. In the above equation, the exponents θ1 ≈ 1/2,
θ2 ≈ 1/2 + n2

|u|β1
, θ3 ≈ 1

2 − 4 n2
|u|β1

, and θ4 ≈ 5
2 − 4 n1

|u| − 3 n2
|u|β1

de-
pend essentially on the lattice parameter β1. Here, n2,1 =
N2,1/L are the dimensionless densities of pairs and unpaired
fermions, with the sound velocities v1,2 given in (53). The study
of the FFLO pair correlation is presented elsewhere [35]. To
conclude, we note that our work provides benchmark physics
of the 1D attractive Hubbard model of relevance to experiments
with ultracold fermionic atoms on lattices.
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APPENDIX A: WIENER-HOPF METHOD

The phase boundary between phases IV and V is determined
by the conditions εu(0) = 0 and εb(0) < 0, which imply that
Q = 0 and A is finite. Thus, at zero temperature, the TBA
equations are simplified to

εu(k) = −2 cos k − μ − 2u − B

−
∫ A

−A

d�a1(sin k − �)ε′
1(�), (A1)
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ε′
1(�) = −2μ − 2

∫ π

−π

dk cos2 k a1(sin k − �)

−
∫ A

−A

d�′ a2(� − �′)ε′
1(�′). (A2)

Particularly, if A = ∞, it follows that the chemical potential
μ = 0. The intersection of the phase boundary with the B axis
could be calculated exactly by the Fourier transformation

Bc1 = 2|u| − 2 + 2
∫ ∞

0
dω

J1(ω) exp(−|u|ω)

w cosh(uω)
. (A3)

Now we consider the more general case A  1, for which
the phase boundary can be resolved using the Wiener-Hopf
method. By applying Fourier transformation on Eq. (A2) and
after some algebraic manipulations, we have

ε′
1(�) = −μ −

∫ ∞

−∞
dω

J1(ω)

ω cosh(uω)
exp(i ω �)

+
∫ ∞

0
d�′ ε′

1(�′ + A)

× [R(� − �′ − A) + R(� + �′ + A)], (A4)

where we have introduced the function

R(x) =
∫ ∞

−∞

dw

2π

exp(i w x)

1 + exp(2|uw|) . (A5)

Substituting y(�) = ε′
1(� + A) and expanding y(�) =∑∞

n=0 yn(�) in terms of powers of � in Eq. (A4), the result can
be separated into a series of Wiener-Hopf integral equations in
terms of the functions yn(�), namely,

yn(�) = gn(�) +
∫ ∞

0
d�′ R(� − �′) yn(�′). (A6)

Here we denote the driving terms

g0(�) = −μ −
∫ ∞

−∞
dω

J1(ω)eiω(�+A)

ω cosh (uω)
,

gn(�) =
∫ ∞

0
d�′ R(� + �′ + 2A) yn−1(�′). (A7)

To solve these integral equations for yn(�), we begin by
defining

ỹ±
n (ω) =

∫ ∞

−∞
d� θH (±�) yn(�)eiω�,

where ỹ+
n (ω) (ỹn(ω)) is an analytic function in the upper (lower)

half-plane. It is obvious that the Fourier transformation of yn(x)
satisfies the relation ỹn(ω) = ỹ+

n (ω) + ỹ−
n (ω).

From Eq. (A6), it follows that

ỹ+
n (ω)

1

1 + exp(−2|u| |ω|) + ỹ−
n (ω) = g̃n(ω), (A8)

by applying Fourier transformation. We further decompose the
denominator 1 + exp(−2|u| |ω|) into a product of two pieces,

1 + exp(−2|u| |ω|) = G+(ω)G−(ω), (A9)

where G+(ω) [G−(ω)] is an analytic function in the upper
(lower) half-plane. Then substituting this last equation into

Eq. (A8) results in the form

ỹ+
n (ω)/G+(ω) + G−(ω)ỹ−

n (ω) = G−(ω)g̃n(ω). (A10)

Furthermore, we decompose G−(ω)g̃n(ω) into a sum of two
pieces,

G−(ω)g̃n(ω) = Q+
n (ω) + Q−

n (ω), (A11)

where similarly Q+
n (ω) [Q−

n (ω)] is an analytic function in the
upper (lower) half-plane. Then substitution of this last equation
into Eq. (A10) gives

ỹ+
n (ω) = G+(ω)Q+

n (ω), (A12)

ỹ−
n (ω) = Q−

n (ω)/G−(ω). (A13)

In this way we can work out the Fourier transformation of
y0(�) and yn(�) itself.

To this end, recalling (A11), we firstly decompose 1 +
exp(−2|u| |ω|) as

G+(ω) = G−(−ω) =
√

2π

�
(

1
2 − i|u|ω

π

)(− i|u|ω
π

)− i|u|ω
π

× exp

(
i|u|ω

π

)
, (A14)

where we should note that limω→∞ G±(ω) = 1, along with the
special values G±(0) = √

2 and G±(± iπ
2|u| ) = √

π/e of these
functions.

The decomposition for G−(ω)g̃n(ω) in general is subtle,
however the leading case G−(ω)g̃0(ω) is accessible. We start
analysis from the Fourier transformation of g0(�),

g̃0(ω) = −μ 2πδD(ω) − 2πJ1(ω) exp(−i ωA)

ω cosh(uω)
, (A15)

where on the right-hand side (rhs) the δD function could be
decomposed as

2πδD(ω) = i

(
1

ω + i ε
− 1

ω − i ε

)
(ε → +0). (A16)

The second term on the rhs is a meromorphic function of ω

with poles located at

ωn = i
π

2|u| (2n + 1) (n ∈ Z) (A17)

originating from the term 1
cosh(uω) , implying the decomposition

1

cosh(uω)
= χ+(ω) + χ−(ω),

χ+(ω) = i

|u|
∞∑

n=0

(−1)n
1

ω + ωn

,

χ−(ω) = 1

cosh(uω)
− i

|u|
∞∑

n=0

(−1)n
1

ω + ωn

, (A18)

where χ+(ω) and χ−(ω) are analytic functions in the upper
and lower half-planes, respectively. With the help of Eq. (A18),
as for any analytic and bounded function f −(ω) in the lower
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half-plane, the decomposition of f −(ω)
cosh(uω) is

f −(ω)

cosh(uω)
= F+(ω) + F−(ω),

F+(ω) = i

|u|
∞∑

n=0

(−1)n
f −(−ωn)

ω + ωn

,

F−(ω) = f −(ω)

cosh(uω)
− F+(ω). (A19)

By virtue of Eqs. (A15) and (A19), we make the following
decomposition for G−(ω)g̃0(ω):

Q+
0 (ω) = − i μG−(0)

ω + i ε
− q(ω),

Q−
0 (ω) = i μG−(0)

ω + i ε
− 2πJ1(ω) exp(−i ωA)G−(ω)

ω cosh(uω)
+ q(ω),

(A20)

where q(ω) = 4i
∑∞

n=1(−1)n G−(−ihn)I1(hn) exp(−hnA)
(2n+1)(ω+ihn) , I1(z) is the

first-order modified Bessel function, hn = π
2|u| (2n + 1), with

the series converging only if A > 1.
If A  1, using Eq. (A12), we have

y+
0 (ω) = G+(ω)

[
− i μG−(0)

ω + i ε
− q(ω)

]
. (A21)

Obviously, we know y(0) = ε′
1(A) = 0, which implies

0 = y(0) = lim
ω→∞ −i ω ỹ+(ω). (A22)

Hereafter we replace y(ω) with y0(ω), which is a reasonable
approximation if A  1. Therefore Eqs. (A21) and (A22) give
rise to

μ = −4
∞∑

n=0

G−(−i hn)I1(hn) exp(−hnA)

(2n + 1)G−(0)
. (A23)

Since we have obtained a parametric expression for the
critical chemical potential, we turn to the expression for the
magnetic field. Due to the fact that the phase boundary is
determined by εu(0) = 0, we thus use Eq. (A1) to determine
the magnetic field.

For simplicity, we rewrite Eqs. (A1) and (A2) as

εu(k) = −2 cos k − μ − 2u − B

+
∫ ∞

A

d� [a1(sin k − �) + a1(sin k + �)]ε′
1(�)

−
∫ ∞

−∞
d�a1(sin k − �)ε′

1(�), (A24)

ε′
1(�) = ε

′(0)
1 (�) −

∫ A

−A

d�′ a2(� − �′)ε′
1(�′), (A25)

where we have denoted

ε
′(0)
1 (�) = −2μ − 2

∫ π

−π

dk cos2 k a1(sin k − �). (A26)

Substituting Eq. (A25) into the last term on the rhs of
Eq. (A24) gives

εu(k) = −2 cos k − μ − 2u − B

+
∫ ∞

0
d� [s(� + A − sin k)

+ s(� + A + sin k)] y(�)

−
∫ ∞

−∞
d� s(� − sin k)ε′(0)

1 (�), (A27)

where we have introduced the function s(x) = 1
4|u| cosh( πx

2|u| ) and

made use of the two identities

1

4|u| cosh
(

πx
2|u|
) =

∞∑
n=0

(−1)na2n+1(x),

∫ ∞

−∞
dy an(x − y)am(y − z) = am+n(x − z).

Substituting the expansion s(x) =
1

2|u|
∑∞

n=0(−1)n exp(−hnx), where |πx/u| < 1 and Eq.
(A26) into Eq. (A27), and after some algebraic manipulations,
we arrive at the result

εu(k) = −2 cos k − 2u − B

+
∞∑

n=0

(−1)n

|u| ỹ+(i hn) cosh(hn sin k) exp(−hnA)

+ 2
∫ ∞

0

dωJ1(ω) cos(ω sin k) exp(−|u|ω)

ω cosh(uω)
. (A28)

Using Eq. (A28) and εu(0) = 0, we derive the expression

B = −2 + 2|u| +
∞∑

n=0

(−1)n

|u| ỹ+(i hn) exp(−hnA)

+ 2
∫ ∞

0
dω

J1(ω) exp(−|u|ω)

ω cosh(uω)
(A29)

for determining the critical magnetic field. Here we denoted
hn = π

2|u| (2n + 1). The equation (A29) sets up a relation
between the magnetic field and the chemical potential. In
summary, the phase boundary between phase IV and V is
determined by Eqs. (A23) and (A29) for A  1.

APPENDIX B: DERIVATION OF THE EQUATION OF
STATE

The derivation of the equation of state is rather involved.
Here we sketch the calculations for the terms pu and pb

n.
Prior to substituting the dressed energies into the definitions

of pu and pb
n integrating by parts, we first need to find a suitable

form of the TBA equations for this procedure, i.e., (34) and
(35). For simplicity in later discussion, we approximate the
definition of pb

n as

pb
n =

∫ ∞

−∞

d�

π
Re

1√
� + i n |u|ε

′−
n (�)

= T

∫ ∞

−∞

d�

2π

∫ π

−π

dk an(� − sin k)

=
∫ ∞

−∞
d� ε′−

n (�)�n(�) + o

(
1

|u|4
)

, (B1)
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where �n(�) = an(�) − 1
2bn(�) + 2�2bn(�). In the above

equations, we used the abbreviations

ε′−
n (x) = T ln(1 + e−ε′

n(x)/T ),

ε−
n (x) = T ln(1 + e−εn(x)/T ).

To obtain the result (34), regarding the first series of integral
terms on the rhs of (17), we expand them in the strong-coupling
regime as

∞∑
n=1

∫ ∞

−∞
d�an(sin k − �)ε′−

n (�)

=
∞∑

n=1

∫ ∞

−∞
d��n(�)ε′−

n (�)

×
an(�)

{
1+ 2� sin k−sin2 k

(nu)2+�2 +[ 2� sin k−sin2 k
(nu)2+�2

]2}
�n(�)

+ o

(
1

|u|4
)

=
∞∑

n=1

pb
n + ā + 2ā cos2 k + o

(
1

|u|4
)

, (B2)

where we have inserted (B1) and ā has been defined in Sec. III.
While for the second series of integral terms, it is easy

to see that under the assumption B/T  1, these spin-wave
contributions are no more than −T e−2B/T e−K̄ I0(K̄), which
is accessible through simple iteration of (18). In fact, the spin
degree of freedom is frozen here, and thus this term could be
neglected in later discussion.

We can rewrite (34) as

εu(k) = εu
0 (k) − Au, (B3)

where εu
0 (k) = −2 cos k + 2ā cos2 k and Au = μ + 2u + B −∑∞

n=1 pb
n + ā.

Integrating by parts in pu, we obtain

pu = T ln
(
1 + e(μ+2u+B−∑∞

n=1 pb
n+ā−2)/T

)
+ 1

π

∫ 2ā+2

2ā−2

dεu
0 k(εu

0 )

1 + eεu
0 /T /z

, (B4)

where z = eAu/T and k(εu
0 ) = arccos (

1−
√

1+2āεu
0

2ā
) represents

the inverse function of εu
0 (k). By taking account of ā ∼∑∞

n=1
pb

n

(nu)2 for the strong-coupling regime, the integral in the
above equation can be further simplified,

1

π

∫ 2ā+2

2ā−2

dεu
0 k
(
εu

0

)
1 + eεu

0 /T /z
= 2

π

∫ ā+1

ā−1
dx

k(2x)

1 + e2x/T /z

= 2

π

∫ 1

−1
dx

arccos(−x)

1 + e2x/T /z
− 2ā

π

∫ 1

−1

dx x2/
√

1 − x2

1 + e2x/T /z

+ 2ā

1 + e2εu(π)/T
+ o

(
1

|u|4
)

, (B5)

where we have changed the integration variable εu
0 = 2x and

then applied Taylor expansion with respect to ā. See εu(π ) in
Sec. III. The result (38) is therefor achieved.

We then turn to the transformation of ε′
n(�). Similar to the

treatment for εu(k), we employ Taylor expansion to expand

(19) in the strong-coupling region, with result

ε′
n(�) = −2nμ − an(�)

[
2π −

∫ π

−π

dk cos kεu−(k)

]

− bn(�)

[
−π

2
−
∫ π

−π

dk cos k sin2 k εu−(k)

]

+
∞∑

m=1

Tnm ∗ ε′−
m (�) + o

(
1

|u|4
)

, (B6)

where the integral terms in the brackets are denoted as d1

and d2, respectively. Here, d1 and d2 can be calculated via
integration by parts, similar to that done for pu above, see the
explicit expressions in Sec. III. With respect to the convolution
term, due to the condition of low density, the cutoff of the
dressed energy ε′

n(�) is small, thus in general we can make the
approximations∫ ∞

−∞
d�′ ap(� − �′)ε′−

q (�′)

=
∫ ∞

−∞
d�′ ap(�′)ε′−

q (�′)

−�2
∫ ∞

−∞
d�′ bp(�′)ε′−

q (�′) + o

(
1

|u|4
)

, (B7)

which results in Eq. (35) in the main text.
We next rewrite (35) as

ε′
n(�) = Dn

(
�

n|u|
)2

− Ab
n, (B8)

where Ab
n = 2nμ − ηn + d1

πn|u| + d2
2π(n|u|)3 and Dn was defined

in Sec. III. Section III is arrived at by substituting the above
equation into the definition of pb

n and integrating by parts.
Lastly, ā, ξm

p = T
∫∞
−∞ d�′ ap(�′)ε′−

m (�′) and φm
p =

T
∫∞
−∞ d�′ bp(�′)ε′−

m (�′) are calculated in a similar way.

APPENDIX C: SOME CONSTANTS IN THE SCALING
FUNCTIONS

The constants used in the scaling forms for the phase
transition (II-IV) are given explicitly by

λ1 = −2
√|u|(1 − qc4/π )√

2π − q3
c4/3

, λ2 = (1 − qc4/π )qc4/π

√|u|
√

2π − q3
c4/3

,

nb4 = γ, mb4 = 1

2
γ,

κb4 = γ ′
(

1 + 4√
π

τ
1
2 f̃ 1

2
+ 6

π
τ f̃ 2

1
2
+ 5

π
3
2

τ
3
2 f̃ 3

1
2
− 2√

π
τ

3
2 f̃ 3

2

)
,

λ3 = −4
√|u|(1 − qc4/π )√

2π − q3
c4/3

,

χb4 = 1

2
γ ′ + 2δ γ ′ − (1 − γ )δ′

|u|√π

(
τ

1
2 f̃ 1

2
+ 1

2
√

π
τ f̃ 2

1
2

+ 1

4π
τ

3
2 f̃ 3

1
2

− τ
3
2 f̃ 3

2

)
,

λ4 = −2(qc4/π )2(1 − qc4/π )√
|u|3

√
2π − q3

c4/3
. (C1)
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Here, the parameter qc4 =
√

B + 2 − 2
√

1 + u2 +
1

3π |u| (B + 2 − 2
√

1 + u2).
The constants used in the scaling forms for the phase

transition (V-IV) are given explicitly by

nb5 = − 2√
π

τ
1
2 f̃ 1

2
− 1

π
τ f̃ 2

1
2

− 1

2π
3
2

τ
3
2 f̃ 3

1
2

+ 1√
π

τ
3
2 f̃ 3

2
,

λ5 = − 1

2
√

π

(
1 − 4

π

√
1 + 2π |u|μ̃c5

2π − q3
c5/3

)
,

λ6 = − 1

2
√

π

(
1 − 8

π

√
1 + 2π |u|μ̃c5

2π − q3
c5/3

)
,

κb5 = −
(1 − γ )f̃− 1

2

D0τ
1
2

(
4√
π

+ 6

π
τ

1
2 f̃ 1

2
+ 6

π
3
2

τ f̃ 2
1
2

− 7

4π
τ

3
2 f̃ 3

2
+ 5

π2
τ

3
2 f̃ 3

1
2

)
, (C2)

where μ̃c5 ≈ 2|u| − B − 2 + 8
√

2
3π |u|α1

(2
√

1 + u2 − B − 2)
3
2

and qc5 = √
μ̃c5 + 2u + B + 2.

APPENDIX D: EXPLICIT FORMS OF THE ADDITIVITY
RULES

The vectorial forms of Eqs. (76) and (77) are accessible by
expanding the rescaled TBA equations in terms of {k2n} and
{�2n} (n = 0,1,2, . . .). We here give the explicit expression
for the matrix An(ỹc) (n = 1,2) with the elements

{An(ỹc)}j l = 2

π

∑
0�j�i<∞

(−1)i C
2j

2i ỹ
2i−2j+2l+1
c

n2i+1(2i − 2j + 2l + 1)
, (D1)

with j,l = 0,1,2, . . . . Thus the first two orders of An
(q)(yc) are

written as

A1
(1)(ỹc) = 2

π

⎡
⎢⎣

1 0 · · ·
−1 0 · · ·

...

⎤
⎥⎦ ỹc,

A2
(1)(ỹc) = 1

π

⎡
⎢⎣

1 0 · · ·
− 1

4 0 · · ·
...

⎤
⎥⎦ ỹc, (D2)

A1
(3)(ỹc) = 2

π

⎡
⎢⎣

− 1
3

1
3 · · ·

2 1
3 · · ·

...

⎤
⎥⎦ ỹ3

c ,

A2
(3)(ỹc) = 1

π

⎡
⎢⎣

− 1
12

1
3 · · ·

1
8 − 1

12 · · ·
...

⎤
⎥⎦ ỹ3

c . (D3)

Next, the partial derivatives of Eqs. (76) and (77) read

∂�ε 1

∂μ̃
= ∂ �V 1

∂μ̃
− A1(�̃c)

∂�ε 2

∂μ̃
, (D4)

∂�ε 2

∂μ̃
= �V 2 − A1(k̃c)

∂�ε 1

∂μ̃
− A2(�̃c)

∂�ε 2

∂μ̃
. (D5)

With the help of the explicit forms of An(ỹc), i.e., (D2) and
(D3), we can obtain Eq. (82), which relates the densities and
the cutoffs. Together with Eq. (79), we then obtain the relation
between the densities and the effective chemical potentials (90)
and (91).

On this basis, we now proceed to derive the explicit
expressions for the effective compressibility and susceptibility
in terms of densities of bound pairs and excess fermions.
Apparently, the densities of bound pairs and excess fermions
rely on the chemical potential and the magnetic field, and
vice versa, which in fact indicates under fixed magnetic
field one could obtain the following results through the total
derivatives,

κ1 =
(

∂n1

∂μ1

)
B

= dn1

dμ
, κ2 = 2

(
∂n2

∂μ2

)
B

= α1
dn2

dμ
, (D6)

where we keep d B = ∂B
∂n1

d n1 + ∂B
∂n2

d n2 = 0. Thus we have

dn1

dμ
= 1

J

(
∂B

∂n2

)
n1

,
dn2

dμ
= − 1

J

(
∂B

∂n1

)
n2

. (D7)

Here the Jacobian determinant

J =
(

∂μ

∂n1

)
n2

(
∂B

∂n2

)
n1

−
(

∂B

∂n1

)
n2

(
∂μ

∂n2

)
n1

= −α1

2

[(
∂μ1

∂n1

)
n2

(
∂μ2

∂n2

)
n1

−
(

∂μ2

∂n1

)
n2

(
∂μ1

∂n2

)
n1

]
,

(D8)

where we have used Eqs. (73) and (74).
Similarly, the magnetic field is dependent on the effective

chemical potentials while the latter is dependent on densities
of bound pairs and excess fermions. Therefore, by application
of chain rule, we have(

∂B

∂n1

)
n2

=
(

∂μ1

∂n1

)
n2

− α1

2

(
∂μ2

∂n1

)
n2

,

(
∂B

∂n2

)
n1

=
(

∂μ1

∂n2

)
n1

− α1

2

(
∂μ2

∂n2

)
n1

. (D9)

It is obvious that once the explicit expression of μr in
terms of ns (r,s = 1,2) is known, our goal of the effective
compressibilities is easy to achieve. We use Eqs. (79) and (80)
and Sec. V to derive

μ1 = π2n2
1

[
1 + 2

(
2n2

|u|
)

+ 3

(
2n2

|u|
)2
]

+ 4π2α1

3β3
1 |u|n

3
2

[
1 + 3

2n1 + n2

β1|u|
]
, (D10)

μ2 = π2n2
2

β2
1

[
1 + 2

2n1 + n2

β1|u| + 3

(
2n1 + n2

β1|u|
)2
]

+ 4π2

3α1|u|n
3
1

[
1 + 3

(
2n2

|u|
)]

+ 2π2

3β3
1 |u|n

3
2

[
1 + 3

2n1 + n2

β1|u|
]
, (D11)
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and thus

κ1 = π2

J

[
−α1n2

β2
1

− 4α1n1n2

|u|β3
1

+ 4n2
1

|u| − 4n3
1

u2
+ 24n2

1n2

u2

− 12α1n
2
1n2

u2β4
1

+ 6α1n
3
2

u2β4
1

]
,

κ2 = −2α1π
2

J

[
n1 − n2

1

|u| + 4n1n2

|u| − 6n2
1n2

u2
− α1n

2
2

uβ3
1

+ 12n1n
2
2

u2
− 6α1n1n

2
2

u2β4
1

]
, (D12)

J = −2π4α1

β2
1

n1n2

[
1 + 4n1

|u|β1
+ 12n2

1

u2β2
1

+ 4n2

|u| + 4n2

|u|β1

+ 24n1n2

u2β2
1

+ 8n1n2

u2β1
+ 12n2

2

u2
+ 10n2

2

u2β2
1

+ 16n2
2

u2β1

]
. (D13)

The situation for effective susceptibilities is rather simple.
With fixed total particle density, one confirms that dn1 +
2dn2 = 0, and thus the total derivative of the effective chemical

potentials with respect to nr (r = 1,2) is

dμ1 =
[(

∂μ1

∂n1

)
n2

− 1

2

(
∂μ1

∂n2

)
n1

]
dn1,

dμ2 = −2

[(
∂μ2

∂n1

)
n2

− 1

2

(
∂μ2

∂n2

)
n1

]
dn2. (D14)

After some algebraic manipulations, we then obtain

χ̄1 = 1

/(
∂μ1

∂n1
− 1

2

∂μ1

∂n2

)
,

χ̄2 = −1

/(
∂μ2

∂n1
− 1

2

∂μ2

∂n2

)
, (D15)

which together with Eqs. (D10) and (D11) result in

χ̄1 = 1/(2π2)

n1 − n2
1

|u| + 4n1n2
|u| − 6n2

1n2

u2 − α1n
2
2

|u|β3
1

+ 12n1n
2
2

u2 − 6α1n1n
2
2

u2β4
1

,

χ̄2 = 1/π2

n2

β2
1

− 4n2
1

|u|α1
+ 4n3

1
u2α1

+ 4n1n2

|u|β3
1

− 24n2
1n2

u2α1
+ 12n2

1n2

u2β4
1

− 6n3
2

u2β4
1

.
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