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Conventional wisdom has long held that a composite particle behaves just like an ordinary Newtonian particle.
In this paper, we derive the effective dynamics of a type-I Wigner crystal of composite particles directly from
its microscopic wave function. It indicates that the composite particles are subjected to a Berry curvature in
the momentum space as well as an emergent dissipationless viscosity. While the dissipationless viscosity is
the Chern-Simons field counterpart for the Wigner crystal, the Berry curvature is a feature not presented in the
conventional composite fermion theory. Hence, contrary to general belief, composite particles follow the more
general Sundaram-Niu dynamics instead of the ordinary Newtonian one. We show that the presence of the Berry
curvature is an inevitable feature for a dynamics conforming to the dipole picture of composite particles and Kohn’s
theorem. Based on the dynamics, we determine the dispersions of magnetophonon excitations numerically. We
find an emergent magnetoroton mode which signifies the composite-particle nature of the Wigner crystal. It occurs
at frequencies much lower than the magnetic cyclotron frequency and has a vanishing oscillator strength in the
long-wavelength limit.
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I. INTRODUCTION

In a two-dimensional electron gas (2DEG) subjected to a
strong magnetic field, electrons are forced into Landau levels
with the kinetic energy quenched. The dominating electron-
electron interaction induces various correlated ground states.
The most celebrated of these states is the fractional quantum
Hall (FQH) liquid which occurs in the vicinity of a set of
magnetic filling factors of rational fractions [1]. Interestingly,
even though the system is dominated by the electron-electron
interaction, its physics can be well described in a hidden
Hilbert space by a set of weakly interacting composite fermions
(bosons) that are bound states of an electron with an even (odd)
number of quantum vortices, as suggested by the theory of
composite fermions (CFs) [1,2]. In the theory, a FQH state
is interpreted as an integer quantum Hall state of CFs. The
theory achieves great successes. For instance, ground-state
wave functions prescribed by the CF theory for the FQH states
achieve high overlaps with those determined from exact diag-
onalizations [1], and predictions based on an intuitive picture
of noninteracting CFs are verified in various experiments [3].
The theory can even be applied to more exotic situations such
as the half-filling case which is interpreted as a Fermi liquid
of CFs [4,5], and the 5/2-filling case which is interpreted as
a p-wave pairing state of CFs [6]. In effect, for every known
state of electrons, one could envision a counterpart for CFs.

It is natural to envision that CFs may form a Wigner
crystal (WC). Electrons form a Wigner crystal at sufficiently
low density when the Coulomb interaction between electrons
dominates over the kinetic energy [7]. In the presence of a
strong external magnetic field, the kinetic energy is completely
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quenched and electrons should have a tendency to form
a crystalline phase. However, in a 2DEG, the tendency is
preempted by the more stable FQH states when the filling
factor is close to special fractions such as 1/3 and 2/5.
Nevertheless, a WC could be stabilized when the filling factor
deviates from these fractions. Theoretical studies suggest that
the WC of composite particles (CPWC), i.e., a WC consisting
not of electrons but of composite fermions or bosons, could
be stabilized [8]. More specifically, either a type-I CPWC
[8,9], in which all composite particles (CPs) are frozen, or
a type-II CPWC [10], which lives on top of a FQH state and
only freezes CFs excessive for the filling fraction of the FQH
state, could be energetically favored over the ordinary electron
WC [8,11–15]. Experimentally, there has accumulated a large
number of evidences indicating the formation of WCs in 2DEG
systems, although these experiments, either detecting the
microwave resonances of disorder pinning modes [16–24] or
measuring transport behaviors [24–31], cannot unambiguously
distinguish a CPWC from its ordinary electron counterpart.

A possible way to distinguish a CPWC from its ordinary
electron counterpart is to examine its low-energy phonon
excitation. The phonon excitation of an ordinary WC has been
thoroughly investigated [32–34]. It consists of a low-frequency
branch and a magnetoplasmon mode that occurs near the
magnetic cyclotron frequency. For a CPWC, in analog to the
ordinary WC, one would expect that its phonon excitation
also consists of two branches. However, similar to the magne-
toroton mode arisen in FQH liquids [35], its high-frequency
branch must be an emergent mode originated purely from
the electron-electron interaction, irrelevant to the cyclotron
resonance because all excitations of CPs are limited within a
partially filled Landau level. Moreover, Kohn’s theorem asserts
that the ordinary magnetic cyclotron mode exhausts all the
spectral weight in the long-wavelength limit [4,36]. To be
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consistent with Kohn’s theorem, the emergent mode must have
a vanishing oscillator strength in the long-wavelength limit.
These features of the emergent mode make it distinguishable
from the ordinary magnetoplasmon mode. An experimental
probe of the mode would provide an unambiguous evidence
for the CP nature of an observed WC phase.

To determine the low-energy phonon excitation of a CPWC,
it is necessary to understand the dynamics of CPs. Unfor-
tunately, up to now, the true nature of the CP dynamics is
yet to be fully clarified. Existing theories are based on a
heuristic approach assuming that CPs follow the ordinary
dynamics characterized by an effective mass and an effective
magnetic field [37–39]. The assumption is in accordance with
the conventional wisdom that a CP behaves just like an ordinary
Newtonian particle, as implied in either the Halperin-Lee-Read
theory of composite Fermi liquids [5] or López-Fradkin’s
construction of the Chern-Simons field theory for FQH states
[40]. However, the validity of the assumption is questionable.
An indication of that is the violation of Kohn’s theorem:
the heuristic approach would predict a new cyclotron mode
corresponding to the effective mass and magnetic field. More
fundamentally, there is no a priori reason to believe that CPs
would follow the ordinary Newtonian dynamics in its simplest
form. Actually, even for electrons in a solid, the dynamics in
general has a symplectic form (Sundaram-Niu dynamics) with
Berry curvature corrections [41,42], and for a magnetic solid
its lattice dynamics is in general subjected to a dissipationless
viscosity which is the counterpart of the Lorentz force for the
atom-atom interaction [43,44]. Recently, Son also questions
the validity of the assumption by noting inconsistencies in the
conventional Halperin-Lee-Read theory of CF Fermi liquids,
and hypothesizes that a CF would be a massless Dirac particle
[45,46]. We note that the dynamics of massless Dirac particles
is subjected to a Berry curvature in the momentum space with
a singular distribution.

We believe that a concrete answer to the question should
be a derivation of the CP dynamics directly from microscopic
wave functions. The theory of CFs, as detailed in Ref. [1], is
not only an intuitive picture for describing FQH states but also
a systematic way for constructing ground-state wave functions
as well as the Hilbert space of low-lying excitations. This
information is sufficient for an unambiguous determination
of the dynamics. Conversely, a proposal on the nature of
CFs should have an implication on how the microscopic
states would be constructed. Unfortunately, the correspon-
dence between the microscopic states and the dynamics is
rarely explicitly demonstrated in literatures. A rare example of
the correspondence can be found in the dipole picture of CFs
[47], which is based on the microscopic Rezayi-Read wave
function for a CF Fermi liquid [48]. However, even in this
case, an explicit form of the dynamics has never been properly
formulated (see Sec. III B).

In this paper, we derive the effective dynamics of CPs
directly from the microscopic wave function of the CPWC. The
derivation is based on the time-dependent variational principle
[49]. We focus on the type-I CPWC, which is relatively
simple without unnecessarily obscuring complexities. Based
on the dynamics, we conclude that a CP, at least in the CPWC
phase, is neither an ordinary Newtonian particle nor a Dirac
particle, but a particle subjected to a Berry curvature uniformly

distributed in the momentum space as well as an emergent
dissipationless viscosity [43,44], and follows the more general
Sundaram-Niu dynamics. We carry out numerical simulations
to quantitatively determine the dispersions of phonons. We find
an emergent magnetoroton mode which signifies the CP nature
of a WC. The mode occurs at frequencies much lower than the
magnetic cyclotron frequency, and has a vanishing oscillator
strength in the long-wavelength limit, consistent with Kohn’s
theorem.

The most notable feature of the dynamics is the presence of
a Berry curvature in the momentum space. This is a feature
not presented in the conventional CF theory. It is a direct
consequence of the microscopic wave function we adopt for
the CPWC, instead of a result of ad hoc assumptions. The
presence of the Berry curvature is not only necessary for correct
quantitative calculations of the low-lying excitations, but also
inevitable if one would like to have a dynamics conforming to
the dipole picture of CFs as well as Kohn’s theorem, as shown
in Sec. III B. While the correction looks like a minor one, it
is actually sufficient to cure some long-standing issues of the
conventional CF theory [50]. We thus argue that the Berry
curvature would be an indispensable component of a proper
theory of the CP dynamics.

The remainder of the paper is organized as follows. In
Sec. II, we derive the CP dynamics from the microscopic
wave function of the CPWC phase. In Sec. III, we discuss
CP pictures emerged from the dynamics. In Sec. IV, we carry
out the numerical simulations based on the formalism, and
present quantitative results for the dispersions of the phonon
excitations. Finally, Sec. V contains concluding remarks.

II. CP DYNAMICS IN A CPWC

A. CPWC wave function

The theory of CFs prescribes an ansatz for constructing
the wave functions of the ground-state and low-lying excited
states of a CF system. A CF wave function is derived from a
Hartree-Fock wave function �HF, which describes the quantum
state of a collection of weakly interacting particles in a fictitious
(hidden) Hilbert space. The CF wave function is obtained by
a transformation from �HF [1,2]:

�({r i}) = P̂LLLJ�HF({r i}), (1)

where P̂LLL denotes the projection to the lowest Landau level
(LLL), and

J =
∏
i<j

(zi − zj )m (2)

is the Bijl-Jastrow factor which binds an integer number of m

quantum vortices to each of the electrons, zi = xi + iyi with
r i ≡ (xi,yi) being the coordinate of an electron [51]. Equation
(1) maps a state in the conventional Landau-Fermi paradigm to
a CF state. Using different Landau-Fermi states and following
the ansatz, it is possible to construct a whole array of CF wave
functions corresponding to various states observed in 2DEGs.
For instance, a set of filled Landau levels is mapped to a FQH
state [1], a Fermi liquid is mapped to a CF Fermi liquid [4,5],
and a p-wave superconductor is mapped to the Moore-Read
state [6].
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For the ground state of a type-I CPWC, �HF is chosen to
be [8]

�HF({r i}) = Â
∏

i

φR0
i
(r i), (3)

where φR0
i
(r i) ∝ exp[−(r i − R0

i )2/4l2
B − i(ẑ × r i) · R0

i /2l2
B]

is the wave function of a LLL coherent state centering at R0
i

[32], {R0
i , i = 1 . . . N} forms a two-dimensional triangular

lattice, Â denotes the (anti-) symmetrization of the wave
function, and lB ≡ √

h̄/eB is the magnetic length for the
external magnetic field B. We note that �HF is actually the
trial wave function for an ordinary electron WC in the LLL
[32]. The mapping of Eq. (1) transforms it to a trial wave
function for the CPWC with a variational parameter m.
Different from usual CF wave functions, m for a CPWC wave
function can be even (CF) or odd (composite boson). This
is because electrons in a CPWC are spatially localized and
not sensitive to the exchange symmetry. Extensive numerical
simulations based on the trial wave function have been carried
out in Ref. [8]. It was shown that a type-I CPWC is indeed
energetically favored over the ordinary electron WC.

The low-lying excited states can be constructed by modi-
fying �HF. An apparent modification is to replace {R0

i } with
{Ri ≡ R0

i + ui} which introduces deviations of the particles
from their equilibrium positions. Another physically motivated
modification is to introduce a momentum for each particle. This
can be achieved by replacing φR(r) with φR(r) exp(ik · r),
as apparent for a localized wave packet with a momentum
p = h̄k. We note that the similar approach is also adopted
in constructing Rezayi-Read’s wave function for a CF Fermi
liquid as well as its particle-hole excitations [48], and in Girvin-
MacDonald-Platzman theory of magnetorotons in FQH liquids
[35]. The modifications result in a wave function parameterized
in {Ri} and {ki}:

�({r i}) ∝ AP̂LLL

∏
i<j

(zi − zj )m
∏

i

φRi
(r i)e

iki ·r i , (4)

which specifies a submanifold in the Hilbert space. We assume
that the ground-state and low-lying phononic excited states of
a CPWC completely lie in the submanifold.

Following the standard procedure of applying the projection
to the LLL [1], we obtain the explicit form of the wave function
(4):

�({r i}) ∝ A
∏
i<j

(
zi+iki l

2
B−zj−ikj l

2
B

)m
∏

i

φRi
(r i), (5)

where ki ≡ kxi + ikyi , and we have made a substitution
Ri + ki l

2
B × ẑ → Ri , and dropped irrelevant normalization

and phase factors. We will base our derivation of the CP
dynamics on the ansatz wave function Eq. (5).

The physical meaning of the momentum h̄ki becomes
apparent in Eq. (5). It shifts zi in the Bijl-Jastrow factor
to zv

i ≡ zi + iki l
2
B . One could interpret zv

i as the position of
quantum vortices binding with the ith electron. The momentum
is actually the spatial separation of the electron and the
quantum vortices in a CP. This is exactly the interpretation
of the dipole picture of CFs proposed by Read [47]. We note
that the momentum degrees of freedom are only present in
systems with m �= 0. For an ordinary WC with m = 0, the
momenta have no effect on the wave function except introduc-

ing a reparametrization to {Ri}. Therefore, the momenta are
emergent degrees of freedom of a CP system.

When adopting the ansatz wave function Eq. (5), we
basically assume that the CPWC state belongs to the same
paradigm as that for FQH states. Viewed from the new CF
paradigm, the modifications introduced in Eq. (5) are well
motivated in physics, notwithstanding its highly nontrivial
form. The paradigm of CFs, which dictates how the ground-
state and low-lying excited states are constructed, has been
extensively tested in literatures for various FQH states [1]. It
is reasonable to believe that the CPWC also fits in with the
paradigm. This can be tested by comparing the wave functions
generated by the ansatz with those obtained by diagonalizing
microscopic Hamiltonians. In this paper, we will not carry out
the test. Instead, we will focus on an immediate question; i.e., if
one adopted the paradigm per se, what would be the dynamics?

It can also be shown that our ansatz wave-function approach
is equivalent to a CF diagonalization [1] (see Secs. II C and
II D). The equivalence could serve as a justification for our
approach. Our approach is advantageous in the sense that it
provides direct knowledge of the dynamics of CPs, whereas the
CF diagonalization technique provides an efficient machinery
for systematically improving calculations but little information
about the dynamics.

B. Derivation of the CP dynamics

To determine the dynamics of CPs in a CPWC, we employ
the time-dependent variational principle of quantum mechan-
ics. It minimizes an action S ≡ ∫ tf

ti
Ldt with the Lagrangian

[49]:

L = ih̄

2

〈�|�̇〉 − 〈�̇|�〉
〈�|�〉 − Vee, (6)

where we assume that the wave function depends on the time
through its parameters {Ri ,ki}, Vee ≡ 〈�|V̂ee|�〉/〈�|�〉 is the
expectation value of the electron-electron interaction V̂ee, and
the kinetic part of the microscopic Hamiltonian of the system
is ignored since it is quenched in the LLL. A minimization
of the action will result in a set of semiclassical equations of
motion [41]. Alternatively, one could interpret the action as
the one determining the path-integral amplitude of a quantum
evolution in the submanifold of the Hilbert space [52]. The two
interpretations are corresponding to the classical and quantum
version of the same dynamics, respectively.

We proceed to determine the explicit form of the La-
grangian. The Lagrangian can be expanded as

L =
∑

i

(Aui
· u̇i + Aki

· k̇i) − Vee, (7)

where Aui
and Aki

are Berry connections in the pa-
rameter space, Aui

= −h̄Im〈�|∂�/∂ui〉/〈�|�〉 and Aki
=

−h̄Im〈�|∂�/∂ki〉/〈�|�〉, respectively. By using Eq. (5), it
is straightforward to obtain

Aui
= − h̄

2l2
B

〈r̂ i〉 × ẑ, (8)

Aki
= −mh̄l2

B

〈∑
j �=i

r i − rj + ẑ × (ki − kj )l2
B∣∣r i − rj + ẑ × (ki − kj )l2
B

∣∣2

〉
, (9)
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where 〈. . . 〉 ≡ 〈�| . . . |�〉/〈�|�〉, and we ignore the anti-
symmetrization in the wave function Eq. (4). The antisym-
metrization can be reimposed when formulating the quantum
version of the dynamics by introducing an antisymmetrization
with respect to the parameters (dynamic variables). For CP-
WCs, the effect due to the nondistinguishability of electrons
turns out to be negligible [8].

The Berry connections could be simplified. We make use
of the identity

∇r i
|�|2 = − r i − Ri

l2
B

|�|2

+ 2m
∑
j �=i

r i − rj + ẑ × (ki − kj )l2
B∣∣r i − rj + ẑ × (ki − kj )l2
B

∣∣2 |�|2.

(10)

Substituting Eq. (10) into Eq. (9), we obtain

Aki
= − h̄

2
(〈ξ̂ i〉 − ui), (11)

where ξ̂ i ≡ r̂ i − R0
i . The Berry connections can then be

expressed as

Aui
= − h̄

2l2
B

xi × ẑ + h̄ki

2
, (12)

Aki
= − h̄

2

(
xi − ui + ki × ẑl2

B

)
, (13)

where xi ≡ 〈ξ̂ i〉 − ki × ẑl2
B , ẑ is the unit normal vector of the

2DEG plane. We note that xi is the average position (relative to
R0

i [53]) of the quantum vortices binding with the ith electron,
which is displaced from the electron position 〈ξ̂ i〉 by a vector
−ki × ẑl2

B , according to the wave function Eq. (5).
We adopt {xi , pi ≡ h̄ki} as the set of dynamic variables,

and interpret xi and pi as the position and momentum of a
CP, respectively. To express the Lagrangian in {xi , pi}, it is
necessary to relate the dynamic variables with the original set
of parameters. From Eq. (5), it is easy to show that xi is in
general a function of {ui − ki × ẑl2, i = 1 . . . N}:

xi = 〈ξ̂ i〉{ki=0,ui→ui−ki×ẑl2
B }, (14)

where the expectation value is evaluated with respect to Eq. (5)
with {ki = 0} and substitutions {ui → ui − ki × ẑl2

B}. For a
CPWC, we assume that both xi and pi are small, and adopt
the harmonic approximation by expanding the Lagrangian to
the second order of the dynamic variables. For this purpose,
we expand xi to the linear order of the original parameters:

xiα =
∑
jβ

Aiα,jβ (uj − kj × ẑl2)β, (15)

and

Aiα,jβ ≡ ∂〈x̂iα〉
∂ujβ

∣∣∣∣
0

= 1

l2
B

〈ξ̂iα ξ̂jβ〉0, (16)

where α (β) = x,y indexes the component of the coordinate,
〈. . . 〉0 denotes the expectation value in the ground state
�0 ≡ �|{ui ,ki }→0, and εαβ is the two-dimensional Levi-Civita
symbol.

Similarly, Vee is expanded to the second order of the
dynamic variables:

Vee ≈ 1

2

∑
iα,jβ

Dxx
iα,jβxiαxjβ + 2D

px
iα,jβpiαxjβ

+D
p p
iα,jβpiαpjβ. (17)

The coefficients can be related to correlation functions (see
Appendix A):

Dxx
iα,jβ = 1

l4
B

∑
γ δ

〈(V̂ee − V̄ee)ξ̂lγ ξ̂mδ〉0

× [A−1]iα,lγ [A−1]mδ,jβ, (18)

D
px
iα,jβ = − 1

h̄

∑
γ δ

εαγ

〈
∂V̂ee

∂riγ

ξ̂lδ

〉
0

[A−1]lδ,jβ, (19)

D
p p
iα,jβ = l4

B

h̄2

∑
γ δ

εαγ εβδ

〈
∂2V̂ee

∂riγ ∂rjδ

〉
0

, (20)

where [A−1] denotes the inverse of a matrix with elements
[A]iα,jβ = Aiα,jβ , and V̄ee ≡ 〈V̂ee〉0.

Substituting Eqs. (12), (13), (15), and (17) into Eq. (7),
we determine the explicit form of the Lagrangian. Be-
cause of the translational symmetry, it is convenient to ex-
press the Lagrangian in the Fourier-transformed dynamic
variables x(q) ≡ 1/

√
N

∑
i xi exp (−iq · R0

i ) and p(q) ≡
1/

√
N

∑
i pi exp (−iq · R0

i ), where q is a wave vector defined
in the Brillouin zone for a triangular lattice. The Lagrangian
can be decomposed into L = ∑

q Lq with

Lq = eBe(q)

2
[ẑ × x∗(q)] · ẋ(q) + 1

2eB
[ẑ × p∗(q)] · ṗ(q)

+ p∗(q) · ẋ(q) − 1

2

[
x(q)
p(q)

]†
D(q)

[
x(q)
p(q)

]
, (21)

where Be(q) is determined by

Be(q) = B

2
TrA−1(q), (22)

with A−1(q) being the inverse of a 2 × 2 matrix with elements
Aαβ(q) = ∑

R0
i
Aiα,0β exp(−iq · R0

i ), and

D(q) =
[
Dxx(q) D px(q)
D px(q) D p p(q)

]
, (23)

withDxx(q),D px(q), andD p p(q) being the Fourier transforms
of Dxx , D px , and D p p, respectively.

The equation of motion of a type-I CPWC is[
eBe(q)ẑ× I

−I 1
eB

ẑ×
][

ẋ(q)
ṗ(q)

]
= −D(q)

[
x(q)
p(q)

]
, (24)

which is the main result of this paper. The equation of motion
can be written more generally as

ẋi = ∂Vee

∂ pi

+ 1

eB
ẑ × ṗi , (25)

ṗi = −∂Vee

∂xi

−
∑

j

eBij
e ẑ × ẋj , (26)
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where Bij
e = Bδij − �Be(R0

i − R0
j ) with �Be(R0) ≡∫

BZ d2q/(2π )2[B − Be(q)] exp(iq · R0). Interpretations of the
dynamics and its implications to the nature of CPs will be
discussed in Sec. III.

The equation of motion we obtain has a semiclassical form.
One can always upgrade the dynamics to the quantum one by
requantizing it. This can be done either by using path-integral
formalism with the Lagrangian Eq. (21) or equivalently by
applying a canonical quantization. On the other hand, under
the harmonic approximation, we can show that results obtained
from the semiclassical equation are identical to those obtained
from a CF diagonalization. Both the points will be discussed
in the next subsection.

C. Quantization of the effective dynamics

The dynamics Eq. (24) could be quantized. The resulting
quantum dynamics describes the quantum evolution of the
system in the submanifold of the Hilbert space specified by the
wave function Eq. (5). A general scheme of the quantization
has been discussed in Ref. [52]. Basically, the noncanonical
kinematic matrix in the left-hand side of Eq. (24) gives rise to
noncommutativity between the dynamic variables:[

[x†(q),x(q)] [x†(q), p(q)]
[ p†(q),x(q)] [ p†(q), p(q)]

]
= ih̄

[
eBe(q)ε̂ −I

I 1
eB

ε̂

]−1

,

(27)

where ε̂ is the 2 × 2 antisymmetric matrix with [ε̂]αβ = εαβ .
The system is governed by an effective Hamiltonian Ĥeff = Vee

with the dynamic variables upgraded to quantum operators.
The system can be transformed to a phonon representation

by the procedure described in Ref. [43]. We solve the general-
ized eigenvalue equation:

iωq

[−eBe(q)ε̂ I

−I − 1
eB

ε̂

]
ψq = D(q)ψq . (28)

The equation yields two positive frequency solutions and two
negative frequency solutions, with eigenvectors related by
complex conjugations [43]. The eigenvectors are normalized
by ψ̄qψq = ±1, where ± is for the positive and the negative
frequency solution, respectively, and

ψ̄q ≡ −iψ†
q

[
eBe(q)ε̂ −I

I 1
eB

ε̂

]
. (29)

The dynamic variables can then be expressed in phonon
creation and annihilation operators:[

x(q)
p(q)

]
=

∑
i∈+

ψ (i)
q aqi + ψ

(i)∗
−q a

†
−qi , (30)

where the summation is over the two positive frequency
solutions, and aqi and a

†
qi are bosonic creation and annihi-

lation operators, respectively. One can verify that the dynamic
variables, expressed as Eq. (30), do recover the commutation
relation Eq. (27).

With the phonon representation, we define a coherent state
as the eigenstate of the annihilation operator:

aqi |φ〉 = φqi |φ〉. (31)

In the real space, the coherent state is interpreted as

〈r|φ〉 = �(r; φ)

〈�0|�〉 , (32)

where the denominator is introduced to eliminate the time-
dependent factor of the ground-state component in the wave
function [49], and �(r; φ) is the wave function Eq. (5) with
the parameters corresponding to[

x(+)(q)
p(+)(q)

]
=

∑
i∈+

ψ (i)
q φqi , (33)

where the superscript (+) indicates that the dynamic variables
contain positive-frequency components only [54].

For a given phonon state, the corresponding physical wave
function can be determined by [54]

〈r|ϕ〉 =
∫

dφdφ∗

2πi
e−|φ|2 �(r; φ)

〈�0|� 〉ϕ(φ∗), (34)

where ϕ(φ∗) denotes a phonon wave function in the coherent-
state representation. For the excited state with n phonons of
the mode (q,i), ϕ(φ∗) ∝ φ∗n

qi , the corresponding physical wave
function is

�n(r) ∝ ∂n

∂φn
qi

�(r; φ)

〈�0|� 〉

∣∣∣∣∣
φ→0

. (35)

From Eq. (35), it is easy to see that one-phonon states must
be linear combinations of

∂

∂ūi

�(r)

〈�0|� 〉
∣∣∣∣
ū,k→0

,
∂

∂ki

�(r)

〈�0|� 〉
∣∣∣∣
ū,k→0

, (36)

which correspond to many-body wave functions:

P̂LLL
(
zi − Z0

i

)
�0, P̂LLL

(
z̄i − Z̄0

i

)
�0. (37)

One can construct a CF diagonalization [1] by diagonalizing
the microscopic Hamiltonian in the truncated Hilbert-space
span by the bases Eq. (37). It is not difficult to see that its
result will be identical to that obtained from the semiclassical
equation of motion Eq. (24) [or equivalently Eq. (28)] under
the harmonic approximation. This is because one could obtain
a harmonic expansion of the Lagrangian Eq. (6) by expanding
the trial wave function Eq. (5) to the linear order of {ui ,ki}, i.e.,
as a linear combination of the bases Eq. (37). The eigenvalue
equation of the CF diagonalization can be obtained from
the time-dependent variational principle minimizing Eq. (6).
Since the semiclassical dynamics are determined from the
same variational principle, its result must be identical to that
of the CF diagonalization.

However, there is still a subtle difference between the two
approaches. This is because the harmonic expansion of Eq. (6)
in the semiclassical approach requires expanding the trial wave
function to the second order of {ui ,ki}. It results in spurious
terms not presented in the harmonic expansion for obtaining
the CF diagonalization. In the next subsection, we will show
that these terms are unphysical and can be eliminated by a
projection.
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D. Projected dynamic matrix

We note a subtlety concerning the quantum correspondence
of the dynamics. In the derivation of the dynamics, we treat xi

and pi as classical variables. However, when constructing the
quantum coherent states, we use only the positive-frequency
components of the dynamic variables, as shown in Eq. (33).
The latter is necessary because the wave function 〈r|φ〉 defined
in Eq. (32) should be the superposition of the ground state and
excited states: 〈r|φ〉 ∼ �0 + ∑

i exp(−i�Eit)�i with �Ei >

0, i.e., it only contains positive frequency components in its
time dependence [54].

The consideration will introduce a modification to the
harmonic expansion of Vee. This is because the harmonic
expansion Eq. (17), which treats the dynamic variable as
classical variables, includes contributions from the second-
order derivatives of the trial wave function with respect to
{ui ,ki}. These terms couple two positive- (negative-) fre-
quency components of dynamic variables, and induce spurious
couplings between positive- and negative-frequency branches
in the resulting equation of motion. It is necessary to drop these
terms in the harmonic expansion. On the other hand, one can
show that the kinematic part of the dynamics is not affected by
the issue.

To determine the modification, we note that our wave
function Eq. (5) depends only on the complex variables ūi ≡
uxi − iuyi and ki ≡ kxi + ikyi . Thus, ūi and ki can be chosen
to be positive-frequency functions of the time, and a proper
harmonic expansion of Vee should only include terms coupling
{ūi ,ki} with their complex conjugates. To this end, we expand
Vee in terms of {ū(q),k(q)}:

Vee ≈ 1

2

∑
q

[
u(q)
k(q)

]†
D̃(q)

[
u(q)
k(q)

]
, (38)

where D̃(q) is the dynamic matrix with respect to {u(q),k(q)}.
To get rid of the spurious coupling, we introduce a projected
dynamic matrix:

D̃P (q) = P̃+D̃(q)P̃+ + P̃
†
−D̃(q)P̃−, (39)

with

P̃± =
[

1
2 (1 ∓ σ2) 0

0 1
2 (1 ± σ2)

]
, (40)

where σ2 is the second Pauli matrix. The projection operators
eliminate unwanted coupling in the original dynamic matrix
D̃(q).

Similarly, we can obtain a projected dynamic matrix with
respect to {x(q), p(q)} by a projection:

DP (q) = P
†
+(q)D(q)P+(q) + P

†
−(q)D(q)P−(q), (41)

with P± = U (q)P̃±U−1(q), where U (q) is the transformation
matrix relating {ū(q),k(q)} with {x(q), p(q)}: [x(q), p(q)]T =
U (q)[u(q),k(q)]T . We have

P±(q) =
[

1
2

(
1 ∓ A(q)σ2A−1(q)

) ∓iA(q)
0 1

2 (1 ± σ2)

]
. (42)

Substituting the dynamic matrix D(q) in Eqs. (24) and (28)
with DP (q), we eliminate the spurious couplings, and make

the semiclassical approach completely equivalent to the CF
diagonalization aforementioned [55].

III. INTERPRETATIONS OF THE CP DYNAMICS

A. Sundaram-Niu dynamics of CPs

The CP dynamics, as shown in Eq. (24), or Eqs. (25) and
(26), is different from the one adopted in the heuristic approach,
in which a CP is assumed to be an ordinary Newtonian particle
characterized by an effective mass and a mean-field effective
magnetic field [37–39]. Our CP dynamics fits in with the
form of the more general Sundaram-Niu dynamics with Berry
curvature corrections. An analysis of these corrections would
provide insight into the nature of CPs, as we will discuss in the
following.

First, CPs are subjected to an emergent gauge field
�Be(q) ≡ B − Be(q). The emergent gauge field gives rise
to a dissipationless viscosity [43,44], resulting in the force
characterized by Bij

e shown in the right-hand side of Eq. (26).
The presence of the emergent gauge field is actually anticipated
in the conventional CF theory, in which it is manifested
as Chern-Simons fields [40,56]. Specifically, the diagonal
component of the emergent gauge field

�B ≡ B − Bii
e = −

∑
R0

i �=0

�Be

(
R0

i

)
(43)

corresponds to the Chern-Simons magnetic field, while the
nondiagonal components induce a force in analogy to that
induced by the Chern-Simons electric field resulting from
moving quantum vortices through the Faraday effect [1].
However, in our formalism, the emergent gauge field in general
cannot be described by the simple Chern-Simons action [57].

Second, CPs are subjected to a Berry curvature in the
momentum space with �z = 1/eB [58]. This is a feature of
the dynamics not presented in the conventional theory of CFs
[5,36]. The Berry curvature gives rise to an anomalous velocity,
which is well known for electron dynamics in magnetic solids
with spin-orbit coupling (SOC), and is linked to the (quantum)
anomalous Hall effect [59,60]. Here, the Berry curvature is
not induced by the SOC, but inherited from the Landau level
hosting the particles. Indeed, a Landau level, when casted to a
magnetic Bloch band, does have a uniformly distributed Berry
curvature in the momentum space with �(LL)

z = −1/eB [61].
One can show that the difference in the signs of �z and �(LL)

z

is due to our assignment of the CP position to its constituent
quantum vortices (see Sec. III C and Ref. [50]). The presence of
a Berry curvature in the momentum space indicates that a CP is
neither an ordinary Newtonian particle nor a Dirac particle, but
a particle following the more general Sundaram-Niu dynamics.

B. Dipole interpretation

Our dynamics can be related to the dipole picture of CPs
[36,47]. To see that, we interpret ẑ × pi/eB as the displace-
ment from the electron to the quantum vortices bonded in a
CP, and regard a CP as a dipole consisting of an electron and
a bundle of m quantum vortices [36,47]. The picture and its
relation to the usual position-momentum interpretation have
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been discussed in Ref. [47]. For the interpretation, we adopt
another set of dynamic variables:

xe
i = 〈r̂ i〉 − R0

i = xi − 1

eB
ẑ × pi , (44)

xφ

i ≡ xi , (45)

which are positions of the electron and the bundle of the
quantum vortices, respectively. Note that the position of a CP
is assigned to the position of the quantum vortices in Eq. (24).

The equation of motion with respect to the new dynamic
variables is[

e�Be(q)ẑ× 0
0 −eBẑ×

][
ẋφ(q)
ẋe(q)

]
= D′(q)

[
xφ(q)
xe(q)

]
, (46)

where D′(q) is the corresponding dynamic matrix, which can
be related to DP (q) by a transformation.

It is notable from Eq. (46) that the electron in a CP is
only coupled to the external magnetic field, while the quantum
vortices are only coupled to the emergent gauge field [62].
Although not explicitly specified in the original proposal [47],
the simple form of the coupling could have been anticipated
from the microscopic wave function Eq. (5), in which the
correlations introduced in the Bijl-Jastrow factor are between
coordinates of quantum vortices. The particular way of the
coupling should be regarded as an essential aspect of the dipole
picture of CPs.

From Eq. (46), it also becomes apparent that our dynamics
is consistent with Kohn’s theorem. In the long-wavelength
limit q → 0, both D′(q) and �Be(q) vanish because of the
translational symmetry. As a result, the degrees of freedom
associating with xφ become degenerate. The system will only
have a trivial zero-frequency mode, and no emergent mode will
be present. The behavior is exactly what would be expected
from Kohn’s theorem, because the cyclotron mode, which is
the only allowed resonance at q = 0 according to the theorem,
is an inter-Landau-level excitation, and will not appear in our
dynamics, which has assumed that all excitations are within a
Landau level.

From these observations, it becomes apparent that the
presence of the Berry curvature in the momentum space would
be an inevitable feature of the CP dynamics if we wanted to
obtain the particular form of the dipole picture or conform to
Kohn’s theorem. Had we assumed a vanishing Berry curvature
in Eq. (24), Eq. (46) would have a different form of the
coupling to gauge fields, and its left-hand side would not
become degenerate to conform to Kohn’s theorem.

C. Definition of the CP position

In the position-momentum interpretation of the dynamics,
there is arbitrariness in defining the position of a CP. In
Eq. (24), the position of a CP is interpreted as the position
of its constituent quantum vortices. It seems to be equally
plausible to interpret the CP position as the electron position.
Other choices are also possible. The issue is, will a different
choice affect our interpretation of the dynamics?

To see that, we derive the equation of motion with respect
to {xe(q), p(q)}. By substituting Eq. (44) into Eq. (24), it is

straightforward to obtain

[
eBe(q)ẑ× �Be(q)

B
I

−�Be(q)
B

I − 1
eB

(
�Be(q)

B

)
ẑ×

][
ẋe(q)
ṗ(q)

]
= −D′′(q)

[
xe(q)
p(q)

]
,

(47)

where D′′(q) is the transformed dynamic matrix with respect
to the new dynamic variables.

We observe that the equation of motion becomes more
complicated. It still fits in with the general form of the
Sundaram-Niu dynamics, but with a complicated structure of
Berry curvatures [41]. Similar complexity also arises when
one adopts other definitions of the CP position. The initial
definition of the CP position stands out because it yields the
simplest form of the dynamics.

On the other hand, the different choice of the CP position
may have a physical consequence. This is the case when we
apply an external electric field E, which introduces a potential
φext = eE · xe

i = eE · (xi − ẑ × pi/eB) into the system. We
see that the CP carries an electric dipole eẑ × pi/eB with
respect to the external field if we adopt xi as its position, while
it is just a pure charge when the position of the CP is interpreted
as xe

i . The different assignments of the position will affect how
we define the equilibrium state of the system in the presence
of an external electric field.

IV. NUMERICAL SIMULATIONS

A. Methods

We employ the Metropolis Monte-Carlo method to eval-
uate the coefficients defined in Eqs. (9) and (18)–(20). The
algorithm and setup of our simulations are similar to those
adopted in Ref. [8], with a couple of improvements detailed as
follows.

First, our calculation employs a much larger simulation
cell which involves 397 electrons arranged as 11 concentric
hexagonal rings in a plane, as shown in the inset of Fig. 1. The
larger simulation cell is needed to eliminate finite-size effects
as the coefficients decay slowly in the real space.

Second, we use a different wave function for the finite
simulation cell, and eliminate the need for introducing “ghost”
particles explicitly. As pointed out in Ref. [8], in equilibrium
(Ri = R0

i , and ki = 0), the average positions of electrons do
not coincide with their expected equilibrium positions due
to the presence of the Bijl-Jastrow factor. As a result, it is
necessary to introduce a cloud of ghost particles for each of
the electrons. In Ref. [8], finite-size ghost-particle clouds were
introduced. In our simulation, we extend the size of the ghost
particle clouds to infinity. The resulting wave function can be
determined analytically:

�({r i}) ∝ A
∏

i<j�N

(
zi + iki l

2
B − zj − ikj l

2
B

)m∏
i�N

∏
j �=i,�N

(
zi + ikj l

2
B − Z0

j

)m

×
N∏

i=1

[
ψ

(
zi − Z0

i + iki l
2
B

)]m
φRi

(r i), (48)
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FIG. 1. Variational ground-state energies of CPWCs relative to
that of the ordinary WC. Red points indicate the results of Ref. [8].
The phase boundaries between CPWC phases with different values of
m are determined by comparing the energies, and indicated by dashed
vertical lines. Inset: Configuration of the simulation cell.

where Z0
i ≡ X0

i + iY 0
i [R0

i ≡ (X0
i ,Y

0
i )], N is the total number

of electrons in the simulation cell, and [37]

ψ(z) ≡
∏

i �=0

(
z − Z0

i

)
∏

i �=0

(
Z0

i

) ∝ 1

z
θ1

(
z

a

∣∣∣1

2
+ i

√
3

2

)
, (49)

where a is the lattice constant of the WC, the product is
extended to an infinite triangular lattice with unit vectors
a1 = (1,0)a and a2 = (1/2,

√
3/2)a, and θ1 is the Jacobi theta

function.
An important issue of our simulation is to extrapolate

the calculation results obtained in a finite simulation cell to
the macroscopic limit. To this end, we find that Afinite

0 , the
coefficient defined in Eq. (16) calculated with a harmonic
approximation of the wave function for the finite simulation
cell [see Eq. (B3) in Appendix B], fits the long-range tail
of the calculated coefficient very well. Hence, we divide the
coefficient into a long-range part Afinite

0 and a short-range part
that decays rapidly with the distance, and fit the short-range
part up to the fifth-nearest neighbors. The extrapolation is
then straightforward by upgrading Afinite

0 to its infinite lattice
counterpart, which can be determined analytically.

Similar extrapolation schemes are applied for the deter-
minations of the coefficients Eq. (18)–(20). We can have
harmonic approximation for these coefficients as well [see
Eq. (B5) in Appendix B]. They are regarded as the long-
range parts of the coefficients. In this case, the remainder
of the coefficients decays as 1/|R0

i − R0
j |5 in the long range.

We fit the remainders of Dxx and D px with short-range terms
up to the fifth-nearest neighbors, whereas for D p p the higher
precision of the calculated values allows us to fit it with a
1/|R0

i − R0
j |5 term plus the short-range terms. We note that

using the short-range terms to fit the remainders may yield an
incorrect asymptotic behavior in the long-wavelength limit. It
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FIG. 2. Emergent gauge field. (a) Distribution of the emergent
gauge field in the Brillouin zone for four representative filling factors
[see legends in (b)] with different values of m. (b) Decay of the
dissipationless viscosity coefficient �Be(R0

i ) in the real space. R

denotes the distance between two particles, and a is the lattice
constant. (c) Filling factor ν dependence of the emergent gauge field at
the K point of the Brillouin zone (circle-solid line) and the mean-field
value �B defined in (43) (triangle-dashed line).

makes our determination of the dynamic matrix less reliable
in the regime.

Figure 1 shows the variational ground-state energies de-
termined from our simulations, and a comparison with the
results presented in Ref. [8]. In our simulation, each of the
Markov chains contains a total 5.6 × 1012 proposal states with
an acceptance rate ∼25%. They yield essentially identical
results as the old simulation (within the error bars of the old
simulation) albeit with much improved precision.

B. Results

1. Emergent gauge field

Figure 2 shows the emergent gauge field �Be. The distri-
bution of the field in the Brillouin zone is shown in Fig. 2(a).
It peaks at the K point and vanishes at the � point. In the real
space, the dissipationless viscosity coefficient decays rapidly
with the distance, as shown in Fig. 2(b).

The strength of the emergent gauge field is characterized
either by the value of �Be(q) at the K point or the mean-field
value �B defined in Eq. (43). Both are shown in Fig. 2(c). The
magnitude of the emergent field is ranged from a few percent
to 10% of the external magnetic field, and is an increasing
function of the filling factor for a given value of m. The
magnitude is smaller than that expected for a FQH liquid,
which has a mean-field value �BFQH/B = mν. It indicates
the mean-field approximation adopted for FQH liquids is not
applicable for the CPWCs. On the other hand, the magnitude
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FIG. 3. Phonon dispersions of type-I CPWCs. (a–d) Phonon
dispersions for a few representative filling factors. Both results using
the projected dynamic matrix (solid lines) and the unprojected one
(dotted lines) are shown. (e) Filling factor ν dependence of phonon
energies of the upper (U) and the lower (L) branch at high-symmetry
points of the Brillouin zone, including K point, M point, as well as �

point (evaluated at q = 0.01K ). e2/εl (≈ 4.3
√

B[T] meV for GaAs)
is the Coulomb energy scale. Error bars for the phonon energies near
the � point are shown.

is actually gigantic in comparison with that generated by an
intrinsic SOC. For instance, the intrinsic SOC in GaAs could
also give rise to a similar emergent gauge field in an ordinary
2D WC. However, its magnitude is of the order of ∼0.01 T
only [63].

2. Phonon dispersions

The phonon dispersions of type-I CPWCs are obtained
by solving the generalized eigenvalue equation Eq. (28). The
results are summarized in Fig. 3. Among the two branches of
phonons of a CPWC, the lower branch is not much different
from that of an ordinary WC, both qualitatively and quantita-
tively [32–34], whereas the upper branch is an emergent mode
with an energy scale ∼0.5ν3/2e2/εlB , which is much smaller
than the cyclotron energy. The upper branch has similar origin
and energy scale as the magnetoroton mode arisen in FQH
liquids [35]. We thus interpret the mode as the magnetoroton
mode of the CPWC.

For typical experimental parameters, the energy of the
emergent mode is much larger than the disorder pining modes
which have been extensively probed by existing microwave
experiments [16–24]. Our prediction thus calls for experiments
probing into this energy regime.

3. Oscillator strength and Kohn’s theorem

We also calculate the oscillator strength of the emergent
magnetoroton mode. To do that, we determine the response
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FIG. 4. Oscillator strength of the emergent magnetoroton mode
for a few representative filling factors, in units of ωq/ωc, where ωq is
the frequency of the mode, and ωc is the cyclotron frequency.

of the system to an external time-dependent electric field
E(t) = Eω exp(−iωt). Because the external electric field is
only coupled to the electron degree of freedom (see Sec. III B),
it will introduce a scale potential eE(t) · xe ≡ eE(t) · (x −
ẑ × p/eB) into the system. As a result, the equation of motion
has the form[

eBe(q)ẑ× I

−I 1
eB

ẑ×
][

ẋ(q)
ṗ(q)

]

= −D(q)

[
x(q)
p(q)

]
+

[ −eE(t)
E(t) × ẑ/B

]
. (50)

By solving the equation, we can determine the displace-
ment of electrons parallel to the electric field, and the os-
cillator strength fqi is defined by the relation [64] x

‖
e (q) =

−e/mb

∑
i fqi/(ω2

qi − ω2 − iω0+)Eω, where mb is the elec-
tron band mass of the 2DEG. The oscillator strength for the
emergent magnetoroton mode is shown in Fig. 4. We see that
it vanishes at the limit q → 0, in accordance with Kohn’s
theorem.

V. CONCLUDING REMARKS

In summary, we have derived the effective dynamics of CPs
in a CPWC directly from its microscopic wave function. We
find, most notably, the presence of a Berry curvature in the
momentum space. The picture emerged from the dynamics
is different from the conventional one that assumes that a
CP behaves just like an ordinary Newtonian particle. On the
other hand, we show that the dynamics is consistent with
the dipole picture of CPs, and the presence of the Berry
curvature is actually an inevitable consequence of the picture.
The consistency is not a coincidence, since both are derived
from microscopic wave functions. The discrepancy between
our picture and the conventional interpretation of CPs is not
surprising because the conventional picture was developed
from a flux-attachment argument for free particles residing in
a parabolic band [40], while ours is constructed for electrons
constrained in a Landau level. The Berry curvature is just a
result of the projection to the Landau level.
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The equations of motion Eqs. (25) and (26), which are
derived for type-I CPWCs, can be generalized for general
CP systems by interpreting Bij

e as a function of {xi} and
the effective CP Hamiltonian Vee as a function of {xi , pi}
[65]. This is possible because all CP wave functions with
the form of Eq. (1) can be expanded as linear combina-
tions of the set of wave functions specified by Eq. (5) with
different parameters {Ri , ki}, which could be regarded as
“coherent-state” bases of CPs. Hence, Eqs. (25) and (26)
could be regarded as the equations of motion with respect
to coherent-state coordinates and momenta. The key insight
obtained in this paper, i.e., the presence of a Berry curvature
in the momentum space, will carry over into the general CP
dynamics. The correction introduced by the Berry curvature
would be sufficient to cure the deficiencies of the conventional
CF theory noted in Ref. [45]: (a) the anomalous Hall effect
induced by the Berry curvature yields a nonvanishing Hall
conductance of CFs in a half-filled Landau level, and (b) the
density-of-state correction associating with the Berry curvature
induces the apparent asymmetry in the CF pictures for a
filling fraction and its hole conjugate. A tentative CP theory
taking account of the Berry curvature correction is presented in
Ref. [50].
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APPENDIX A: DYNAMIC MATRIX

To derive the formulas for the dynamic matrix coefficients
(18)–(20), we make use of the identities

∂Vee

∂xiα

= ∂Vee

∂ujβ

[A−1]jβ,iα, (A1)

∂Vee

∂piα

= 1

h̄

(
∂

∂kiα

− l2
Bεαβ

∂

∂uiβ

)
Vee, (A2)

∂|�|2
∂uiα

= riα − Riα

l2
B

|�|2, (A3)

∂|�|2
∂piα

= 1
h̄

(
∂

∂kiα
− l2

Bεαβ
∂

∂uiβ

)
|�|2 = l2

B

h̄
εαβ

∂|�|2
∂riβ

.

(A4)

In deriving the last identity, we make use of Eq. (10). We obtain

∂Vee

∂xiα

= 1

l2
B

〈(V̂ee − V̄ee)(r̂jβ − Rjβ)〉[A−1]jβ,iα, (A5)

∂Vee

∂piα

= − l2
B

h̄
εαβ

〈
∂V̂ee

∂riβ

〉
. (A6)

Applying the second derivative, and making use the identi-
ties again, we obtain Eqs. (18)–(20).

APPENDIX B: HARMONIC APPROXIMATIONS
OF THE COEFFICIENTS

A rudimentary approximation for evaluating the coefficients
is the harmonic approximation. We define the harmonic ap-
proximation of the wave function as

|�0|2 ∝ exp

⎡
⎣2m

∑
i<j

ln |r i − rj |2 − 1

2l2
B

∑
i

∣∣r i − R0
i

∣∣2

⎤
⎦

≈ exp

⎡
⎣−1

2

∑
ij,αβ

Fαβ

(
R0

i − R0
j

)
ξiαξjβ

⎤
⎦, (B1)

where

Fαβ

(
R0

i

) =
⎧⎨
⎩

1
l2
B

δαβ R0
i = 0

−2m
2R0

iαR0
iβ−|R0

i |2
δαβ

|R0
i |4 R0

i �= 0
. (B2)

Under the approximation, the coefficient A defined in
Eq. (16) is related to F by a matrix inversion:

A ≈ A0 ≡ 1

l2
B

F−1. (B3)

The coefficient Fαβ(R0
i ) satisfies an identity:∑

α

Fαα

(
R0

i

) = 2

l2
B

δR0
i ,0

. (B4)

It leads to a vanishing emergent gauge field.
To evaluate the dynamic matrix, we first expand the

electron-electron interaction operator V̂ee to the second order
of ξ̂ i . With the approximated wave function Eq. (B1), the
coefficients (18)–(20) become Gaussian integrals. We obtain
the harmonic approximation of the dynamic matrix:

D0(q) =
[

D0(q) l2
B

h̄
D0(q)ε̂

− l2
B

h̄
ε̂D0(q) − l4

B

h̄2 ε̂D0(q)ε̂

]
, (B5)

where D0(q) is the 2 × 2 classical dynamic matrix of the WC.
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