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Chern-Simons composite fermion theory of fractional Chern insulators

Ramanjit Sohal, Luiz H. Santos, and Eduardo Fradkin
Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign,

1110 West Green Street, Urbana, Illinois 61801-3080, USA

(Received 25 July 2017; revised manuscript received 27 September 2017; published 19 March 2018)

We formulate a Chern-Simons composite fermion theory for fractional Chern insulators (FCIs), whereby bare
fermions are mapped into composite fermions coupled to a lattice Chern-Simons gauge theory. We apply this
construction to a Chern insulator model on the kagome lattice and identify a rich structure of gapped topological
phases characterized by fractionalized excitations including states with unequal filling and Hall conductance.
Gapped states with the same Hall conductance at different filling fractions are characterized as realizing distinct
symmetry fractionalization classes.
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I. INTRODUCTION

Recent years have seen increasing interest in fractional
Chern insulators (FCIs), materials which realize analogs of
the fractional quantum Hall effect (FQHE) on lattices in
the absence of a net magnetic field. Numerical studies have
shown that FCIs can be realized by partially filling a band
with a nontrivial Chern number [1–9]. Encouragingly, the
observation of lattice FQH states was recently reported in a
bilayer graphene/hexagonal boron nitride heterostructure [10].

Despite the striking similarities between FCI and FQHE
states, the differences between the physical mechanisms giv-
ing rise to these two states of matter render a theoretical
description of FCIs a challenging endeavor. In semiconductor
heterostructures where the FQHE is traditionally studied, a
two-dimensional electron gas (2DEG) is subject to a uniform
magnetic field of the order 10 T, which is externally applied
perpendicularly to the 2DEG. For magnetic fields of this order,
the magnetic flux per unit cell of the underlying periodic lattice
potential experienced by the electrons is much smaller than the
fundamental flux quantum h̄c/e, or equivalently, the magnetic
length �B = √

h̄c/eB (where h is the Planck’s constant, c the
speed of light, e the electron’s charge, and B the magnetic
field) is much larger than the lattice constant of the underlying
periodic lattice potential experienced by the electrons, which
justifies neglecting lattice effects. Under these circumstances,
one treats electrons in a continuum approximation where the
magnetic field organizes the single particle energy states into
highly degenerate Landau levels. The special mathematical
properties associated with the single particle energy states
of the lowest Landau level, in particular, have been largely
explored towards a theoretical understanding of the essential
properties of the FQH liquid, such as the existence of quasi-
particles with fractional charge and statistics [11–14].

In FCIs, on the other hand, the single particle states
constitute a topologically nontrivial Chern band [15]. When
completely filled, a Chern band with Chern number C0 = 1
yields a Hall conductance e2/h exactly as a completely filled
Landau level does. Nevertheless, unlike the flat energy Landau
levels, Chern bands have a a nonzero bandwidth, which renders
the analytical treatment of FQH states supported in partially

filled Chern bands much more challenging when compared to
the partially filled Landau level situation. As such, much of the
understanding about the topological properties of FCIS has re-
lied on numerical methods such as exact diagonalization (ED)
and density matrix renormalization group (DMRG) [1–9].

The development of an analytical description of FCI states
is thus of great interest. Although FCIs exhibit characteristics
similar to the continuum FQHE, lattice effects are expected to
give rise to rich new physics. Even in the continuum FQHE,
the presence of a square lattice potential yields states with
Hall conductance unequal to the filling factor [16]. FCIs are
additionally expected to support non-Abelian states resulting
from partial filling of Chern bands with |C0| > 1 [17,18], non-
Abelian defects [19], and anyonic excitations with fractional-
ized symmetry quantum numbers, thus exhibiting “symmetry
fractionalization” [20,21]. Although several approaches have
been used to study FCIs, an analytic description starting from
a microscopic theory is still lacking.

There are two appealing motivations for pursuing this ana-
lytic description. First, given the topological nature encoded in
the ground state and low-energy excitations of FCIs, one hopes
to uncover the essential aspects underlying the mechanism of
electron fractionalization, without having to rely intensively on
details of the systems, as one does in ED and DMRG studies.
Secondly, the analytical approach we pursue in this work—as
shall be presented in detail later—predicts candidate FCI states
stabilized by local interactions in Chern bands in a series of
partial filling fractions, whose properties can be targeted in
future ED and DMRG studies as well as in experiments. Thus
our work provides a bridge between analytic, numerical, and
experimental studies.

The aim of this paper is to provide an analytical descrip-
tion of FCI states on a specific kagome lattice model in
terms of a Chern-Simons composite fermion (CF) theory.
The CF approach has been used successfully in describing
the conventional FQHE [22,23]. Heuristically, in this picture
the electrons nucleate fluxes of an emergent Chern-Simons
gauge field such that at the mean-field level, the CFs fill an
integer number of Landau levels in the new effective flux. The
IQH states of the CFs then correspond to FQH states of the
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original fermions. Quantum fluctuations about these IQH states
endow the excitations with their correct fractionalized quantum
numbers. Numerical studies suggest that a CF picture is also
relevant for the lattice FQHE [24,25] and so may be applicable
to FCIs, as is also suggested by recent analytical work [26,27],
providing further motivation for our study. The methodology
we use here is similar to that used in the continuum, but
with a local and gauge-invariant Chern-Simons action on the
lattice [28–31]. This is necessary as we work in the tight
binding limit; in contrast, previous studies of the lattice FQHE
[16] considered the opposite limit in which Landau levels are
dressed by a lattice potential.

This paper is organized as follows. We begin by outlining
in Sec. II the Chern insulator model on the kagome lattice to
which we apply our analysis. Next, in Sec. III, we review the
CF mapping and the consistent definition of a Chern-Simons
action on the kagome lattice as discussed in Refs. [30,31]
(see Sec. III A). Special care will be given to the boundary
conditions, focusing on the case of the torus. In Sec. IV we con-
struct gapped states of the CFs arising at the mean-field level
(i.e., the average field approximation) which are identified as
candidate FCI states. The construction of the mean-field theory
requires the self-consistent derivation of a class of Hofstadter
states. In Sec. V A we derive the effective topological field
theory describing the gapped low-energy states, from which
we can extract the Hall conductance, fractional excitations,
and ground-state degeneracy. In Sec. V B we use the results
of the previous sections to identify candidate FCI states from
the composite fermion Hofstadter spectrum and characterize
their topological properties. It is found that there are two
classes of FCI states which can be realized: those with Hall
conductance equal to the filling factor and those for which these
two quantities are unequal. We then discuss how FCI states with
the same topological order arising at different filling fractions
can be viewed as realizing distinct symmetry fractionalization
classes which are derived in Sec.VI. We provide concrete
predictions arising from this classification which may be
verified via numerical studies. Before concluding, we offer
some remarks in Sec. VII about the distinctions between
FCIs and lattice FQHE states. Section VIII is devoted to our
conclusions.

II. MODEL

The model we consider is a Chern insulator of spinless
fermions with nearest-neighbor hopping on the kagome lattice,
subject to a staggered magnetic field with net zero flux per unit
cell [32]. The Hamiltonian of the model is

H = J
∑
〈x,x′〉

[ψ†(x)eiφ(x,x′)ψ(x′) + H.c.]

+ g

2

∑
x, y

n(x)V (x − y)n( y). (2.1)

Here J is the hopping amplitude on the kagome lattice, g is
the coupling constant, and V (x − y) is the interaction between
the fermions densities, the occupation numbers labeled by
n(x). In this paper we will assume that the interaction is for
nearest neighbors on the kagome lattice, but it can be a general
interaction as well.

FIG. 1. Kagome lattice unit cell with phases arising from a
magnetic flux indicated by arrows. The net flux is zero.

The staggered magnetic field is represented by the fixed
phase field φ(x,x′), defined on the links of the kagome lattice,
such that the flux of this field is φ+ (φ−) into the page
through the up (down) triangles of the lattice as shown in
Fig. 1. Also illustrated in Fig. 1 are the sublattice structure and
definition of the lattice vectors e1,2. We will focus on the case of
φ± = π/2 which preserves the lattice point-group symmetry
and yields three well-separated bands with the lowest band
possessing Chern number C0 = +1. The band structure is
discussed further in Appendix A. We are interested in gapped
topological phases arising from partially filling this lowest
band; the fraction of it which is filled will be denoted by nL.

In general, the formation of an FCI requires that the
bandwidth of the partially filled Chern band are at most of the
order of the band gaps of the noninteracting problem. Hence,
the spinless fermions in the partially filled band can be regarded
as being strongly correlated. Without this condition the system
would be a metal, and not an FCI. In the specific staggered
flux model we chose, the bandwidth is comparable to the gap
between the band. It is, however, still possible to stabilize an
FCI, in principle, if interactions are strong enough.

III. FLUX ATTACHMENT

The mapping of fermions to CFs is accomplished via a
mapping onto an equivalent system of spinless fermions, the
composite fermions, minimally coupled to a dynamical lattice
Chern-Simons gauge field with a coupling parameter that we
will denote by θ . We use the lattice Chern-Simons gauge
theory on a kagome lattice on a 2D torus, as defined in Ref.
[31] (a generalization of the approach of Refs. [28,29]). This
is an exact mapping provided the Chern-Simons theory can
be well defined on the lattice in a gauge-invariant fashion.
That this is possible on a large class of lattices (including the
kagome lattice) was shown in Ref. [31]. After performing this
transformation our system is described by the action,

S[ψ,ψ†,Aμ,Bμ]

= SF [ψ,ψ†,Aμ] + Sint[Aμ] + SCS[Aμ,Bμ], (3.1)

where ψ is the CF field, Aμ is the statistical gauge field, and Bμ

is a hydrodynamic gauge field required for flux attachment to
be defined consistently on a torus as described below [33]. Here
SF is the fermionic action, Sint is a fermion density-density
interaction (as will be shown, flux attachment allows one to

125131-2



CHERN-SIMONS COMPOSITE FERMION THEORY OF … PHYSICAL REVIEW B 97, 125131 (2018)

make a formal substitution of the densities with fluxes), and SCS

is the Chern-Simons action. In the following we will discuss
in detail the actions SF , SCS, and Sint in turn.

The fermionic part of the action is of the usual form,

SF [ψ,ψ†,Aμ]

=
∫

t

∑
x

ψ†(x,t)iD0ψ(x,t) −
∫

t

J
∑
〈x,x′〉

(ψ†(x,t)

× ei(Aj (x,t)+φ(x,x′))ψ(x′,t) + H.c.), (3.2)

where D0 = ∂0 + iA0 is the covariant time derivative and
〈x,x′〉 indicates a sum over nearest neighbors. The temporal
components of the gauge field A0(x) live on the sites of the
lattice whereas the spatial components, Ai(x) (i = 1, . . . ,6),
live on the links.

The form of the lattice Chern-Simons action is less intuitive.
For a more detailed construction for a large class of lattices we
direct the reader to Ref. [31]. In the following two subsections
we will describe first the lattice formulation of the action
for the statistical gauge field Aμ and subsequently the lattice
formulation of an equivalent theory involving both Aμ and
the hydrodynamic field Bμ which can can be defined on
topologically nontrivial manifolds.

A. Lattice Chern-Simons

Broadly speaking, a theory of fermions coupled to a Chern-
Simons field is a theory of flux-charge composites. Hence a
Chern-Simons action must enforce a Gauss’ Law constraint
which attaches fluxes to the matter fields in addition to being
gauge invariant. On the lattice, the fermions reside on the
lattice sites and so it is natural to define the fluxes to live in
the plaquettes (i.e., the sites of the dual lattice). So, in order
to be able to consistently define a flux attachment condition,
the lattice must be such that one can uniquely associate each
site to a plaquette. This is indeed the case for the kagome lattice
as well as the dice and square lattices but not, for instance, the
honeycomb or triangular lattices.

As shown in Refs. [30,31], it follows from the above
considerations that one consistent formulation for a Chern-
Simons action on the kagome lattice is given by1

SCS[Aμ] = θ

∫
dt

∑
x

[
Aα

0 (x,t)J α
i Ai(x,t)

− 1

2
Ai(x,t)Mij ∂tAj (x,t)

]
. (3.3)

Here the sum is over unit cell positions and the index α =
a,b,c denotes the sublattice. As noted above, the temporal
components of the gauge field Aα

0 live on the lattice sites

1Note that what we call Mij is the Kij matrix of Refs. [29–31]; this
is to avoid confusion with the K matrix of Eq. (5.2). Additionally,
as we have written the action, J α

i and Mij are operators while in
Ref. [30] these objects are expressed as the functions Ji(x − y) and
Mij (x − y) with the action containing a sum over x and y. This is
a matter of notation—in this and the following sections we will use
one or the other convention depending on which is most convenient.

(a) (b)

(c)

FIG. 2. (a) Kagome lattice unit cell with spatial components of the
statistical gauge field Ai and fluxes 	α = J α

i Ai . (b) Dice lattice unit
cell with the hydrodynamic gauge field Bi and fluxes 	∗α = J ∗α

i Bi .
(c) Orientation of the dual (dice) lattice relative to the direct (kagome)
lattice.

whereas the spatial components Ai live on the links. The
orientation of the spatial gauge fields is shown in Fig. 2(a).
In the context of flux attachment the coupling θ is given by
θ = 1/2π (2k), k ∈ Z. Now, the first term in the action enforces
the flux-attachment (or Gauss’ Law) constraint,

nα(x) = θJ α
i Ai(x) ≡ θ	α(x). (3.4)

The fluxes 	α(x) = J α
i Ai(x) live in the kagome lattice pla-

quettes as shown in Fig. 2(a). The Ji vectors may be viewed
as discretized curl operators on the kagome lattice,

J a = (1,−1,1,−s2,−s1,−1),

J b = (0,s1,−1,1,0,0), (3.5)

J c = (−s2,0,0,0,−1,1),

where we have used the lattice shift operators si which are
defined as sif (x) = f (x + ei). Hence the Gauss law ties the
statistical fluxes in the hexagon, up triangle, and down triangle
to the a, b, and c sites, respectively.

Note that the assignment of fluxes to sites necessarily breaks
the rotational symmetry of the lattice. This will be true for any
choice of assignment and so the lattice point-group symmetry is
not respected by the lattice Chern-Simons formulation we have
chosen. That being said, the mapping of fermions to composite
fermions is an exact one at the level of the path integral and so
the ground state predicted by our theory (at the full quantum
level) should respect the lattice symmetries, provided there is
no spontaneous symmetry breaking. We will return to this issue
in the discussion of our mean-field theory analysis.
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The second term in the Chern-Simons action of Eq. (3.3) enforces the commutation relations. The matrix kernel Mij must
be chosen so as to make the theory gauge invariant. This ensures that the Gauss’ Law constraint can be applied consistently
on different plaquettes, in other words, [	α(x),	α′

( y)] = 0. It was found previously [30] that on the kagome lattice the matrix
kernel has the form,

Mij = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1 −s2 s1 + s−1
2 −1 + s−1

2

1 0 1 − s−1
1 −s2 − s−1

1 s1 −1

−1 s1 − 1 0 1 − s2 s1 −1

s−1
2 s1 + s−1

2 s−1
2 − 1 0 s1s

−1
2 s−1

2

−s2 − s−1
1 −s−1

1 −s−1
1 −s2s

−1
1 0 1 − s−1

1

1 − s2 1 1 −s2 s1 − 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.6)

The standard canonical quantization procedure then yields
[Ai(x),Aj ( y)] = − i

θ
M−1

ij (x − y) so that only neighboring
gauge fields have nontrivial commutation relations. (See
Appendix D for a discussion of the spectrum of Mij .)
This provides a fully consistent definition of a local
Chern-Simons action on the kagome lattice with trivial
topology.

B. Lattice Chern-Simons on a torus

As noted above, when performing our mapping, the Chern-
Simons parameter is given by θ = 1/2π (2k). This is the
form of the flux attachment used in Ref. [30]. However, the
coefficient θ is not properly quantized and so the theory cannot
be defined on closed manifolds with nonzero genus [34]. Much
as in the continuum case [33,35], this problem is resolved by
introducing the auxiliary, hydrodynamic field Bμ which lives
on the dual lattice which, in our case, is the dice lattice. In
particular, the temporal components Bα

0 live on the sites of
the dice lattice whereas the spatial components Bk live on the
links. Following the conventions of Ref. [31], the orientations
of the Bk are obtained by rotating the arrows on the direct
lattice counterclockwise until they align with the links of the
dual lattice. Figure 2(b) shows the definition of the spatial
components of the Bμ field while Fig. 2(c) illustrates the
relative orientation of the direct and dual lattices. The resulting

action is given by

SCS[Aμ,Bμ] = − 2k

2π

∫
dt

∑
x

[
Bα

0 (x,t)J ∗α
i Bi(x,t)

−1

2
Bi(x,t)M∗

ij Ḃj (x,t)

]

+ 1

2π

∫
dt

∑
x

[
Aα

0 (x,t)J ∗α
i Bi(x,t) + Bα

0 (x,t)

×J α
i Ai(x,t) − Ḃj (x,t)Aj (x,t)

]
. (3.7)

where a dot denotes a time derivative. The first two terms give
the Chern-Simons action for Bμ on the dual lattice whereas the
remaining three terms give the “BF” coupling between the Aμ

and Bμ fields. This is the discretized form of the continuum
action,

Lctm
CS [Aμ,Bμ] = − 2k

2π
εμνλBμ∂νBλ + 1

2π
εμνλAμ∂νBλ. (3.8)

known as the BF theory [36]. The objects J ∗α
i and M∗

ij are the
analogs of J α

i and Mij on the dice lattice. Explicitly, we have

J ∗a = (
1,1,0,−s−1

1 ,−s−1
2 ,0

)
,

J ∗b = ( − 1,0,1,1,0,−s−1
2

)
, (3.9)

J ∗c = (
0,−1,−s−1

1 ,0,1,1
)
,

so that the Bμ fluxes are given by 	∗α(x) = J ∗α
i Bi(x). Using

the construction of Ref. [31], we find

M∗
ij = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1 −1 + s−1
1 s−1

2 s−1
2

1 0 −s−1
1 −s−1

1 1 − s−1
2 −1

−1 s1 0 1 s1 −s1 − s−1
2

1 − s1 s1 −1 0 s1s
−1
2 s−1

2

−s2 −1 + s2 −s−1
1 −s2s

−1
1 0 1

−s2 1 s2 + s−1
1 −s2 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.10)

It can be seen that M∗ = −M−1 and so the M matrices are
nonsingular. Similar to the calculation shown in Appendix E
of Ref. [31], one can integrate out Bμ in Eq. (3.7) to recover
Eq. (3.3) and so the two theories are formally equivalent.
However, Eq. (3.7) has properly quantized coefficients while
Eq. (3.3) does not and so the former is well defined on
topologically nontrivial manifolds whereas the latter is not. In

using Eq. (3.7) our flux attachment procedure can be performed
on a toroidal geometry and so we will be able to safely infer
the topological field theory describing our FCI states.

Having completed our description of the lattice Chern-
Simons action, we return to the flux attachment procedure.
Due to their coupling to the statistical gauge field, the ψ fields
have statistical angle δ = 2πk relative to the original fermionic
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statistics (as per the flux attachment constraint), and so by
choosing the Chern-Simons parameter k to be an integer, we
ensure that the CFs are indeed fermions. The 2π periodicity of
the statistical angle implies that theories with different integral
values of k should be equivalent. This property is broken at the
mean-field level but is recovered at the quantum level.

Lastly, Sint is assumed to describe a density-density inter-
action which, due to the flux attachment constraint Eq. (3.4),
has the form,

Sint[Aμ] = −1

2

∫
t

∑
x, y

g

16π2k2
	α(x,t)Vαβ(x − y)	β( y,t),

(3.11)

where the explicit sum is over unit cell positions and there
is an implicit sum over the sublattices, α,β = a,b,c. In this
form, the interaction term does not enter in the fermionic part
of the action. Instead, it is a parity-even contribution to the
action of the gauge fields, similar in this sense to a Maxwell
term for the fluxes. Since it involves more derivatives than
the Chern-Simons term it is irrelevant as far as the long-
wavelength fluctuations are concerned. However, it affects the
local energetics and it enters in the mean-field equations (as
we will see below). This analysis very much parallels what is
done for the FQH states in the continuum, e.g., see Ref. [23],
whose strategy we will follow closely. Hence, we will first
identify the gapped FCI ground states, in the present formalism,
with gapped composite fermion ground states, which will be
analyzed in mean-field theory in Sec. IV. After integrating
out the gapped composite fermions, the universal contribution
of the topological theory is encoded in an effective action
Leff [Aμ,Bμ] containing Chern-Simons terms [see Eq. (5.1)]. In
Appendix C we check for two examples of gapped states that, at
the mean-field level, the gap persists for a range of interaction
strengths. Thus, the states that we will identify will not have any
(infrared) instabilities since it is protected by the gap. In fact,
for large enough interactions there should be a phase transition
to a state with a broken translation symmetry. Nevertheless,
since Sint is quadratic in fluxes, it is irrelevant relative to the
Chern-Simons action of Eq. (5.1), and its presence does not
affect the universal properties of the topological fixed points
of the theory, provided the gap has not closed.

IV. MEAN-FIELD THEORY

Analogous to the approach taken for the CF theory of the
conventional FQHE, we wish to identify gapped states of the
CFs at the mean-field level. These will correspond to candi-
date FCI states. The specific form of the interaction will
determine whether these states remain gapped and if they are
energetically favorable to other potential ground states.

We first note that after the Jordan-Wigner mapping the
action has become quadratic in the fermions and so they may
formally be integrated out, yielding the effective action,

Seff [ψ,ψ†,Aμ,Bμ] = −i log tr[iD0 − H (A)] + SCS[Aμ,Bμ],
(4.1)

where H (A) is the Hamiltonian describing fermions hopping
on the lattice subject to the original magnetic fluxes as well
as the statistical gauge field. The mean-field ground states are
solutions to the saddle point equations which are obtained by

extremizing the effective action with respect to the gauge fields.
We obtain

〈nα(x)〉 = 1

2π (2k)

∑
y

J α
i (x − y)Ai( y) = θ〈	α(x)〉, (4.2)

〈jk(x)〉 = θ
∑

y

[
Aα

0 ( y,t)J α
k ( y − x) − Mkj (x − y)Ȧj ( y,t)

]

− gθ2
∑
y,z

J α
k (z − x)Vαβ(z − y)Bβ( y), (4.3)

where 〈nα(x)〉 and 〈jk(x)〉 are the fermion density on sublattice
α and current on link k, respectively. Explicitly,

〈nα(x)〉 = − δS

δAα
0 (x)

, 〈jk(x)〉 = − δS

δAk(x)
. (4.4)

Note that Eq. (4.2) is simply the flux attachment constraint im-
posed on average. Now, we are interested in time-independent
solutions which preserve the translational symmetry of the
lattice (i.e., 〈nα(x)〉 = 〈nα(x + ei)〉 for i = 1,2 and likewise
for all other gauge-invariant quantities). In addition we assume
that the currents on all links are equal in magnitude and
circulate with the same chirality around both up and down
triangular plaquettes so that j ≡ 〈j1,3,5〉 = −〈j2,4,6〉. Since
generically j 	= 0, we see from Eq. (4.3) that the Aα

0 ’s can
be different from one another, giving rise to unequal fermion
densities on the three sublattices. So, given this ansatz, the
resulting mean-field equations are satisfied by

na = θ	a = nL/3 − 2�,

nb = θ	b = nL/3 + �, (4.5)

nc = θ	c = nL/3 + �,

where � is the shift of the fermion density onto the b and c

sublattices, and

Aa
0 = j

2θ
+ 4g�, Ab

0 = Ac
0 = − j

2θ
− 2g�. (4.6)

In our ansatz, by assuming the link currents jk to be equal
in magnitude and nb = nc, we have preserved as much of the
lattice symmetry as possible (see Sec. IV A for more details
about broken symmetries in our analysis).

For convenience we define

	 = (	a + 	b + 	c)/3 = 2π
p

q
= nL

3θ
(4.7)

to be the average statistical flux per unit plaquette where p and
q are co-prime integers. Then one gauge choice which gives
the flux configuration mandated by our mean-field ansatz is

A1(x) = 0, A2(x) = 	 + �/θ, A3(x) = 0,

A4(x) = 0, A5(x) = 3	x1 − 	 − �/θ, A6(x) = 3	x1,

(4.8)

where xi is the coordinate along the ei direction. So at the
mean-field level the problem reduces to one of fermions subject
to constant magnetic and statistical fluxes and a staggered
potential, the latter two of which must be solved for self-
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consistently, as described by the hopping Hamiltonian,

H (A) = J
∑

x

(γ −eiA1(x) |a,x〉 〈b,x|

+ γ+eiA2(x) |a,x〉 〈c,x| + γ+eiA4(x) |b,x〉 〈a,x + e1|
+ γ +eiA3(x) |b,x〉 〈c,x + e1|
+ γ −eiA5(x) |c,x〉 〈a,x + e2|
+ γ−eiA6(x) |c,x〉 〈b,x + e2| + H.c.)

+
∑
x,α

Aα
0 |α,x〉 〈α,x| , (4.9)

where γ± = eiφ±/3 are the phases arising from the background
magnetic field and γ ± denote their complex conjugates.

Now, as is explained in the previous section, the interaction
term in the action is (formally) irrelevant as it involves more
derivatives than the Chern-Simons term. So, as is done in the
analysis of the continuum FQHE, we look for gapped CF
states of the kinetic term. Formally this amounts to setting
g = 0. Note that this does not mean that the states we find can
exist in the absence of interactions. As in the analysis of the
continuum FQHE, there is a residual effect of the interactions
in the composite fermion mapping which is what attaches the
fluxes to the fermions. Additionally, at the mean-field level,
the interactions for g 	= 0 do affect the local energetics and
and so can affect the sublattice imbalance �. However, the
states that we find in the (formal) g = 0 limit should persist
for finite g 	= 0. Indeed, we show explicitly in Appendix C that
the gapped states we find at a few sample fillings persist for
finite interaction strength.

As the filling of the lowest band of the original fermions
nL increases, so too will the statistical flux. Examining the
resulting Hofstadter spectrum as a function of filling will allow
us to identify gapped states of the CFs. For each gapped state
we can then compute the Chern number of the filled composite
fermion bands which is given explicitly by [15]

C = 1

2π

∑
n filled

∫
BZ

d2k Fn
12(k), (4.10)

where the integral is performed over the Brillouin zone and
Fn

12(k) = εij ∂ki
Aj is the Berry curvature of the nth band.

The Berry connection is defined as Aj = −i 〈n,k| ∂kj
|n,k〉

where |n,k〉 is the eigenvector in the nth band of the Bloch
Hamiltonian. We compute the Chern number numerically
using the method of Ref. [37]. As discussed in the following
section the Chern number appears in the effective topological
theory of the FCI states.

We have plotted the Hofstadter spectrum, sublattice im-
balance, and link currents as a function of the filling, nL,
in Fig. 3(a) for the case of k = 1. For now we simply note
that we find a number of sequences of gapped states, with
the gapped states highlighted by the vertical red and purple
lines occurring at fillings corresponding to the Jain sequence:
nL = p/(2p + 1), p ∈ Z. In the following section we will
discuss the topological field theory describing these states and
the pattern of Hall conductances exhibited by them.

C=1
nL=1/3

C=2
nL=2/5

C=3
nL=3/7 C=1

nL=2/3

C=-3
nL=3/5C=-4

nL=4/7

C=3
nL=5/7

(a)

(b)

(c)

FIG. 3. (a) Composite fermion Hofstadter spectrum on the
kagome lattice with k = 1 and φ± = π/2. The blue line is the Fermi
energy. Some examples of gapped states are labeled with their filling
and Hall conductance. Vertical red (purple) lines are drawn at fillings
corresponding to the principal particle (hole) Jain sequence. The ratio
of the mean-field sublattice shift � to the filling and the mean-field
current per link k are plotted in (b) and (c), respectively. All quantities
are in units of J = 1.

A. Symmetries and mean-field theory

At this point we return to the issue of the explicit lattice
point-group symmetry breaking of the action which is made
manifest by this mean-field analysis. In a gapped insulating
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phase, although the net current must vanish, the current
on a link, 〈jk(x)〉, need not be zero. Indeed, in a generic
chiral phase we expect to find currents circulating around the
plaquettes. Equation (4.3) implies that nonzero currents require
a staggered Aα

0 (x,t) (i.e., a spatially modulated Chern-Simons
electric field). This staggered sublattice potential will create a
staggered density of fermions. Hence our mean-field analysis
would suggest that in general a ground state of CFs must
necessarily break the point-group symmetry of the lattice
(note that previous applications of this lattice Chern-Simons
formalism, such as Ref. [30], did not self-consistently calculate
the currents and so incorrectly found uniform states). The
mean-field ansatz we have chosen preserves as much of the
lattice symmetry as possible. This situation is to be contrasted
with the CF theory of the continuum FQHE in which the
mean-field ground state consists of fully filled CF Landau
levels which have an exactly vanishing local current and hence
a vanishing Chern-Simons electric field. Likewise, if we were
to instead consider the problem of a square lattice in a uniform
magnetic field then it would be possible to find a translationally
invariant solution since such a state at the mean-field level
would have equal fluxes (the sum of the magnetic and statistical
fluxes) through all plaquettes; it can be seen that the link
currents must vanish in this state and hence the A0’s would
also vanish as per the self-consistent equations. As a result, the
mean-field analysis reduces to a simple Hofstadter problem, as
was discussed in Ref. [25], without the need to self-consistently
solve for the currents and density imbalance.

Although numerical studies have predicted FCI states which
spontaneously break lattice symmetries [38], we suspect that
the symmetry breaking in our analysis is an artifact of the
mean-field theory. In particular, note that in the g = 0 limit
we considered, although our ansatz with na 	= nb = nc sat-
isfies the mean-field equations, configurations corresponding
to rotations of this ansatz (e.g., with nb 	= na = nc) are not
solutions as is clear from Eq. (4.6) (which follows from only
assuming that the link currents jk are equal in magnitude).
Hence there should not be an additional, trivial ground-state
degeneracy associated with this breaking of the point-group
symmetry which suggests that this symmetry breaking is an
artifact of the form of the lattice CS action. Furthermore,
since the mapping of the fermions to CFs is exact at the level
of the path integral, it should follow that all the symmetries
of the original problem should be respected under the CF
mapping at the full quantum level. Assuming that the effects
of these corrections are not so large as to close the gap, the
topological data we compute will be accurate. Since this is the
focus of our study we will henceforth not concern ourself with
the role played by the point-group symmetries, leaving a full
analysis to future work. Evidently an improvement over the
saddle-point approximation is needed to correctly describe the
nontopological properties of the candidate FCI states predicted
using our Chern-Simons theory.

V. FRACTIONAL CHERN INSULATOR STATES

A. Topological field theory

In the cases where the CFs are gapped, we can integrate
them out to obtain an effective low-energy, continuum theory.

Doing so will yield a Chern-Simons term with coefficient equal
to the Chern number C of the filled CFs bands [15]. Hence the
effective continuum Lagrangian for fluctuations of the gauge
fields about the mean-field state is given by

Leff [Aμ,Bμ] = C
4π

εμνλAμ∂νAλ + Lctm
CS [Aμ,Bμ] + · · ·, (5.1)

where . . . represent irrelevant terms.
Adding in quasiparticle currents with gauge charges lI and

a coupling to an external probe gauge field Ãμ, we can write
our theory in the conventional form:

L = KIJ

4π
εμνλaI

μ∂νa
J
λ − qI

2π
εμνλÃμ∂νa

I
λ + lI j

μ
qpa

I
μ, (5.2)

where2

KIJ =

⎛
⎜⎝

−2k 1 0

1 C 0

0 0 1

⎞
⎟⎠, qI =

⎛
⎜⎝

1

0

0

⎞
⎟⎠, a

μ

I =

⎛
⎜⎝

Bμ

Aμ

Dμ

⎞
⎟⎠.

(5.3)

Here, we introduced the gauge field Dμ as the bare quasipar-
ticles are CFs and so possess fermionic statistics. To account
for this, and because the quasiparticles do not couple to Bμ,
the flux vector is restricted to have form l = (0,l,l)T , l ∈ Z
[35]. Integrating out the Chern-Simons fields we find the Hall
conductance to be (in units of e2/h)

σxy = −qT K−1q = C

2kC + 1
. (5.4)

Likewise, the quasiparticle charges and statistics are

Ql = −lT K−1q, θl l ′ = −2π lT K−1l ′. (5.5)

The ground-state degeneracy g on a torus is then [39]

g = |det K| = |2kC + 1|. (5.6)

We can also extract the modular properties of the theory
from the effective, topological action. In particular, the com-
ponents of the modular S and T matrices (both of rank |detK|,
the number of anyons) are given by

Sab = 1√|detK|e
−2πilT

a K−1 lb , Taa = e−πilT
a K−1 la , (5.7)

where the total quantum dimension is D = √|detK| = S−1
00 ,

a topological invariant that determines the universal entangle-
ment properties [40–42]. Moreover, the full topological struc-
ture of theory is encoded in S and T . Hence the topological
field theory for an FCI state which can be described by a gapped
state of CFs is wholly determined by k, the number of attached
fluxes, and C, the Chern number of the filled CF bands.

B. Fractionalized states from the CF Hofstadter spectrum

Following the results of the previous sections, we now
analyze the Hofstadter spectra of the CFs to identify candi-
date FCI states on the kagome lattice. Before inspecting the

2This theory is equivalent to that arising from the standard hierar-
chical construction [39,46]. In particular, the Hall conductance and
anyon content of the theories are readily checked to be identical.
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spectrum, we note that a gapped state of the CFs must satisfy
the Diophantine equation,

nL = −3	

2π
C + r, r ∈ Z, (5.8)

where C is the Chern number of the filled CF bands [25]
and −3	 is the net flux per unit cell (note that because of
the coupling between the fermions and Aμ, if the statistical
flux through a plaquette is φ, the fermions feel a flux −φ).
Combined with the flux attachment condition, this implies that
a gapped state must satisfy

nL = r

2kC + 1
= r

C
σxy. (5.9)

The existence of states satisfying r 	= C is made possible due
to the presence of the lattice.

Turning to our model, Fig. 3(a) depicts a portion of the
Hofstadter spectrum on the kagome lattice and Fermi energy
for the case of k = 1 pair of attached fluxes. Figures 3(b)
and 3(c) depict the mean-field sublattice density shift �, and
link current j , as a function of filling. It is clear from the
Hofstadter spectrum that gapped states exist at fillings given
by the principal Jain sequence and the gap sizes approach zero
as nL approaches 1/2, as is the case in the continuum. We have
also labeled the first few states in this sequence with the Chern
number of the filled CF bands and the filling factor. Using
the expression for the Hall conductance given in Eq. (5.4), we
find that σxy = nL (except for the state at nL = 2/3). Hence we
recover the principal Jain sequence despite the absence of a net
nonzero magnetic field. We have not extensively analyzed the
spectrum of mean-field states for k 	= 1 but our preliminary
numerics suggest that for |k| > 0, there should generically
exist gapped states of the CFs at filling factors corresponding to
the Jain sequence of states nL = p/(2kp + 1), p ∈ Z\{0} with
Hall conductances satisfying σxy = sgn(k)nL. These states are
analogous to the FQH Jain sequences. We note, however, that
there are exceptions to this rule. For instance, as noted above,
the k = 1 state at nL = 2/3 has σxy = 1/3 	= nL and so is
the not a typical Jain state. In Appendix B we present for
comparison the Hofstadter spectrum obtained if one assumes a
uniform density of fermions (and hence uniform statistical flux
configuration) and does not correctly solve for the link current
self-consistently via the mean-field equations.

Now, in the conventional FQH, one can condense quasi-
particles in a Jain state to form a FQH state with a filling
fraction which does not lie in the principal Jain sequence. On
the lattice, we instead find what is presumably a dense set of
FCI states not lying in the Jain sequences without invoking
this condensation mechanism. In particular, this means that
there exist FCI states with the same Hall conductance but
at different fillings. For instance, we find gapped states at
nL = 1/7,2/7,3/7,5/7, all with σxy = 3/7. The nL = 5/7
state is highlighted in Fig. 3(a). It should be noted, however,
that interactions will likely render the lattice-specific states
with the smallest gaps energetically unfavorable relative to
topologically trivial phases (e.g., Wigner crystals, CDWs,
nematic states), which we have not considered.

VI. SYMMETRY FRACTIONALIZATION

The question now arises as to how states at different fillings
but with the same topological order can be classified. In
order to answer this question, we make use of the fact that
topological phases enriched with symmetries (known as SETs)
possess anyonic excitations which can transform projectively
under symmetry operations [21]. This phenomenon is known
as symmetry fractionalization and implies that anyons can
carry fractional symmetry charges. In particular, SETs can be
distinguished by their symmetry fractionalization class (i.e.,
the set of projective phases for each anyon). Given an SET
with Abelian anyon group A and symmetry group G, the set
of distinct symmetry fractionalization classes is given by the
second cohomology group H 2[G,A] [20,43].

Now, the anyon group of our FCI states is A = Zm,
where m = |detK|, and the symmetry group isG = Z2 × U (1)
arising from lattice translation symmetry and U (1) charge
conservation, respectively.3 Hence, the distinct fractionaliza-
tion classes are given byH 2[Z2 × U (1),Zm] = Zm × Zm. The
fractionalization is given on specification of the fluxon/vison
F and the background anyon b [44]. Physically speaking,
the fluxon is the anyon created on the insertion of a 2π flux
quantum; such an excitation carries charge equal to σxy . The
fluxon specifies the U (1) fractionalization in that the charge of
an anyon Qa is determined via the mutual statistics between a

and F : exp(2πiQa) = exp(iθF,a). Similarly, the background
anyon specifies the translational symmetry fractionalization.
This anyon possesses charge equal to the charge density per
unit cell nL and so physically one can view the ground state
as a crystal of the background anyon b, with one b residing
in each unit cell [44,45]. Braiding an anyon a around a single
unit cell will give a phase exp(iθa,b) which implies(

T a
2

)−1(
T a

1

)−1
T a

2 T a
1 = eiθa,b , (6.1)

where T a
1,2 are the local translations along the e1,2 directions

acting on anyon a. As an aside, we note that the fact that the
system realizes a projective representation of the translation
symmetry group may be viewed as a quantum anomaly of the
discrete translational symmetry. Hence this effect may also
lead to momentum pumping on a torus with tilted boundary
conditions, a phenomenon which may be interesting to study
in future work.

This analysis provides an interesting perspective on our
spectrum of FCI states. The Jain states satisfy σxy = nL and so
realize the fractionalization classes for which F = b. However,
givenA = Z|detK| and the fluxon F (equivalently, σxy) there are
a total of |detK| translational fractionalization patterns which
can be realized from the choice of background anyon b. We
have shown that these other fractionalization classes which
have b 	= F (i.e., nL 	= σxy) can be realized on the lattice.

Moreover, we can use this language to make statements
about the momenta of the topologically degenerate ground
states [20]. Consider a gapped FCI state with |detK| = m and
background anyon b on a torus of size N1N2 where N1,2 are the
number of unit cells in the e1,2 direction, and N2 is co-prime

3The kagome lattice has a larger space group symmetry but, for
simplicity, we will focus on the symmetry group G = Z2 × U (1).
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TABLE I. Symmetry fractionalization for FCI states with σxy =
3/7. The third column gives the translational symmetry fractionaliza-
tion for the minimal charge anyon φ. The fourth column gives the e1

component of the crystal momentum of the ground state |φ〉 relative
to the trivial ground state.

nL σxy (T φ

2 )−1(T φ

1 )−1T
φ

2 T
φ

1 k̂1 |φ〉
1/7 3/7 exp (−2 2π

7 i) −2 2π

7 N2

2/7 3/7 exp (−4 2π

7 i) −4 2π

7 N2

3/7 3/7 exp (−6 2π

7 i) −6 2π

7 N2

5/7 3/7 exp (−10 2π

7 i) −10 2π

7 N2

with m. Now, let |0〉 be the ground state labeled by the trivial
anyon, and let |φ〉 , . . . , |φm−1〉 be the ground states generated
by applying Wilson loop operators Lφn

2 to |0〉 where φ is the
minimal charge anyon. The Wilson loops can be viewed as
operators creating anyon-antianyon pairs, braiding the anyons
around a cycle of the torus, and then fusing the anyon with the
antianyon. We can thus make the identification,

La
μ = (

T a
μ

)Nμ
, (6.2)

where μ = 1,2. This implies that

T1La
2T

−1
1 = T1

(
T a

2

)N2
T −1

1 = e−iN2θa,bLa
2. (6.3)

Now, we have |φn〉 = (Lφ

2 )n |0〉. Without loss of generality,
suppose that the trivial ground state |0〉 has zero momentum.
Hence,

T1 |φn〉 = e−iN2nθφ,b |φn〉 . (6.4)

So, relative to the trivial state |0〉, the states |φn〉 will have mo-
menta kn = (N2nθφ,b,0). Since this momentum shift depends
on the braiding angle with the background anyon, it provides a
clear way to distinguish between two FCIs at different fillings
possessing the same topological order.

As an explicit example, consider an FCI state with σxy =
C/(2kC + 1) and nL = r/(2kC + 1). In terms of the quasipar-
ticle vectors l , it is readily seen that the fluxon is represented by
lF = −(0,C,C)T , the background anyon by lb = −(0,r,r)T ,
and the minimal charge anyon by lφ = −(0,1,1)T . The trans-
lational symmetry fractionalization for the minimal anyon is
then obtained by using the fact that

θlb,lφ
= −2rk

2π

2kC + 1
. (6.5)

We have listed the fractionalization patterns for observed FCI
states with σxy = 3/7 in Table I.

VII. DISTINCTION BETWEEN FCIS
AND THE LATTICE FQHE

Lastly, we would like to emphasize that the system we
studied has a net zero external magnetic field and it is in this
sense that the fractionalized states we find should be called FCI
states. Conversely, fractionalized states found in lattice systems
subject to a uniform magnetic field (i.e., in Hofstadter bands)
should be considered lattice FQH states. Although both exhibit
similar physics, it is important to make clear the distinction that
one requires a net nonzero magnetic field while the other does

not. In that regard, the states observed in Ref. [10] are lattice
FQH states. The experimental observation of an FCI – in the
absence of a net nonzero magnetic field – remains an open
problem.

VIII. CONCLUSIONS

We formulated a composite fermion theory of fractional
Chern insulator states on the kagome lattice using a consistent
lattice Chern-Simons theory. We find that partial filling of the
lowest band yields two types of sequences of gapped states:
those which satisfy σxy = nL and those which do not. Hence
our theory provides a series of candidate FCI states whose
stability against local interactions may be tested in numerical
and experimental studies. Using the language of SETs we
illustrated how these states may be viewed as realizing distinct
symmetry fractionalization classes which exposes the rich
structure of FCI states and allows for concrete, numerically
verifiable, statements about ground-state quantum numbers.
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APPENDIX A: NON-INTERACTING MODEL
BAND STRUCTURE

In Fig. 4 we have plotted the band structure of the model
Eq. (2.1) for g = 0, φ± = π/2, and J = 1. The lowest band,
which we partially fill, has Chern number C0 = +1. Note that
the bandwidth of this band and the band gap are comparable
in magnitude (the former is slightly smaller than the latter).

kx

− 2.0− 1.5− 1.0 − 0.5 0.0 0.5 1.0 1.5 2.0 ky− 2.0− 1.5
− 1.0− 0.5

0.0 0.5 1.0 1.5
2.0

E

− 4

− 3

− 2

− 1

0

1

2

3

4

FIG. 4. Band structure of the model given by Eq. (2.1) in the
absence of interactions with φ± = π/2 and J = 1. The lower, middle,
and upper bands have C0 = +1,0,−1, respectively
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FIG. 5. Composite fermion Hofstadter spectrum on the kagome
lattice with k = 1 and φ± = π/2 assuming a uniform density of
composite fermions and equal fluxes through all plaquettes. The blue
line is the Fermi energy. Some examples of gapped states are labeled
with their filling and Hall conductance. Vertical red (purple) lines are
drawn at fillings corresponding to the principal particle (hole) Jain
sequence.

APPENDIX B: COMPARISON WITH UNIFORM
DENSITY APPROXIMATION

As noted in the main text our lattice Chern-Simons action
explicitly breaks the lattice symmetries and as a consequence
the mean-field ground state the theory predicts on the Kagome
lattice breaks them as well. Previous applications of this
method (e.g., the chiral spin liquid study of Ref. [30]) did
not correctly solve the mean-field equations (they assumed the
currents to be zero) and so found uniform states. To reiterate
what is said in the main text, we believe that at the full quantum
level the lattice symmetries broken by our mean-field solution
should be restored. However, this is a nontrivial calculation
(presumably being a nonperturbative effect) so it is worthwhile
to compare the results of our mean-field theory with those one
would obtain if one assumed a uniform ground state with equal
statistical fluxes through all plaquettes (which we stress is not
a valid solution to the mean-field equations of our theory).

In Fig. 5 we have plotted the Hofstadter spectrum for this
uniform flux approximation. Note that the spectrum here has
much finer detail than Fig. 3(a) of the main text as in this case
we are not solving the mean-field equations self-consistently
but rather simply computing the band structure with the
aforementioned uniform fluxes. We see that Figs. 3(a) and
5 are largely similar. In particular gapped states exist at the
same fillings, including the Jain sequence. The Chern numbers
are mostly unchanged for the fillings we have checked; one

FIG. 6. Plots of the sublattice imbalance and band gap for (a) and (b) nL = 1/3, and (c) and (d) nL = 2/3 as a function of interaction
strength g. Note that for small g the imbalance � and the band gap vary smoothly with the latter never vanishing.
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exception is the gapped state at nL = 2/3 filling. Our mean-
field analysis predicts this gapped state to have σxy = 1/3
while the uniform approximation would suggest a state with
σxy = 2/3. The gap of this state in both schemes is small,
however, so it is unlikely that it would survive competition
with other ordered states.

APPENDIX C: FULL SELF-CONSISTENT SOLUTION

In this Appendix we repeat our mean-field analysis for
g 	= 0 to check the stability of the gapped states we predict.
As explained in Sec. IV, although the situation considered
in the main text corresponds to formally taking g = 0, this
does not mean that we neglected the role of interactions. Now,
in our mean-field analysis we found that even for g = 0, the
sublattice imbalance � is generically nonzero, presumably as
a result of the explicit point-group symmetry breaking of our
lattice Chern-Simons action. In the case of g 	= 0 there is a
finite energy cost associated with this imbalance and thus any
finite value for the interaction strength g will affect the values
of the sublattice densities. However, provided g is smaller than
some critical gc, we expect in general that the sublattice density
will vary continuously and slowly so that the gapped states
predicted in the main text remain gapped. In order to illustrate
this, we perform a mean-field analysis of our theory with the
interaction term, Eq. (3.11), where Vαβ(x − y) = 1 if (x,α) and
(y,β) are nearest neighbors and Vαβ(x − y) = 0 otherwise. As
before we focus on time-independent solutions of Eqs. (4.2)
and (4.3) which preserve translational symmetry. Using these
assumptions we note that we can rewrite Eq. (4.3) as

〈jk〉 = −θ (−1)k
(
Aa

0 − fkA
c
0 − (1 − fk)Ab

0

)
− 2gθ2(−1)k(	a − fk	

c − (1 − fk)	b), (C1)

where fk = 1 for k = 1,5,6 and fk = 0 for k = 2,3,4.
For simplicity we have focused on the cases of nL = 1/3

and nL = 2/3. In Fig. 6 we have plotted � and the band gap
as a function of g at these two fillings. It is clear in the case
of nL = 1/3 that the band gap does not close and � varies
smoothly up to a critical value of g. Likewise in the case of
nL = 2/3 the imbalance � varies smoothly. The jump of � in

FIG. 7. Spectrum of the Hermitian 6 × 6 matrix i M(q) as a
function of q1 for the choice q2 = π .

the case of nL = 1/3 appears to signal a phase transition to a
nematic state. However, as discussed in the main text, since our
Chern-Simons lattice action explicitly breaks the point-group
symmetry we cannot trust our mean-field analysis to make
accurate predictions about spontaneous rotational symmetry
breaking. Nevertheless, this data suggests that we are justified
in assuming that small, finite interactions will not affect the
topological properties of the states predicted by our mean-field
analysis.

APPENDIX D: SPECTRUM OF THE M MATRIX

Proper implementation of the lattice Chern-Simons theory
requires that the matrix kernel Eq. (3.6) be nonsingular, so as
to guarantee that the commutation relations [Ai(x),Aj ( y)] =
− i

θ
M−1

ij (x − y) are well defined. To access the eigenval-
ues of the Mij (x − y), we work with its Fourier transform
Mij (q) obtained by substituting the displacement operators sj ,
j = 1,2, by their Fourier representation sj (q) = e−iqj , where
qj = q · ej is the momentum component along the direction
defined by the unit vector ej . With that, M(q) is seen to be
an anti-Hermitian matrix. Then i M(q) is a Hermitian 6 × 6
matrix, whose eigenvalues are found to be nonzero, henceM is
invertible. To illustrate the nonsingular character of the matrix
kernel, we plot in Fig. 7 the eigenvalues of i M(q) as a function
of q1 for the choice q2 = π .
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