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Charge Kondo effect and superconductivity in the Falikov-Kimball model with pair hopping
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We study the Falikov-Kimball model with the pair hopping between the conduction and localized bands to
discuss how the charge Kondo effect is realized. By combining dynamical mean-field theory with the continuous
time quantum Monte Carlo method, we clarify that the charge Kondo state survives even at zero temperature and
this competes with the charge ordered and s-wave superconducting states. The role of the interorbital repulsion
for the superconducting state is also addressed.
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I. INTRODUCTION

Electron valence in the transition-metal and rare-earth ions
has attracted interest in the strongly correlated electron sys-
tems. Typical examples are the valence skipping phenomena
for bismuth and thallium ions in some compounds. In the
ions, electron configurations prefer the closed-shell structure
in the s orbital and avoid the ionic state with a spin. This
should lead to interesting low-temperature properties such as
colossal negative thermal expansion in La-doped BiNiO3 [1–3]
and superconductivity in K-doped BaBiO3 [4,5]. Moreover, in
the PbTe system with nonmagnetic Tl impurities, Kondo-like
behavior appears in the resistivity, which is known as the
charge Kondo effect [6,7]. The valence skipping phenomenon
in d-electron systems has also been suggested [8,9], which
stimulates further theoretical investigations on the valence
skipping and related phenomena [10–16].

In valence skipping ions, the effective degrees of freedom
should be represented by the empty and doubly occupied
states for the s orbital. There are two distinct models to
describe the valence skip ions. (i) in most theoretical studies,
an effective attractive interaction is introduced in the orbital of
the ions to mimic the stability of closed-shell configurations
[10–14]. Low-temperature properties have been discussed such
as the valence transition in La-doped BiNiO3 [15,16], charge
ordering and superconductivity in K-doped BaBiO3 [11], and
the charge Kondo effect in Tl-doped PbTe [13,14]. (ii) Another
mechanism has recently been proposed, where the interband
correlations are taken into account [17]. It has been suggested
that the charge Kondo effect in the single impurity model is well
reproduced by the introduction of the pair hopping between
the impurity and conduction bands in addition to the repulsive
interaction. On the other hand, as for the periodic system, the
ground state remains unclear as well as the finite-temperature
properties. In particular, it should be instructive to clarify in
the periodic system the possibility of the superconductivity
against the charge Kondo state as the pair hopping may induce
the superconducting (SC) state, which is trivially realized in
the system with the attractive interaction [18].

In this paper, we study the correlated electron system with
conduction and localized bands. By considering Coulomb
interaction and pair hopping between conduction and localized
orbitals, we discuss how the valence skipping phenomena

affect low-temperature properties in the bulk system. Here, we
use dynamical mean-field theory (DMFT) [19–21] combined
with the continuous-time quantum Monte Carlo (CTQMC)
method [22,23]. Examining electron configurations, charge
correlations, and order parameters, we discuss the stability
of the charge Kondo state against spontaneously symmetry-
breaking states.

The paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian and briefly summarize our numerical
method. In Sec. III, calculating various physical quantities, we
discuss the role of interorbital repulsion and pair hopping in
realizing the charge Kondo, charge ordered, and superconduct-
ing states. Then, we determine the phase diagram. A summary
is given in the final section.

II. MODEL AND METHOD

We study low-energy properties in strongly correlated elec-
tron systems with the localized valence skipping ions. To this
end, we deal with the extended Falikov-Kimball model [24,25],
where conduction electrons interact with localized ones. This
is the natural extension of the impurity model discussed in
Ref. [17], and its Hamiltonian is given as

H = H0 + H ′, (1)

H0 =
∑
ijσ

(
tij c

†
iσ cjσ + εdδijn

d
iσ

)
, (2)

H ′ = Ucd

∑
iσσ ′

nc
iσ nd

iσ ′ − Jph

∑
i

(c†i↓c
†
i↑di↑di↓ + H.c.), (3)

where ciσ (diσ ) is an annihilation operator of a conduction elec-
tron (localized electron) with spin σ (= ↑,↓). nc

iσ (= c
†
iσ ciσ )

and nd
iσ (= d

†
iσ diσ ) are the number operators of the conduction

and localized electrons at the ith site, respectively. tij (=
−tδ〈ij〉) is the hopping integral of the conduction electrons
between the nearest-neighbor sites and εd is the energy level
of the d orbitals. Ucd (Jph) is the repulsive interaction (pair
hopping) between the conduction and localized electrons.

When Jph = 0, the system is reduced to the conventional
Falikov-Kimball model [24]. In the infinite dimensions [25],
the model is exactly solved, and ground-state properties have
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been discussed in detail [26]. It is known that, in the presence
of the particle-hole symmetry, the interorbital Coulomb inter-
action suppresses the single occupancy at each orbital and the
charge ordered (CO) state is realized at zero temperature.

In the paper, we consider both the interorbital Coulomb
interaction and pair hopping between the conduction and lo-
calized bands on an equal footing. In the atomic limit (tij = 0)
under the particle-hole symmetry, these interactions prefer the
electronic configuration with one of two orbitals empty and
the other doubly occupied, while no singly occupied states are
realized in each orbital. Therefore, the valence skip feature
should be captured in our model. To provide more insight, we
wish to introduce the pseudospin operators for αth band as

I x
iα = 1

2 (α†
i↑α

†
i↓ + αi↓αi↑), (4)

I
y

iα = 1

2i
(α†

i↑α
†
i↓ − αi↓αi↑), (5)

I z
iα = 1

2

(
nα

i − 1
)
. (6)

Then, the interaction part of the original Hamiltonian can be
rewritten as the following Kondo lattice model with anisotropic
interactions [27]:

H ′ = 2
∑

i

[
2UcdI

z
icI

z
id + Jph

(
I x
icI

x
id + I

y

icI
y

id

)]
. (7)

We wish to note that Ucd and Jph yield distinct low-temperature
properties. When |Jph| � 2Ucd , the diagonal Ising interactions
make the pseudospins antiparallel in the z direction. If one
considers the lattice model, the antiferro-type ordered state
is realized with the staggered pseudospin moments 〈I z

iα〉 ∼
(−1)i+δα , where δα = 0(1) for a conduction (localized) band.
This implies that the CO state is realized in the original model.
The characteristic quantities are alternating electron densities
ρc and ρd , where ρα = ∑

i(−1)inα
i /N . In the opposite case

with |Jph| 	 2Ucd , the pseudospins are on the xy plane
with the staggered configuration, e.g., 〈I x

iα〉 ∼ (−1)i+δα due
to the in-plane anisotropy in Eq. (7). Then the supercon-
ducting state is realized with the staggered pair potential
〈αi↑αi↓〉 ∼ (−1)i+δα . When the particle-hole transformation
ciσ → (−1)iσ c̃

†
iσ is applied, H (t,Ucd,Jph) is transformed to

H (t,Ucd,−Jph), and the superconducting order parameter is
uniform in the model. Therefore, the sign of the pair hopping
is essentially irrelevant, and the SC state can be regarded
as a conventional s-wave SC state. When 2Ucd = Jph, the
system is reduced to the isotropic Kondo lattice model. In the
strong-coupling case, the Kondo insulating state is realized
with the pseudospin singlet (〈Ic · Id〉 = −3/4). This implies
the existence of the charge Kondo state in our model, which is
mainly formed by empty and doubly occupied states.

To study the competition between the SC, CO, and charge
Kondo states in the original model, Eq. (3), we make use of
DMFT [19–21] in the Nambu formalism [28]. In the framework
of DMFT, the lattice model is mapped to an effective impurity
model, where local electron correlations are taken into account
precisely. The Green function for the original lattice system is
then obtained via self-consistency equations imposed on the
impurity problem. The noninteracting Green’s function in the

lattice system is represented as the 2-by-2 matrix,

Ĝ0α(k,iωn) = [iωnσ̂0 + (μ − εαk)σ̂z]
−1, (8)

where σ̂0 is the identity matrix, σ̂z is the z component of
the Pauli matrix, ωn = (2n + 1)πT with interger n is the
Matsubara frequency, T is the temperature, and μ is the
chemical potential. εαk is the dispersion relation for the α(=
c,d)th band, namely, εck = εk and εdk = εd . Since there is
no hybridization between conduction and localized bands, no
interband elements appear in the Green’s function [29]. The
lattice Green’s function is then given by the site-diagonal
self-energy as

Ĝα(iωn) =
∫

dk
[
Ĝ−1

0α (k,iωn) − 	̂α(iωn)
]−1

, (9)

where the Green’s functions and self-energy are represented in
the Nambu formalism.

In the following, we use the semicircular density of states
ρ(x) = 2

√
1 − (x/D)2/πD, which corresponds to an infinite-

coordinate Bethe lattice. By using Dyson equations, the self-
consistency condition is represented by the Green’s function
of the conduction bands, as

Ĝ−1(iωn) = iωnσ̂0 + μσ̂z −
(

D

2

)2

σ̂zĜc(iωn)σ̂z, (10)

where Ĝ is the noninteracting Green’s function in the effective
impurity model.

There are various numerical methods to solve the effective
impurity problem. To discuss quantitatively how the SC and
CO states compete with the charge Kondo state, we use here the
CTQMC method [22,23]. In our model, the double expansion
technique [30], where the partition function is expanded with
respect to both the effective bath and the pair hopping, is
efficient to perform Monte Carlo simulations without minus
sign problems. In the paper, to discuss how the valence
skipping phenomenon is realized, we evaluate the probabilities
of empty, singly, and doubly occupied states in each orbital
as 〈eiα〉, 〈siασ 〉, and 〈diα〉, where eiα = (1 − nα

i↑)(1 − nα
i↓),

siασ = nα
iσ (1 − nα

iσ̄ ), and diα = nα
i↑nα

i↓, respectively. In the
following, we take D as the unit of energy and set μ = Ucd

and Ed = 0 to discuss low temperature properties in the system
with particle-hole symmetric conditions 〈nc〉 = 〈nd〉 = 1. The
errors of the obtained data shown in the figures are smaller than
their symbol size.

III. RESULTS

We discuss low-temperature properties in the system with
itinerant and localized bands. Fixing the interorbital Coulomb
interaction as Ucd = 0, we focus on the effect of the pair
hopping in the system to discuss the competition between the
charge Kondo and SC states. We first calculate the probabilities
of empty, singly, and doubly occupied states to examine the
electron configuration in the system. The results are shown
in Fig. 1(a). When Jph = 0, the system is noninteracting, and
the metallic state is realized with 〈ec〉 = 〈sc

σ 〉 = 〈dc〉 = 0.25.
The introduction of the pair hopping increases the probabilities
of empty and double occupied states, while it decreases those
of single occupied states. In the strong-coupling limit, these
values 〈ec〉 = 〈dc〉 → 0.5 and 〈sc

σ 〉 → 0. Similar behavior
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FIG. 1. (a) Electron configurations 〈d〉, 〈sσ 〉, and 〈e〉, and (b) the
pair potential in the system with Ucd = 0 at the temperature T/D =
0.03, 0.025, and 0.0125, respectively.

appears in the localized bands (not shown), which means that
the valence skip behavior is well described by the pair hopping.
To discuss how the SC state is realized in the system, we
also calculate the pair potential in the conduction band 
c =
〈c↑c↓〉, as shown in Fig. 1(b). In the intermediate-coupling
region (Jph)c1 < Jph < (Jph)c2, the SC state is realized with a
finite pair potential. Namely, the phase transitions are of second
order and the critical interactions are deduced as (Jph)c1/D ∼
0.28 and (Jph)c2/D ∼ 0.47 at T/D = 0.03. An important
point is that electron configurations are gradually changed in
the SC state, as shown in Fig. 1(a). Around (Jph)c1, the single
occupancy still appears because of weak electron correlations.
In this case, the BCS-like SC state is realized, and thereby
the critical value (Jph)c1 approaches zero with decreasing
temperatures, as shown in Fig. 1(b). Roughly speaking, we
find that the emergence of the phase transition appears to be
related to the double occupancy of 〈d〉 ∼ 0.4, which helps us
to discuss later the effect of the interorbital interaction. On
the other hand, in the stronger coupling region singly occupied
states are little realized, as shown in Fig. 1(a). Therefore, paired
electrons formed by pair hopping play a crucial role in the
region. When paired electrons are itinerant in the lattice [Jph <

(Jph)c2], the SC state is realized. On the other hand, when
Jph > (Jph)c2, the paired electrons are localized in each site,
which is expected to correspond to the charge Kondo state. To
clarify whether or not the charge Kondo state is realized at low
temperatures, we show in Fig. 2 the temperature dependence
of the pseudospin correlation 〈Ic · Id〉 for the system with
Ucd = 0 and Jph/D = 0.75. Its magnitude becomes larger
with decreasing temperature at T ∼ |Jph|. The quantity is
almost saturated below T/D ∼ 0.1, where 〈ec〉 = 〈dc〉 ∼ 0.5
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FIG. 2. Pseudospin correlations 〈Ic · Id〉 and probabilities as
a function of the temperature in the system with Ucd = 0 and
Jph/D = 0.75.

and 〈sc
σ 〉 ∼ 0. In addition, we could not find the SC state at

lower temperatures, suggesting that the charge Kondo state is
realized even at zero temperature. This is consistent with the
fact that the critical point (Jph)c2 between the SC and charge
Kondo states is little changed with decreasing temperature, as
shown in Fig. 1(b).

We next consider how the interorbital interaction Ucd

stabilizes the CO state [31–34]. When Jph = 0, the system
is reduced to a conventional Falikov-Kimball model and
its low-temperature properties have been discussed in detail
[24,25]. Figure 3 shows the order parameter at fixed tempera-
tures T/D = 0.03, 0.05, and 0.1. We find that the CO state
is realized in the intermediate-coupling region Ucd/D ∼ 1
and becomes more stable with decreasing temperatures. This
is consistent with the fact that the CO state is always a
ground state in the system without the pair hopping Jph = 0
[31–34].

From these results in two limiting cases, we find two
distinct ordered states. Now, another question arises of how
the SC and CO states compete with each other. Here, we fix
the condition Ucd + Jph = 0.38D to clarify how these two
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FIG. 3. Solid squares, circles, and triangles represent order pa-
rameters for the CO state in the system with Jph = 0 at the temperature
T/D = 0.1, 0.05, and 0.03, respectively.

125130-3



RYU SHINZAKI, JOJI NASU, AND AKIHISA KOGA PHYSICAL REVIEW B 97, 125130 (2018)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.23  0.24  0.25  0.26  0.27  0.28

Ucd+Jph=0.38D

SCCO

Jph / D

Δc
ρc

FIG. 4. Circles and squares represent order parameters for the SC
and CO states when Ucd + Jph = 0.38D and T/D = 0.03. Dashed
line represents the symmetric point (Jph/D = 0.2533).

phases are realized. Figure 4 shows order parameters in the
system at T/D = 0.03. When Jph/D = 0.23, the CO state is
realized with the order parameter ρc ∼ 0.1. The increase of
the pair hopping monotonically decreases this quantity up to
Jph/D ∼ 0.26. The order parameter suddenly vanishes and the
finite pair potential appears instead. This implies the existence
of the first-order phase transition between CO and SC states.
In fact, the SC state solution exists in the case Jph/D � 0.25
shown as the solid squares in Fig. 4. Note that at the symmetric
point (2Ucd = Jph = 0.2533D), order parameters take the
same value within our numerical accuracy. This originates
from the fact that the Hamiltonian Eq. (7) is isotropic and
these two states are degenerate at zero temperature. Then, we
conclude that the CO and SC states do not coexist in the region
0.25 < Jph/D < 0.26, and there exists a first-order transition
between them.

By performing similar calculations, we obtain the phase
diagram with a fixed temperature T/D = 0.03, as shown in
Fig. 5. When the system is weakly correlated with Ucd,Jph �
D, the metallic state is realized. The pair hopping term
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Metal SC

CO Charge Kondo

U
cd

 / 
D

Jph / D

FIG. 5. Phase diagram of the system when T/D = 0.03. Solid
circles (squares) represent the transition points, where the CO (SC)
state disappears. The dashed line represents the symmetric condi-
tion (Jph = 2Ucd ). The overlapped area around (Jph/D,Ucd/D) ∼
(0.25,0.125) represents the hysteresis region.
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FIG. 6. (a) Double occupancy 〈d〉(= 〈e〉 = (1 − 〈sσ 〉) and (b) pair
potential 
c as a function of Ucd/D. Solid squares, circles, and
triangles represent the results for the systems with Jph/D = 0.25,0.3
and 0.4 at T/D = 0.03.

induces the s-wave SC state, while the interorbital interaction
induces the CO state. These two solutions overlap around
the symmetric line, as discussed above. We also find that the
phase boundary for the metallic and SC states becomes lower
when the interorbital interaction is switched on. This should
be explained by the fact that, in the weak-coupling region,
the SC state is induced when empty and doubly occupied
states become dominant. In fact, when Jph/D = 0.25, the
introduction of the interorbital Coulomb interaction increases
the double occupancy while it suppresses single occupancy, as
shown in Fig. 6(a). We find that the SC state appears around
Ucd/D ∼ 0.052 (〈d〉 ∼ 0.4) as shown in Fig. 6(b). This result
indicates that the SC state is induced by Ucd in the fixed
Jph. The pair coupling Jph trivially stabilizes the SC state
as the order parameter 
c = 〈c↑c↓〉 is simply obtained by its
mean-field decoupling. On the other hand, a static mean-field
approximation of the interorbital repulsion term Ucd never
yields the SC order parameter 
c = 〈c↑c↓〉. Therefore, we
can say that dynamical correlations play an important role in
stabilizing the SC state in the system. This is similar to the case
in the two-orbital Hubbard model [35], where the interorbital
repulsive interaction induces the SC state within DMFT. As
well as this previous study, since the present calculations are
performed by DMFT, critical phenomena always belong to a
mean-field universality class and thereby critical exponents are
not changed. These discussions are also applied to the CO state
in the weak-coupling region, where the pair hopping Jph play
a role in forming paired electrons.

In the strong-coupling region with Ucd,Jph 	 D, the para-
magnetic state appears in the phase diagram. Decreasing
temperatures, the state is adiabatically connected to the charge
Kondo state. In the large Ucd case, the characteristic energy
for the CO state is D2/Ucd , while that for charge Kondo state
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is the pair hopping Jph. Therefore, the ground-state phase
boundary between the CO and charge Kondo states should
be scaled as ∼ UcdJph/D

2 and infinitesimal Jph induces the
charge Kondo state in the Ucd → ∞ limit. On the other hand, in
the Ucd = 0 case, the charge Kondo state competes with the SC
state and its phase boundary is at finite Jph in the ground state,
as discussed before. Switching Ucd enhances the pseudospin
correlations, stabilizing the charge Kondo state. Therefore, the
introduction of the interorbital Coulomb interaction makes the
strong-coupling SC state unstable, which is clearly found in
the case Jph/D = 0.4 in Fig. 6(b). Then, the linear behavior in
the phase boundary between the SC and charge Kondo states
appears in the strong-coupling region. On the other hand, in
the weak-coupling region, our DMFT calculations suggest that
the metallic phase disappears at T = 0. Then, the CO and SC
states compete with each other, and its phase boundary should
be determined by the symmetric condition Jph = 2Ucd .

Before closing this paper, we comment on the effect of the
single electron hopping (hybridization) between the conduc-
tion and localized band, which has been treated in the periodic
Anderson model. Since the self-consistency condition Eq. (10)
is not changed [36], one can treat this model in the same frame-
work to discuss the possibility of the magnetically ordered
state and competition between magnetic and charge Kondo
states [37]. We expect that the single hopping activates singly
occupied states and the nature of the valence skip ions becomes
obscure. However, this hopping gives rise to minus sign prob-
lems in solving the effective impurity model by means of the
CTQMC method. Therefore, the quantitative analysis should

be restricted at relatively higher temperatures. Moreover, it is
also interesting to consider additional interactions such as the
Hund coupling, which might result in the triplet SC state [38],
but it is beyond the scope of our paper. Therefore, these issues
are left for future work.

IV. CONCLUSION

We have investigated the extended Falikov-Kimball model
with the Coulomb and pair hopping between the conduction
and localized bands to discuss how the valence skipping ions
induce a spontaneously symmetry-breaking state. By combin-
ing DMFT with the CTQMC method, we have determined
the finite-temperature phase diagram, where the SC and CO
states compete with the charge Kondo state. It is found that, in
the weak-coupling region, the Coulomb interaction assists the
stability of the SC state, which is a common feature inherent
in the multiorbital systems.
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