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Exploring a potential energy surface by machine learning for characterizing atomic transport
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We propose a machine-learning method for evaluating the potential barrier governing atomic transport based
on the preferential selection of dominant points for atomic transport. The proposed method generates numerous
random samples of the entire potential energy surface (PES) from a probabilistic Gaussian process model of the
PES, which enables defining the likelihood of the dominant points. The robustness and efficiency of the method
are demonstrated on a dozen model cases for proton diffusion in oxides, in comparison with a conventional nudge
elastic band method.
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Atomic transport plays a key role in a variety of phenomena
related to physics, chemistry, and materials science. Concern-
ing the transport of a mobile atom governed by thermally acti-
vated processes in a crystal, the kinetics is fully characterized
by the entire potential energy surface (PES) of the mobile atom
in the host crystal. The most important region in the entire PES
is the optimal path, which is defined as the lowest-energy path
between two global minimum points separated by a lattice
translation vector. Therefore, the optimal path is identical to
a valley line, which generally passes through several saddle
points. Based on transition state theory (TST) [1–4], the
kinetics is determined primarily by the potential barrier of
the optimal path, i.e., the difference in potential energy (PE)
between the global minimum point and the bottleneck point,
which is defined as the point having the highest PE on the
optimal path.

The nudged elastic band (NEB) method [5,6] is a well-
established and powerful technique for identifying the optimal
path and its energy profile. The NEB method, however, has a
serious drawback in that it requires a given initial trajectory to
identify the optimal path. When the optimal path consists of
several elementary paths, all local minimum points (including
the global minimum point) in the entire PES are found in
advance, because these points may be the initial and final
points of the elementary paths. For each of the possible
initial trajectories derived from the local minimum points,
an elementary path is analyzed using the NEB method, and
the optimal path formed by some of the elementary paths
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is finally identified. Moreover, physical and chemical prior
knowledge, e.g., ionic radii, chemical bonding states, and
electrostatic interaction, has usually been used to obtain local
minimum points and initial trajectories. However, the excessive
dependence on the prior knowledge may cause us to miss a
key elementary path. Thus, a robust and efficient alternative
method to the NEB-based analysis is desired.

In the present study, we propose a machine-learning (ML)
method for robustly and efficiently estimating the potential
barrier of the optimal path. The basic strategy is to focus only on
finding the two dominant points, i.e., the global minimum and
bottleneck points. To this end, a probabilistic Gaussian process
(GP) model [7,8] of the PES is introduced, and is iteratively
updated using the first-principles potential energies (PEs)
computed at the selected points based on the uncertainties
of the two dominant points within a Bayesian optimization
(BO) -like framework. The uncertainties are obtained from
the probabilistic PES model and optimal path searches by a
dynamic programming (DP) -base algorithm [9–11].

Although probabilistic approaches based on BO [12–17]
and other machine-learning approaches [18–44] were previ-
ously used in several materials informatics studies, these ex-
isting methods cannot be directly used in the present case. The
intrinsic difficulty of the problem considered herein is that the
optimal path and its bottleneck point are, by definition, found
after acquiring complete information about the entire PES. The
basic strategy for overcoming this difficulty is to randomly
generate multiple PES samples according to a probabilistic GP
model and to identify the optimal path for each sample using
a DP-based algorithm. This enables collections of the global
minimum and bottleneck points to be obtained, and these
collections are considered to be distributions representing the
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uncertainties of these two dominant points. To implement this
concept, the GP model, the DP algorithm, and the BO frame-
work are properly extended and effectively combined. Note
that the proposed ML method is, in principle, applicable to

any kind of atomic transport phenomena governed by multiple
mobile atoms or ions. Furthermore, other phenomena governed
by thermally activated processes, e.g., phase transitions and
chemical reactions, are also considered as applications, where
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FIG. 1. Schematic diagram of random PES samples for (a) synthetic 1D PES examples, (b) synthetic 2D PES examples, and (c) the optimal
paths in the 2D PES examples. In (a), the black curve and blue area, respectively, represent the mean and the variance functions of the GP-based
probabilistic PES model. On the right, nine randomly generated PES samples are indicated by red curves. In (b), the color and the gray-scale
contour plots, respectively, on the left represent the mean and the variance functions of the GP-based probabilistic PES model. On the right,
nine randomly generated PES samples are indicated by color contour plots. In the left-hand plot of (c), the white curve in each plot indicates the
optimal path identified by the DP-based path search algorithm. On the right, the blue and red histograms, respectively, represent the collections
of the global minimum and bottleneck points obtained from 1000 random PES samples and the optimal path search for each sample. These
collections of points can be interpreted as the probability distributions of the two dominant points and are used for selecting the next PE
computation point.
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both initial and final states can be given in a configuration
space.

The robustness and efficiency of the proposed ML method
are demonstrated for a dozen model cases for proton diffu-
sion in host oxides with a variety of crystal structures. In
the present paper, the results for two well-known proton-
conducting oxides, i.e., barium zirconate with a cubic per-
ovskite structure (c-BaZrO3) [45–48] and lanthanum niobate
with a tetragonal scheelite structure (t-LaNbO4) [49,50], are
taken as the primary typical examples, to show the applicability
of the proposed ML method to both isotropic and anisotropic
diffusivities. Due to space limitations, the results in the other
cases are summarized in the supplemental material [51]. Those
results are also of importance for demonstrating the wide
applicability of the proposed method.

The outline of the proposed ML method is explained
hereafter. First, a fine grid for computing PEs is introduced
in the conventional unit cell of a host crystal. By fully
exploiting the crystallographic symmetry, we consider only
the irreducible grid points, which correspond to the grid points
in the asymmetric unit. As the initialization process, the PEs
at several grid points are computed, which are randomly
selected from the asymmetric unit (10 grid points in the present
study). The current problem is to efficiently obtain the PEs
at the global minimum and bottleneck points, Emin and Ebtl,
respectively, by as few PE computations as possible. The PE
difference between the global minimum and bottleneck points
is denoted here by �E (= Ebtl − Emin). The mathematical for-
mulation of the problem setting is detailed in the supplemental
material [51].

The proposed ML method solves the problem by iterating
the following three steps (steps I, II, and III). In step I,
a probabilistic PES model is constructed by GP using the
already-computed PEs obtained by first-principles calculations
in the earlier iterations, and randomly generating a large
number of PES samples from the probabilistic model (see
the supplemental material for details [51]). Figure 1(a) shows
an example of step I for a synthetic one-dimensional (1D)
case, where nine PES samples are shown as typical examples.
These PES samples fluctuate around the mean function of
the probabilistic model reflecting its uncertainty. An example
of the synthetic 2D case is also shown in Fig. 1(b). In the

present study, a thousand randomized PES samples are actually
generated in the 3D configuration space.

In step II, the optimal path is identified in each of
the randomized PES samples using a DP-based algorithm.
Figure 1(c) shows the optimal path in each of the nine
randomized PES samples. The optimal path depends on the
randomness of the PES samples, resulting in the uncertainties
of the global minimum and bottleneck points as shown in
Fig. 1(c). The uncertainties are represented by the probabilities
of the ith point to be the global minimum and bottleneck points
in the multiple PES samples, pmin

i and pbtl
i , respectively. If

atomic transport is characterized by multiple optimal paths
due to the low symmetry of a host crystal (e.g., t-LaNbO4),
subsequent optimal paths with a higher �E can also be
identified one by one in the same manner. The details of the
path search algorithm based on DP and the extension for atomic
transport with biaxial or triaxial anisotropy are presented in the
supplemental material [51].

In step III, the next grid point, which is likely to be either
the global minimum point or a bottleneck point, is selected
using a BO-like approach, and the PE at the selected point is
computed using first-principles calculations. The next point is
determined as the point that maximizes (pmin

i + pbtl
i )σ 2

i , where
σ 2

i represents the uncertainty of the PE at the ith point. (Details
are provided in the supplemental material [51].)

Figure 2 shows the probability distributions of the global
minimum and bottleneck points, pmin

i and pbtl
i , in the initial,

10th, and 20th iterations. These distributions have large vari-
ance in earlier iterations, but the peaks of the distributions
converge gradually to the true global minimum and bottleneck
points. The variances of the PEs at the global minimum and
bottleneck points also converge with iterations (as shown on
the right). Hence they are used as a stopping criterion for
an optimal path search (the variance <10−6 eV in the present
study).

The PEs at each grid point in both model systems were
computed from first principles based on the projector aug-
mented wave (PAW) method as implemented in the VASP code
[52–55]. (See Refs. [13] and [50] and the supplemental material
for detailed computational conditions [51].) The lattice relax-
ation around the proton was taken into account by structural
optimization with only the proton position fixed at the grid
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FIG. 2. Schematic diagrams representing how the uncertainties of the two dominant points decrease in the 2D examples in Fig. 1(c). The
histograms in the same form as Fig. 1(c) at the initial, 10th, and 20th iterations are plotted on the left. The mean (curves) and the variances
(shaded areas) representing how the uncertainties of the global minimum point (blue) and the bottleneck point (red) decrease through iterations
are plotted on the right. These plots suggest that the estimations of the locations of the two dominant points converge to the true locations as
the iterations proceed.
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FIG. 3. (a) Global minimum (cyan) and bottleneck (purple) points
in the 1000 randomized proton PES samples in the 10th, 20th, and 40th
iterations in the c-BaZrO3 crystal. (b) Mean and variance profiles of
the PEs at the global minimum and bottleneck points in each iteration.
The PE values are shown with reference to the true PE at the global
minimum point.

point. We introduced a 40 × 40 × 40 grid for c-BaZrO3 and a
20 × 20 × 40 grid for t-LaNbO4, which generated 1768 and
1010 irreducible grid points, respectively.

The first model case is the proton diffusion in c-BaZrO3,
in which the entire PES is known and the isotropic proton
diffusivity is characterized by a single optimal path. The
yellow surface shown in Fig. 3(a) denotes the PE isosurface
in the c-BaZrO3 crystal (PE level: 0.3 eV with reference to
the global minimum point). The low PE region surrounded
by the isosurface is located around oxygen ions, forming
the proton rotational orbits. These rotational orbits overlap
adjacent proton rotational orbits, corresponding to the hopping
paths between oxygen ions. The two elementary paths, i.e.,
the rotation and hopping paths, form a 3D proton-conducting
network throughout the crystal lattice. Their calculated poten-
tial barriers are 0.18 and 0.25 eV, respectively. Therefore, the
bottleneck point corresponds to the saddle point for the proton
hopping, not for the proton rotation.

The purple and cyan dots in Fig. 3(a) indicate grid points
predicted at least once as the global minimum and bottleneck
points, respectively, in the 10th, 20th, and 40th iterations.
Figure 3(b) shows the mean and variance of the predicted PEs
for the global minimum and bottleneck points as a function
of the number of the iterations. At the beginning (iteration
10), the predicted global minimum and bottleneck points
are scattering, and the predicted PEs at the global minimum
and bottleneck points deviate from the true values (0 and

0.25 eV, respectively) with large variances. As the iterations
proceed, the number of grid points predicted as the global
minimum and bottleneck points gradually decreases, and the
predicted PEs approach the true values while their variances
become smaller, until finally converging to the true points
and PEs with tiny variances (iteration 40). The proposed ML
method found the true potential barrier after 40 iterations, i.e.,
the proton diffusivity in this crystal is completely character-
ized by first-principles calculations for 50 points, including
10 points that are randomly selected in the initialization
process.

The proposed ML method can readily be extended to
anisotropic diffusivity in a crystal with a low symmetry. The
anisotropic proton diffusivity in t-LaNbO4 is taken here as
another model case, in which the proton diffusivity is different
between the ab plane and the c axis from the crystallographic
point of view. In this case, the global minimum and bottleneck
points on the optimal path are first explored. Subsequently, the
bottleneck point on the second optimal path, which is defined
as the second-lowest-energy path that is linearly independent
of the first optimal path, is additionally explored using an ex-
tension of the proposed method (see the supplemental material
[51]). Figure 4(a) shows the mean and variance profiles of the
PEs at the global minimum and two bottleneck points on the
first and second optimal paths. They correspond to the optimal
paths in the ab plane and along the c axis, respectively, showing
the potential barriers of �Eab = 0.25 eV and �Ec = 0.39 eV.

The predicted potential barriers are, however, inconsis-
tent with the reported values (�Eab = 0.41 eV and �Ec =
0.74 eV) in the previous study using the NEB-based analysis
[50]. The origin of the difference is missing a key elemen-
tary path through the bottleneck point (bottleneck 1) in the
previous study. Figure 4(b) shows the global minimum and
two bottleneck points along with the proton PE isosurface (PE
level: 0.25 eV) in the PES predicted by the probabilistic model
in the final iteration. The first optimal path runs in the region
surrounded by the PE isosurface, which forms equivalent 1D
long-range paths along the a and b axes.1 On the other hand,
Fig. 4(c) shows the global and local minimum points (sites a

and b) and 1D long-range paths consisting of paths 1, 2, and
3 found by the NEB-based analysis in Ref. [50]. The white
spheres denote the key elementary path (path α) additionally
calculated by the NEB method in the present study. The
converged trajectory is in line with the predicted first optimal
path, the calculated potential barrier (0.25 eV) of which is equal
to the predicted PE at bottleneck 1. Hence paths 1, 2, and α

should form the 1D long-range path along the a and b axes,
in which path α plays a key role in determining the proton
diffusivity.

Concerning the second optimal path along the c axis, the
bottleneck point (bottleneck 2) is located on reported path 3,
which connects adjacent first optimal paths and enables protons
to migrate along the c axis. Since path 3 is rate-determining
in the second optimal path, the predicted �Ec in the present

1The 1D long-range paths along the a and b axes are alternatively
arranged in the c-axis direction due to the fourfold screw symmetry.
Note that the broken lines in Fig. 4(b) show only the paths along the
b axis.
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FIG. 4. (a) Mean and variance profiles of the PEs at the global
minimum and two bottleneck points in t-LaNbO4. The PE values are
shown with reference to the true PE at the global minimum point. (b)
Global minimum and two bottleneck points along with the proton PE
isosurface (PE level: 0.25 eV) in the PES predicted by the probabilistic
model. (c) Reported global and local minimum points (sites a and b)
and paths 1–3 defined in Ref. [50]. The white spheres indicate the
trajectory of path α additionally calculated by the NEB method in the
present study.

study is comparable to the reported potential barrier of path 3.
The slight difference is probably an artifact due to the interval
of the grid points introduced in the proposed method. Thus,
the proton diffusivity in t-LaNbO4 is correctly updated by the
proposed ML method in the present study.

Note that the proposed ML method shows high compu-
tational efficiency for identifying both global minimum and

bottleneck points. This feature is emphasized in applications
to atomic diffusion in low-symmetry crystals, which requires
covering all initial trajectories connecting a number of local
minimum points for finding the optimal path in the NEB-based
analysis. Actually, in Ref. [50], a key proton migration path
could not be found after roughly evaluating the entire PES
(1000 single point calculations), performing five structural op-
timizations for determining the local minimum points, and per-
forming 21 careful NEB calculations. The total computational
cost is approximately equal to 200 PE computations, which is
twice that of the ML method proposed in the present study.
The proposed method also works efficiently for the proton
diffusions in other host oxides (see the supplementary material
[51]). Note that the efficiency increases as the symmetry of the
host oxide crystal decreases, which indicates that the proposed
method is more efficient and useful than the NEB method
for identifying complicated atomic transport in low-symmetry
crystals.

We have proposed an ML-based method based on the ex-
tended frameworks of GP, DP, and BO in order to automatically
analyze the atomic transport of interest. The proposed method
significantly accelerates the identification of dominant points
of the optimal migration path by preferentially performing the
PE computations at points with a high likelihood of being
dominant points. The results of the demonstration studies also
indicate that the proposed method is expected to be particularly
useful for investigating the atomic diffusion in complicated
low-symmetry crystals without missing key migration elemen-
tary paths. The proposed ML method should therefore be an
alternative for the conventional NEB-based analysis, as a more
robust, efficient, and realistic method.
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