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Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge
the gap between theoretical models and real materials. So far, they were limited to measurements of instantaneous
correlation functions of the form (O(r)), even though extensions to frequency-resolved response functions
(0(1)O(0)) would provide important information about the elementary excitations in a many-body system.
For example, single-particle spectral functions, which are usually measured using photoemission experiments
in electron systems, contain direct information about fractionalization and the quasiparticle excitation spectrum.
Here, we propose a measurement scheme to experimentally access the momentum and energy-resolved spectral
function in a quantum gas microscope with currently available techniques. As an example for possible applications,
we numerically calculate the spectrum of a single hole excitation in one-dimensional ¢-J models with isotropic
and anisotropic antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral weight appears
when a hole is created in an isotropic Heisenberg spin chain. This effect slowly vanishes for anisotropic spin
interactions and disappears completely in the case of pure Ising interactions. The asymmetry strongly depends on
the total magnetization of the spin chain, which can be tuned in experiments with quantum gas microscopes. An
intuitive picture for the observed behavior is provided by a slave-fermion mean-field theory. The key properties

of the spectra are visible at currently accessible temperatures.
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I. INTRODUCTION

Ultracold atomic gases provide a versatile platform to study
quantum many-body physics from a new perspective. They
enable insights into systems that are on one hand challenging to
describe theoretically and on the other hand difficult to realize
with a comparable amount of isolation, control, and tunabil-
ity in solid state systems. Recently, we have seen dramatic
progress in the quantum simulation of the Fermi-Hubbard
model, which in 2D is believed to capture essential features
of high-temperature cuprate superconductors [1-3]. Exper-
imental results from quantum gas microscopy of ultracold
fermions in optical lattices [4—11] have already demonstrated
spin-charge separation in one-dimensional (1D) systems [12]
as well as long-range antiferromagnetic correlations [13] and
canted antiferromagnet states [14] in two dimensions. In order
to relate cold atom experiments to their solid state counterparts
and facilitate direct comparisons, it is desirable to measure
similar physical observables in both systems [3,15-20].

Traditional solid state experiments rely on measurements
of time-dependent response functions of the form (O(t)O(O))
in the frequency domain [21]. Examples include inelas-
tic neutron scattering, x-ray spectroscopy, scanning tunnel-
ing microscopy, angle-resolved photoemission spectroscopy
(ARPES), or purely optical probes. In contrast, quantum gas
microscopes are used to perform destructive measurements
accompanied by a collapse of the many-body wave function.
While this gives immediate access to instantaneous correlation
functions of the form <01(r)02(t)...0,,(t)), extensions to
frequency-resolved response functions have not been realized
so far.

2469-9950/2018/97(12)/125117(23)

125117-1

One of the most powerful tools for studying strongly
correlated electrons in solids is angle-resolved photoemission
spectroscopy (ARPES). In this technique, electrons are ejected
from the surface of a sample through the photoelectric effect.
By counting the number of photoelectrons and measuring
their energy w and momentum k, the single-particle excitation
spectrum A(k,w) is obtained. The spectral function reveals fun-
damental properties of the system and its excitations [22,23],
and important insights about high-7, cuprate superconductors
have been obtained from ARPES measurements. One of the
most puzzling observations in this context is the appearance
of Fermi arcs in the spectrum below optimal doping in the
pseudogap phase [23]. A microscopic understanding of this
phenomenon is currently lacking, and it is expected that
experiments with ultracold atoms can shed new light on this
long-standing problem.

Spectral functions have already been measured in fermionic
quantum gas experiments, for instance, by radio-frequency
spectroscopy [15] and its momentum-resolved extension [24],
Bragg spectroscopy [25], and lattice modulation spectroscopy
[26,27]. Although these techniques have been very successful
in characterizing strongly correlated systems, acquiring a
sufficiently strong signal has always required creating multiple
excitations. In addition, final-state interactions often compli-
cate the interpretation of the obtained spectra.

In this paper, we propose a scheme for the measurement of
momentum-resolved single-particle excitation spectra without
final-state interactions, similarly to ARPES, using a quantum
gas microscope. As illustrated in Fig. 1(a) for a 1D spin sys-
tem, the scheme involves modulating the tunneling amplitude
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FIG. 1. Measuring the single-hole spectral function. (a) Proposed
experimental setup. A lattice modulation along the y direction creates
a hole in the physical system S by transferring a single particle into
the neighboring, thermodynamically disconnected detection system
St which is offset in energy by A. A subsequent momentum space
mapping technique enables the determination of the momentum k
of the excitation. The rate of the transferred atoms is proportional
to the spectral function A(k,w). (b) Exemplary calculated spectral
function of the 7-J model with next-nearest-neighbor interactions
and isotropic spin couplings for L = 16 sites, tunneling ¢/J = 4,
temperature 7'/J = 0.2 and open boundary conditions. The spectral
weight in units of 1/J is color coded. Individual holon and spinon
branches in the spectrum are clearly visible, as indicated by the dashed
and dashed-dotted lines. (c¢) In a mean-field approach, the ground
state of the effective spin degrees of freedom, which is a Luttinger
spin liquid, is described as a half-filled Fermi sea of spinons. In the
measurement process, a holon is created and a spinon is removed,
such that the accessible momenta are restricted to k < /2 at low
energies, which explains the asymmetry in (b).

between the chain and an initially empty detection system at
a frequency wgnake. By measuring the resulting transfer rate
from the system to the probe, the spectral function A(w,k) for
a single hole inside the spin chain can be obtained. We present
several ways how the momentum (k) can be resolved using
the capabilities of quantum gas microscopy. It generalizes
methods based on radio-frequency spectroscopy [15,17,28—
30] and theory proposals to perform the equivalent of scanning
tunneling microscopy on ultracold atoms [16,31].

To demonstrate our scheme, we consider variations of the
t-J model with isotropic and anisotropic spin interactions. The
case of isotropic spin interactions has been realized experi-
mentally as a limit of the 1D Fermi-Hubbard model at half-
filling and strong coupling [12,13]. Anistropic spin interactions
can be realized with Rydberg dressing [32,33], using polar
molecules [34] or employing spin-dependent interactions [35].
Theoretical calculations [36] have shown for both models that

the shape of the spectral function can be understood from
spin-charge separation. Here, we demonstrate that spinon and
holon lines in the spectrum can be individually resolved at
all energies in comparatively small systems of ten to twenty
ultracold atoms at currently achievable temperatures.

The ground state of the 1D #-J model with isotropic spin
interactions does not possess long-range order and is described
by Luttinger liquid theory instead [37]. The spin-liquid nature
of this ground state leads to an intriguing signature in the
spectral function already for a single hole [36]; at low energies,
most of the spectral weightis found formomenta0 < k < /2,
with lattice constanta = 1, whereas between /2 < k < 7 the
spectral weight is suppressed by several orders of magnitude,
see Fig. 1(b). This phenomenon is to some extent reminiscent
of the Fermi arcs observed by ARPES in the pseudogap phase
of cuprates [23]. To explain the sharp reduction of spectral
weight by a simple physical picture, we describe the Luttinger
liquid ground state of the spin chain as a quantum spin liquid
using slave-fermion mean-field theory. In this formalism, the
ground state of the Heisenberg chain with zero total magne-
tization can be understood as two identical, half-filled Fermi
seas of spinons. As illustrated in Fig. 1(c), the asymmetry in
the spectrum A(k,w) is easily understood by noting that the
creation of a hole in an ARPES-type measurement corresponds
to removing a spinon from one of the Fermi seas. In this work,
we show that the asymmetry of the spectral function around
/2 in the t-J model with isotropic spin couplings can be
observed in experiments with ultracold atoms.

In contrast, the ground state of the anisotropic ¢-J model
with dominant Ising interactions between the spins is not a
spin liquid, but possesses long-range Néel order. In this case,
the sublattice symmetry is spontaneously broken [37], and
the spectrum is approximately symmetric around 7 /2, i.e.,
A(/2 + k,w) = A(r/2 — k,w). We extend the slave-fermion
mean-field theory to this regime and find that it correctly
predicts the broken sublattice symmetry when J,/J, is varied,
where J; denotes the coupling strength in the XY plane of
the spins. Spinon excitations become gapped for J, > J, , and
the mean-field gap A is a nonanalytic function of J./J, in
agreement with exact Bethe ansatz calculations [38].

Our paper is organized as follows. In Sec. II, we introduce
the experimental scheme for measuring the spectral function
using a quantum gas microscope. In Sec. III, we introduce two
variations of the 1D #-J model with isotropic and anisotropic
spin couplings, for which we study the spectral function in
Sec. IV. We present results from exact numerical simulations
which take into account effects of finite size and temperature.
Two physical phenomena are discussed, which can be mea-
sured using our scheme: spin-charge separation for arbitrary
energies (Sec. IV A) and the asymmetry of the spectrum, which
is a signature of the Luttinger spin-liquid, for the case of
isotropic spin couplings (Sec. IVB) and finite magnetization
(Sec. IVC). A theoretical analysis of our findings is provided
in Sec. V. In Sec. VA, we use a slave-fermion mean-field
theory to describe a spin chain and explain the asymmetry in the
spectral function. Analytical results for the renormalization of
a spin-less holon by collective spin excitations are discussed in
Sec. V B. Extensions to the measurement scheme are discussed
in Sec. VI. We close with a summary and by giving an outlook
in Sec. VIL
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II. MEASURING SPECTRAL FUNCTIONS IN A QUANTUM
GAS MICROSCOPE

In the following, we outline our proposal to experimentally
measure the spectral function of a single hole with simul-
taneous momentum and energy resolution in a quantum gas
microscope. The basic idea is to excite a single particle from
a filled 1D system S by lattice modulation into an adjacent
1D “detection” system S%'. The latter consists of empty
sites and is offset in energy by A > ¢, where ¢, is the bare
tunneling amplitude between S and S9!, see Fig. 1(a). The
lattice modulation can be described by a perturbation term

Hpen(T) = 8ty sin(@share )Ty (0

in the Hamiltonian. Here, T denotes time, §t, is the modulation
amplitude of the hopping between S and S9! described by the
operator T, and wspake is the modulation frequency.

A. Single-particle transfer

A successful excitation transfers a single particle from S
to S%. As the modulation is only along the y axis (i.e.,
perpendicular to the 1D system), the total momentum is
conserved and the excitation couples simultaneously to all
individual momenta k. This can be seen by rewriting the
perturbation (1) in momentum space,

Ty=-Y @, e, +Hec)=-> @ ,te0 +He). ()
i,o k,o

Here, ¢;),» denotes the annihilation operator at site i (momen-

tum k) in S and 57;[(,{)’0 denotes the respective creation operator

in $%, The spin index is ¢ = 4, . The energy change of the
system with one hole as compared to the initial state without a

hole is iw = EN~! — EN . For a lattice modulation frequency
Wshake this is determined by energy conservation,
ho = hogae — E° (k) — A, 3)

where A is the energy offset and E*(k) = —2¢ cos(ka) is the
energy of the particle in the detection system, with ¢ the
hopping amplitude of the particle in S%'. As explained in
Sec. II B, a subsequent momentum-space mapping technique
of the single particle in S9! allows one to determine the mo-
mentum k of the transferred atom. Thus both full momentum
and energy resolution are achieved.

By measuring the final position of the transferred atom and
repeating the same measurement for various lattice modulation
times, the excitation rate I"(k,w) can be determined. This rate
quantifies the probability for creating a hole with momentum k
and energy fiw in S, normalized by the modulation time. Up to
constant prefactors, it is identical to the hole spectral function,

2 2
I'k,w)= 7|8ty| Alk,w), 4)

as obtained by Fermi’s golden rule.
The spectral function of the hole A(k,w) is defined as

Ak, w) = Zi(, YN et

nm o

(W~ oo v I

xb‘(ha)—E,],\,]_l—i-E,],V), &)

with |V}, EN denoting the eigenstates and energies of the
system S with N particles. Furthermore, 8 = 1/kgT is the
inverse temperature and Zg =y, e~ ? EY denotes the partition
function before the perturbation Eq. (1) is switched on.

For small system sizes it is important to choose a sufficiently
small excitation amplitude §t,/¢,, such that at most a single
particle is transferred, in order to avoid multiple excitations
as well as final state interactions. The latter can also be
avoided by implementing a spin-changing Raman transfer to
a noninteracting spin state instead of a lattice modulation. For
large systems, we expect multiple excitations to not alter the
spectral function as long as the average fraction of excited
particles remains sufficiently small.

In addition, a sufficiently long modulation time is required
in the experiment to achieve the required resolution of the
spectral function. For the commonly used fermionic atomic
species °Li and “°K and typical lattice parameters, this results
in modulation times >50 ms, which have already been used in
previous experiments [39].

B. Momentum resolution

A crucial step for measuring the spectral function is the
momentum detection in the probe system S%. This can be
achieved by combining the capabilities of a quantum gas
microscope with a digitial micromirror device (DMD), which
gives control over the optical potential of the atoms on a site-
resolved level. This precise control has already been demon-
strated with bosonic and fermionic atoms with single-site res-
olution [13,40]. By illuminating the DMD with blue-detuned
light, a boxlike potential with hard walls at the two ends of the
1D systems can be created. This limits the size of both systems
S and §%! to L sites. By adding a parabolic potential, any har-
monic confinement in the 1D system caused by the underlying
Gaussian beam shape of the lattice beams can additionally be
canceled over the region of interest. The box geometry ensures
that the absolute value of the momentum |k| of the transferred
particle remains unchanged after the action of the perturbation
ﬂpen(r), while still confining the particle within gdet.

The perturbation is followed by a band-mapping step, which
converts momentum space into position space. Subsequent
site-resolved imaging then allows one to reconstruct the par-
ticle’s momentum. We now discuss three possibilities how
such a mapping procedure can be implemented and give an
estimate for the achievable momentum resolution in typical
experimental setups. The momentum resolution « is quantified
by the inverse number N; of different momentum states in the
lowest band with |k| < 7r/a that are detectable,

1. Wannier-Stark mapping

The first method for mapping momentum space into
position space is to smoothly introduce a potential gradient
along the x direction, which causes an energy shift of Eg.q
per lattice site. Such a potential gradient can be implemented
for example by applying a magnetic field gradient exploiting
the atomic Zeeman shift or by using the DMD. In the limit
of a vanishing gradient Eg.q < t, the single-particle energy
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FIG. 2. Measuring the momentum of the excitation. The momen-
tum of the hole-excitation in S is measured from the momentum of the
excited particle in $9, which has a finite size of L sites determined by
the energy offset E,y at the edges. E,y is chosen to be larger than all
relevant energy scales in S. The three methods discussed in the main
text are illustrated. The exemplary diagram shown in the first column
illustrates that the eigenenergies in S9! are smoothly connected when
introducing a potential gradient Eg,q (here L = 10). For Egq > 1,
the eigenstates are localized on individual lattice sites. For the first
method, we keep E,.; unchanged, whereas we set Ey,; = 0 for the
other two methods before the band mapping.

eigenstates in S% are quasimomentum states E*(k,) with
discrete momenta k, = nm/L owing to the finite size of
the box. For very large gradients Eg.q > t, the eigenstates
are Wannier-Stark states localized on single lattice sites and
separated in energy by Egrg. As shown in the left column
of Fig. 2, these eigenstates are smoothly connected for an
increasing potential gradient Egp,g.

The momentum resolution of this method is determined
by the initial number of lattice sites in S9! and is given by
1/L. Adiabatic mapping requires the gradient ramp time to
be much slower than the smallest energy splitting 6 E*, which
in this case is given by the energy spacing between adjacent
quasi-momentum states at Egr,g = 0. The finite lifetime of
atomic quantum gases sets an upper limit for the gradient
ramp time and thus a lower limit to §E*. This limits the
maximum box size and hence the momentum resolution of
this method. Experimentally, ramp timescales of hundreds of
tunneling times are routinely used in lattice loading protocols,
corresponding to an energy of about 0.017 [8]. Assuming
a tenfold slower gradient ramp time to ensure adiabaticity
(8E* = 0.1t), we find L = 20. This demonstrates that already
this simple scheme gives a very good momentum resolution

of about x = 1/20. Furthermore, the ramp velocity can be
increased at later times in the protocol, since the energy
spacings become larger with growing Egg,qg, thus enhancing
the momentum resolution.

2. Time-of-flight mapping

An alternative method of determining the momentum is to
perform a time-of-flight expansion along the x direction in
S9et after exciting the single particle. This can be done by
suddenly turning off the DMD light, which creates the box
potential and applying a band mapping of the lattice in the
x direction, see Eq. (A1l). This maps quasimomentum states
into momentum states [41] of S%!. Ballistic expansion of the
single particle along the x direction for a duration of tr and
subsequent detection of the displaced atomic position xo using
the quantum gas microscope then allows one to determine
the atomic momentum via k = nmkfxtof /(2h1yt), where m
is the atomic mass, % is the Planck constant and x,,; and k are
normalized to the lattice spacing.

This procedure requires a sufficiently long time-of-flight
expansion such that the initial system size is negligible, i.e.,
2hTior/(mA2) > L. During the detection procedure the lattice
depths along the y direction remain unchanged to ensure that
the particle remains trapped inside the 1D tube. The largest
achievable value of 7, is determined by the largest spatial
separation L under the microscope where site-resolved
imaging can still be reliably performed. As the particles are
initially located in a box of L sites, there are also L momentum
states. After free expansion to a size of L, a particle initially
in a momentum state will then be detected within a spatial
region that approaches Ly/L sites for long time-of-flight
times. Corrections due to a finite time-of-flight are therefore
negligible if this size exceeds the initial system size L. From
this we obtain an upper bound for the initial system size of
L = /L. In addition, clean mapping requires a flat system
along the x direction after the band mapping. The harmonic
confinement along that direction caused by the y-lattice beams
can be canceled by a blue detuned anticonfinement beam
created by a DMD or Gaussian beam with a suitable beam
waist.

In bosonic quantum gas microscopy, a related variant of
the proposed technique has already been implemented, where
atoms in a small system of a few sites were expanded in 1D
tubes to a width of about L = 100 sites and successfully
detected with single-site resolution [42]. For these parameters
we estimate a momentum resolution of k & 1/10 for our
scheme.

3. T /4 mapping

A third technique for mapping momentum-space into real
space that does not rely on a long expansion distance is based
on a quarter period rotation in phase-space in the presence of a
harmonic trap [43]. After suddenly introducing an underlying
harmonic confinement with period T into the probe system
59t the real-space distribution after a time evolution of 7' /4
will precisely correspond to the initial momentum distribution
of the transferred particle (and vice versa).

To achieve this, we propose to first suddenly turn off the
DMD light for the box potential and apply a band mapping of
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the V, lattice, as before. Then a strong harmonic confinement
can be introduced by rapidly increasing the lattice depth
along the y direction. This leads to an increased harmonic
confinement along the x direction owing to the Gaussian
beam shape of the laser beam. Alternatively, a DMD with
red-detuned light could be used. After letting the single particle
in $%t evolve for a quarter period, its position can be measured
with the quantum gas microscope. The advantage of this
method compared to the previous one is that it does not require
imaging over large distances for good momentum resolution.
By adjusting the frequency w of the strong harmonic trap,
the largest displacement of the single particle relative to the
center of the box can be controlled. It can be chosen to be
comparable to the initial system size L. Assuming a maximum
imaging width of 100 sites (as before), this method would allow
a momentum resolution of about ¥ = 1/100.

Current typical sizes of fermionic lattice systems at low
temperatures with single-site resolution are on the order of
ten sites [12,13]. The highest desirable momentum resolution
is therefore k = 1/10, which would be provided by all three
proposed methods. In the future, when larger system sizes
become available experimentally, the Wannier-Stark mapping
and the quarter-period rotation scheme promise the highest
momentum resolution.

III. THE MODELS

In this section, we introduce the two models on which
our theoretical calculations are performed. Both Hamiltonians
are closely related to the #-J model. Note, however, that our
scheme for measuring the spectral function is not specific to
these models.

A. The ¢-J* model

The 1D Fermi-Hubbard model is described by the Hamil-
tonian

HFH——IZ taCIU+UZﬁj~Tﬁja¢' 7)

J

1

Here, ¢; , creates a fermion with spin o on site j and 71, =

cj Cj,o denotes the density operator of fermions with spin o.
The local Hubbard interaction is given by U and fermions are
hopping with rate ¢ between neighboring sites (i, j).

In the large-U limit and below half-filling the Fermi-
Hubbard Hamiltonian (7) can be mapped to the ¢-J* model.
Up to order O(t%>/U) the exact representation is

Aj+1ﬁj>
4

Htfl* = —t E C,UCJ ot+J E < j+1 -
i#r
J oA A At R
- g Ci,”Cr O'nj - Ci,gaa,a’cr,a’
o, T, v’

(i.j.r)o

cjac,)}? ®)

see, e.g., Ref. [44]. Here, P denotes the projection operator
on the subspace without double occupancy, and (i, j,r) is a

sequence of neighboring sites. The operator é];ﬁ creates a

fermion with spin ¢ on site j and i, = é}aé .o denotes
the density operator of fermions with spin o. The spin op-
erators are defined by §; = %Z(m, 6;”00,[,/6}-,(,/, where o
denotes a vector of Pauli matrices. The first term in Eq. (8)
describes tunneling of holes with amplitude ¢. The second
term corresponds to spin-exchange interactions of Heisenberg
type, with anti-ferromagnetic coupling constant J = 4t2/U.
For a single hole, the term 71;,7; leads to a constant shift
in energy, which we will not include in the analysis in the
following sections. Together these first two terms define the
t-J model. It is extended to the ¢-J* model by including the
last term, which describes next-nearest-neighbor tunneling of
holes correlated with spin-exchange interactions.

We discuss in more detail in Appendix A how the measure-
ment scheme for the spectral function can be implemented for
the 7-J* model using ultracold fermions in optical lattices.

B. The ¢-XXZ model
The t-XXZ model is described by the Hamiltonian

—t Z C“;C],T-l-.] ZSjJrl J

HZ—XXZ =

Z(SJHS +Hc) |P )

with the same terminology as introduced above. Hamiltonians
closely related to Eq. (9) can be realized in a quantum gas mi-
croscope using polar molecules [34], Rydberg dressing [32,33]
or by spin-dependent interactions [35]. In this case, there
is no next-nearest-neighbor hole hopping term. Furthermore,
anisotropic spin coupling constants can also be realized with
spin-dependent lattices [45].

IV. SPECTRA OF HOLES IN THE 1D
ANTIFERROMAGNETIC SPIN CHAINS

In the following, we present numerical results for the
spectral function of a single hole in a one-dimensional, antifer-
romagnetic spin chain, see Fig. 3. Similar results for periodic
boundary conditions and at zero temperatures have been
obtained, e.g., in Refs. [36,46—48]. Here we generalize those
studies to systems with open boundary conditions, finite tem-
peratures and spin imbalance. Several ARPES measurements
have been performed in quasi-one-dimensional materials, see,
e.g., Refs. [48-50], and direct signatures of independent spinon
and holon branches have been found at low energies [51].

The spectral function as defined in Eq. (5) is related to the
Green’s function of the hole via A(k,w) = —(1/7)ImG (k,w)
and can be calculated using standard Lanczos techniques. The
8 peaks obtained by this means are slightly broadened to end
up with a smoother spectral function.

A. Spin-charge separation at arbitrary energies

In this subsection, we consider the #-J* model, see Eq. (8).
Remarkably, a single hole moving with hopping amplitude ¢
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FIG. 3. Temperature dependence of the spectral function. We consider the 7-J* model with periodic boundary conditions and L = 16 sites
for t = 8J at temperatures (a) 7' = 0.4/, (b) 0.75J, and (c) 5J. In (a) and (b), a comparison with peak positions expected from the spectral
building principle due to holon and spinon dispersions, Eq. (12), is provided (gray dots). Additionally, in (a) open blue circles denote peaks
expected from the spectral building principal due to low-energy excitations in the spin chain relevant at finite temperatures, see text.

in an antiferromagnetic spin chain with coupling J < ¢ can
be approximated by an almost free hole that is only weakly
coupled to the spin chain. This constitutes a microscopic
manifestation of spin-charge separation in 1D systems.

In order to understand the main features in the spectral
function shown in Fig. 3, it is important to distinguish be-
tween the holon and the spinon. The holon is the charge
excitation, whereas the spinon is the spin 1/2 excitation
associated with the creation of a hole. As a consequence
of spin-charge separation in 1D, the holon propagates on
a timescale set by the hopping amplitude ¢ and is largely
decoupled from the dynamics of the spinon, which moves on
a timescale set by the exchange energy J. We can thus apply
the semi-phenomenological spectral building principle, see,
Refs. [46,47] and Fig. 4, where the spinon and the holon are
treated as independent particles, to determine where spectral
weight is expected. A microscopic explanation for the ¢-J*
model based on a slave-fermion mean-field theory is provided
in Sec. V. Corrections to this picture due to the coupling of the
holon to collective spin excitations will be derived in Sec. VB.

The dispersion relation of a free spinon,

clk) = JZcostk)l. 3 <k <T.  (10)
is a result of exact Bethe ansatz calculations for the isotropic
spin chain [37]. The holon dispersion

€p(ky) = —2t cos(ky) — %J cos(2ky,) (11)

corresponds to the one of a free particle and can be derived
from the 7-J* Hamiltonian itself. The second term stems from
the next nearest neighbor hopping of the hole, see Eq. (8).

As a consequence of conservation of energy €, the free
spinon and holon dispersions can be combined to

(k) = en(kn) + €s(ky)
= —2tcos(k,) — 4—11J cos(2ky) + J%| cos(ky)]. (12)

By momentum conservation it holds that k = k; + kj,. Thus
we can set k; = k — kj, in Eq. (12) and for a given k regard the

holon momentum kj, as a free parameter. The energy €(k) =
EN=1— EN in Eq. (12) enters the § function in the Lehmann
representation of A(k,w), Eq. (5), and allows one to predict the
positions of peaks in the spectral function.

In an infinite system, Eq. (12) can be used to determine
the region in k-w space where spectral weight exists at zero
temperature. As shown in Fig. 4, the boundaries of this
region are determined by the spinon and holon dispersions,
respectively. In a finite system with L sites, the quantization of
the holon momentum leads to L distinct lines, as can be seen

energy €(k)

—2tt \
0~€h(0) + es(k)

/2 ™
momentum k[1/a]

FIG. 4. Spectral building principle. The combined dispersion
relation of spinon and holon, Eq. (12), can be constructed by fixing
the spinon or holon momentum, k,; or kj, and varying the other
momentum, respectively. Because the spinon dispersion is only
defined from k;, = —m /2, ..., /2 for zero temperature the spectrum
is strongly asymmetric around k = /2 at low and high energies (blue
and red boundaries). In this case, spectral weight can only be found in
the shaded areas. The dashed blue and red lines indicate the lower and
upper boundaries obtained when the spinon dispersion is extended to
ky = —m ... assuming €,(k;) = cos(k,)Jm /2. This case is relevant
for high temperatures.
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FIG. 5. Zero-temperature spectra for a system with 20 sites,
periodic boundary conditions, described by the r-XXZ Hamiltonian,
Eq (9), with hopping t = 8J, and (a) J, = J, and (b) 4J,. Gray
dots correspond to spinon and holon dispersion, see Eq. (12) and
Eq. (13), respectively, with the spinon momentum restricted to half
the Brillouin zone, —7/2 < k; < 7/2. Red dots in (b) denote spinon
momenta in the remaining half of the Brillouin zone, where no spectral
weight appears in the isotropic case J, = J,.

in Figs. 1(b) and 5(a). This indicates that the spectrum can
be well described by noninteracting spinons and holons: each
quantized holon momentum k;, can be associated with a branch
in the spectrum obtained by changing the spinon momentum
ks and keeping k;, fixed.

In Fig. 3, we investigate the influence of finite temperatures
on the spectral function A(k,w) of a single hole for the ¢-J*
model at half-filling. We only plot the spectral function for
momenta k with 0 < k < 7, since the spectrum is symmetric
around k£ = 0. Gray dots denote the combined dispersion
relations of holon and spinon, Eq. (12), where the spectral
building principle predicts peaks in the spectral function. We
have included shifts in the spinon and holon momentum due to
their different quantization conditions and a twisted periodic
boundary effect, which are explained in detail in Appendix B.

At sufficiently low temperatures, the peaks expected from
the spectral building principle coincide with the peaks of
the spectral function calculated with the help of Lanczos
techniques, Fig. 3(a). This indicates that spinon and holon can
indeed be treated separately. Moreover, spin charge separation
is not restricted to the low-frequency part, but can be observed
across the whole spectrum. Thermal fluctuations in energy and
momentum lead to a broadening of the peaks predicted by the
spectral building principle.

In the case of periodic boundary conditions, additional
peaks, marked by blue circles in Fig. 3(a), appear between
the lines found at zero temperature. This can be understood
by considering the effect of thermal excitations in the spin

chain. The lowest-energy states, which are most relevant at
small temperatures, carry momentum close to zero and close
to . As explained in detail in Appendix B, an excitation in the
spin chain with momentum 7 introduces a twisted periodic
boundary effect for the holon and thereby gives rise to the
additional lines observed in the spectrum.

For increasing temperatures 7" 2 J, Figs. 3(b) and 3(c),
the spectral building principle starts to break down. While
the shape of the lower edge still corresponds to the spinon
dispersion [52], more and more low-energy excitations start
to appear for w/2 < k < m. Furthermore, as the temperature
approaches and exceeds J, the distinct lines are replaced by
a continuum, demonstrating that there is no longer a single
well-defined spinon. The comparison of Figs. 3(b) and 3(c)
shows a shift of spectral weight from k = /2 at the upper
and lower boundary of the spectrum to k =0 and k = 7,
respectively. At high temperatures T > J, the distribution
of spectral weight is essentially determined by the density of
states.

B. Effect of anisotropy on the spectral function

We now consider the #-XXZ model as introduced in Eq. (9),
which is characterized by an anisotropy in the coupling con-
stants of the spins. In Fig. 5, the spectral function for this model
isshown for (a) J, = J, and (b)4J, . The effects of spin-charge
separation discussed for the isotropic Heisenberg spin chain
in Sec. IV A appear here as well and the spectral building
principle can be applied with a modified spinon dispersion
relation. First-order perturbation theory in J, /J, leads to the
spinon dispersion esl,s(kx) = J, cos(2ks) + J1. + J;, such that
for J, > J,,

€(k) = =2t cos(ky) + JLcos Rtk — kp))+ JL + J,. (13)

In Fig. 5, gray dots correspond to €(k) from Eq. (12) for J, =
J;andEq. (13) for J, > J,,respectively, with |k — k| < 7/2.
In Fig. 5(b), red dots denote e(k) for values |k — k| > /2
where no spectral weight appears in the isotropic case. In
comparison to Fig. 5(a), where spectral weight appears only for
spinon momenta |k — k;,| < /2 in one half of the Brillouin
zone, the spectrum for an anisotropic spin chain features an
almost symmetrical distribution of spectral weight around
|k —kp| = m/2.

In principle, there can be several reasons why in the isotropic
case no spectral weight is observed at low energies for k >
7 /2. The most obvious one is, that there are no eigenstates for
the corresponding energies and momenta. As we demonstrate
in Fig. 6, this is not the case here: We calculate the ground-state
energy of the spin chain, doped with a single hole, as a function
of the total momentum k with exact diagonalization. For 0 <
|k| < /2, the exact ground-state energy closely follows the
spinon dispersion for arbitrary J,/J,. Both in the isotropic
and anisotropic case, see Figs. 6(a) and 6(b), there are low-
energy eigenstates for all k and to a good approximation their
energies are symmetric around k = 7 /2. We conclude that for
the isotropic spin chain there exist low-energy eigenstates for
k > 1 /2, but their spectral weight is strongly suppressed.

Another possible reason for the strong suppression of the
spectral weight could be a selection rule [36], caused, for
example, by the SU(2) symmetry of the system at the isotropic
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FIG. 6. The ground-state energy as a function of the total momen-
tum k is shown for a single hole in a spin chain (full symbols). We used
the same parameters as in Figs. 5(a) and 5(b), respectively. The dashed
line corresponds to the free spinon dispersion (a) in the Heisenberg
model with J, = J, and (b) in the XXZ model with J, =4J,.

point J, = J,. Because the ground state of the Heisenberg
model is a singlet, only states with total spin S = 1/2 and one
hole can have finite weight in the spectrum at zero temperature.
It has been found by exact numerical simulations in Ref. [36]
that this selection rule indeed applies for the ground state of
the spin chain with one hole at momenta |k| > 7 /2, which has
S = 3/2. However, at only slightly higher energies of the order
of J, we have numerically found eigenstates with S = 1/2, for
which the selection rule does not apply. In fact, these states give
rise to a nonzero spectral weight at low energies for |k| > /2.
Since it is suppressed by about three orders of magnitude
compared to the spectral weight observed at the same energies
for |k| < m /2, it is not noticeable in Fig. 5(a). In contrast to
what has been suggested in Ref. [36], a selection rule seems
not to be sufficient to explain the asymmetry of the spectral
weight observed for a hole created in a Heisenberg chain.
Above, we have ruled out the simplest two explanations
why the spectral weight at low energies is almost completely
restricted to one half of the Brillouin zone in the isotropic case,
J; = J.. This effect hints at a more fundamental structure
in the ground-state wave function of the one-dimensional
Heisenberg antiferromagnet. In contrast to the Ising case,
the Heisenberg spin chain has singlet character and can be
understood as a resonating valence-bond state [44]. So, it
is interesting to ask whether the valence-bond character of
the ground-state wave function is sufficient to explain the
sharp drop of the spectral weight when the spinon momentum
crosses k = /2. We have checked that this is not the case,
by calculating the spectral function for a hole created inside
a spin chain with Majumdar-Gosh couplings [53,54], see
Appendix C. The ground state of this model is a valence bond
solid. While the spectral weight is asymmetric around k = 7 /2

in this case, it smoothly drops as the spinon momentum 7 /2
is traversed.

We argue instead that the sharp decrease of the spectral
weight for a single hole in the Heisenberg chain can be
understood as a direct signature for the presence of a Fermi sea
of spinons, see Fig. 1(c). This is characteristic for a quantum
spin liquid [55]. In Ref. [48], it has been suggested that the
Fermi sea is formed by Jordan-Wigner fermions, which can
be introduced by fermionizing the spins. However, at the
isotropic point J, = J; these Jordan-Wigner fermions are
strongly interacting, and the noninteracting Fermi sea is not a
good approximation. Instead, slave fermions can be introduced
as in the usual mean-field description of quantum spin liquids
[55]. They are weakly interacting at the isotropic point and
form two half-filled spinon Fermi seas. These arguments are
supported by slave particle mean-field calculations. In Sec. V A
of this paper, we present a mean-field theory for a single hole
and arbitrary values of the anisotropy J, /J,. A related work on
slave-particle mean-field descriptions of one-dimensional spin
chains has been presented in Ref. [56]. In our paper, we utilize
the slave-fermion theory to analyze the spectral function.

C. Spectral function of spin-imbalanced systems

In the slave-particle mean-field picture, the slave fermions
form two spinon Fermi seas. Therefore we expect to see two
different Fermi momenta when the system is spin-imbalanced.
Our scheme to measure the spectral function in experiments
with cold atoms is particularly well suited to access the spectral
function of a single hole in a system with finite magnetization.
Moreover, by detecting the spin of the removed particle [9], the
spin-resolved version of the spectral function can be measured.

In Fig. 7(a), the spectral function of a single hole in a spin
imbalanced system is shown for a removed particle with spin
up and down, respectively. As in Fig. 3, gray dots denote the po-
sitions of expected peaks due to holon and spinon dispersions,
Eq. (12) for —k}/* < k < kMY with k¥ = 7N, /L. In the
slave-fermion mean-field theory, the spinons form two Fermi
seas, which are filled corresponding to the spin imbalance in
the system. Accordingly, in Fig. 7(a), the sharp decrease in
spectral weight occurs at different momenta for the removed
particle belonging to the majority or minority species.

V. THEORETICAL ANALYSIS

In the previous section, we have explained the numerical
results for the single-hole spectral function using the semiphe-
nomenological spectral building principle. We now present a
theoretical formalism to obtain the results in Egs. (10) and
(11) directly from the microscopic Hamiltonian. We describe
a single hole in an antiferromagnetic spin chain. In order to
describe the spin chain, we use a slave-fermion mean-field
theory [55-57], which contains a nontrivial order parameter,
that is finite even in one dimension. For simplicity, we consider
situations with zero total magnetization.

Our starting point is the -XXZ model (9) with zero or one
hole. We introduce slave boson operators /2; to describe the
holons, and constrained fermions fj,a describing the remaining
spins [44]. The index o = 1,| corresponds to the two spin
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FIG. 7. Spectral function in a spin-imbalanced system with 20
sites and Ny =4, N, = 16 at zero temperature and with periodic
boundary conditions. (a) shows the minority (top) and majority
(bottom) spectrum, resolved after the spin of the removed particle.
(b) depicts the spinon Fermi seas for the two different species, which
are filled correspondingly.

states and it holds

1 A A
=52 fluousis. (14)
a.f
The slave particles satisfy the condition
Y flufia+hlh;=1 (15)

and the original fermionic operators can be expressed as
Cia=h fa. (16)

Using the new operators, one can identify a spin state
lo1, ...,or) witho; = 1, as

01w s0r) = fi oo fi,10) (17)

and create all states with holes by applying I%j fj,a from

Eq. (16). Note that the ordering of f operators in Eq. (17)
is important due to their fermionic anticommutation relations.

We can substantially simplify the formalism by introducing
a new basis where the holons occupy bonds between the
lattice sites j of the so-called squeezed space [12,58,59],
which is obtained by removing all holes from the spin chain.
By 1nclud1ng only operators fj « On sites ], we obtain new

operators f,a = fJ o With j = j + Z,< h h;. The main ad-
vantage of this mapping is the form of the hopping term in

Eq. (9): using the original operators f‘\j,a, we obtain a difficult
quartic expression —7 ;v >, fﬂ;fli flTG fi.o- In contrast, in
terms of the operators fj as quadratic term involving only

holons is obtained, —1 3}, ; h h,, see Appendix D. This
leaves the spin order in squeezed space unchanged. Moreover,
this term yields the dominant part of the free holon dispersion
relation Eq. (11), —2¢ cos(ky,). Corrections due to next-nearest-
neighbor tunneling, which is included in the 7-J* model, are
derived in Appendix D.

By creating a hole and removing a spin, the number of

f fermions changes according to Eq. (16). The total spin is

thus changed by 1/2 and the operators f can be identified
with fermionic spinons [55]. In squeezed space, the last two
terms of Eq. (9) do not change and correspond to a spin chain
without doping. In Sec. V A, we derive the shape of the spinon
dispersion Eq. (10) by considering the undoped spin chain.

In addition, there exist interactions between the holon and
the surrounding spins in squeezed space. As discussed in detail
in Appendix D, the presence of a holon on the bond between
sites j and j 4 1 effectively switches off the coupling between
the corresponding spins in the #-XXZ model (9). In the t-J*
model (8), it also affects next-nearest-neighbor couplings. We
discuss in Sec. VB how these interactions renormalize the
holon properties.

A. Slave-fermion mean-field theory of undoped spin chains

In this section, we present a slave-fermion mean-field
theory for the undoped XXZ spin chain which—up to a
prefactor—allows us to derive the exact spinon dispersion
relation known from Bethe ansatz. Furthermore, it enables an
intuitive understanding of the asymmetry in the distribution of
spectral weight around k = /2 found in the case of isotropic
Heisenberg couplings, see Sec. [V B.

We consider the slave fermion operators fj, discussed
above by introducing the notion of squeezed space. The
Hamiltonian of the spin chain, Eq. (9) at half-filling, can be
expressed in terms of the spinon operators [55],

A

1 2y F-3 A -] A -]
Hxxz = — 2 Z ﬁ,[aﬁﬂ,a[hﬁll,aﬁ,a + Jzﬁll,aﬁ,a]

+ Zf,lm -= Z flafiaflrsfins
zotﬁ
(18)

where 1 = | and | = 4. This expresswn is exact within the

subspace defined by the constraint ), fl N f, « = 1. In the
mean-field approximation applied below, this constraint is
replaced by its ground-state expectation value

Yl fia) =1. (19)
1. Mean-field description

In the following, we consider the case of zero total mag-
netization in the thermodynamic limit. At the isotropic point,
J. = J1, Eq. (18) becomes the SU(2) invariant Helsenberg

Hamiltonian #y. In this case we replace the operator f fitla
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by its ground-state expectation value

Xija = (fi]rafi-ﬁ—l,a)-

When x;, = x is independent of the spin index «, the
resulting mean-field Hamiltonian is also SU(2) invariant. By
diagonalizing the latter, we obtain a self-consistency equation
for x, which will be solved numerically below.

To obtain a mean-field description away from the SU(2)
invariant Heisenberg point, i.e., when J; # J,, we can write
the original Hamiltonian as a sum of the Heisenberg term Hy
plus additional Ising couplings,

(20)

N N 1 A
HAxxz = Hu + (J, — mzlza,-aiﬂ, 1)

=AU,

where Si = 23‘f is the local magnetization,
5= (1l fiaw D' =1 (=D'=-1. (2
o

We also allow for a finite expectation value of the magneti-
zation in the mean-field description. Assuming that the discrete
symmetry 7 8%, which flips the spins and translates the system
by one lattice site, is unbroken, we obtain

(8i) = (=1)s. (23)
This leads to a second self-consistency equation for the
staggered magnetization 8.

The effective mean-field Hamiltonian is obtained from
Eq. (21) by introducing the order parameters § and x and
keeping terms up to quadratic order. It has a two-site unit cell
because the magnetization is opposite for different sublattices.
This corresponds to a tight-binding Hamiltonian with nearest-
neighbor tunneling of strength J; x and on-site potentials
(—=1)"(=1)*8/2, as illustrated in Fig. 8. For spinons of type
« it can be written as

o= [l floanio(20). e

3 fk,B,a

5/2
—5/2

FIG. 8. Slave-fermion description of the anisotropic spin chain.
In the anisotropic XXZ spin chain, the sublattice symmetry can
be spontaneously broken when J, > J,. In this case, the effective
hopping Hamiltonian of spinons corresponds to a tight-binding model
with alternating on-site potentials. The mean-field solutions for
different spins are related by a translation of one lattice site.

where we defined the Fourier transformed spinon operators fi
by the relations

2 [ L 7 N

f2n,ot = E/ dkeizlknfk,A,a»
S [L [
f2n+1,a - E[

T
2

(ST BT

dke 2kne=ik £ o (25)

For o = 1 spinons, it holds

—52AJ.

—2x J1 cos(ky)
hé(k) o <—2X J cos(ky) )’ (26)

$2AJ,

and a similar expression is obtained for « = | by changing
8 — —4. In addition, there is a constant energy contribution of
J1(1/4 4 2x) + 1/aA J,8? per particle, which is not included in
Eq. (24).

2. Self-consistency equation

To derive the coupled self-consistency equations for § and
X, we start by diagonalizing the mean-field Hamiltonian. A
new set of spinon operators I:"k,,i,a, with band index u = =+,
can be defined, for which

. z AR
o= u / dkerFf, o Frjia 27
u=t1 7773
The mean-field dispersion relation is given by
e =V 2xJcos(k)? + (AJ8/2), (28)

which gives rise to a band-gap to collective excitations of
Amr = |AJ8]. (29)

Thus a nonvanishing staggered magnetization AJ,§ # 0 opens
a gap in the spectrum. Because of the mean-field constraint in
Eq. (23), we obtain (f| f,) = 1/2, i.e., we describe spinons
at half-filling. When AJZS # 0, the ground state is a band
insulator, whereas AJ,§ = 0 corresponds to a gapless spinon
Fermi sea.

Using the new spinon operators £} u,a» We can calculate the
order parameters § and x self-consistently,

1 (2 J
X = —/ dk cos?(k) XL, (30)
b/ -z €k
1 (7 AJS
s=— [ ak2X2, 31)
2w —z €

3. Mean-field phase diagram and singular phase transition

The numerical solutions for § and x to Egs. (30) and (31)
are shown in Fig. 9. For 0 < J, < J,, the only solution is the
symmetric one with § = 0 and x = 1/ and energy Eyp(§ =
0,x = 1/m). This state is paramagnetic and corresponds to a
quantum spin liquid (QSL). At the isotropic Heisenberg point
where J, = J; = J it predicts the following dispersion of
spinon excitations:

2
€ = J—|cosk|. (32)
g
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FIG. 9. Mean-field theory for the spin chain. Numerical solution
of the self-consistency equations for the order parameters x and 8,
Egs. (30) and (31). For 0 < J, < J,, the ground state is a gapless
quantum spin liquid (QSL). For J, 2 J,, the two order parameters §

and x are both nonvanishing and the ground state is a spin-density
wave (SDW).

The analytical form of the spinon dispersion ~|cos(k)| is
correctly described by the mean-field theory. Compared to
the exact result from Bethe ansatz calculations, Eq. (10), this
expression is too small by a factor of 7% /4 A 2.47. Deviations
from the exact solution are a result of the mean-field approxi-
mation, i.e., our neglecting of gauge fluctuations ensuring the
constraint of single occupancy [55].

For J, > J,, two additional solutions 4§ % 0 with an
energy below Eyp(8§ = 0,x = 1/m) appear (only the solution
with § > 0 is shown in Fig. 9). In this regime, the translational
symmetry of the original Hamiltonian Eq. (18) is sponta-
neously broken. Because there exists a nonzero staggered
magnetization § # 0, this phase can be identified with a spin
density wave (SDW). At large couplings, J, > 2J,, we find
that the mean-field order parameter x vanishes and the system
is fully ordered with § = %1 as expected in the classical Néel
state. This second transition is an artifact of the mean-field
theory: from exact Bethe ansatz calculations it is known that
the staggered magnetization approaches the classical value
6 = =1 monotonically until it is asymptotically reached for
J./J1. — oo. Here, we are more interested in the behavior of
the transition at J, = J,.

As can be seen from Fig. 9, the order parameter § only
takes a significant value for J, ~ 1.2/, . By solving the elliptic
integral in Eq. (31) perturbatively in the limit § < 1, we find
that the staggered magnetization depends nonanalytically on
J, — Jy, with all derivatives d"3/d AJ!" = 0 vanishing at the
Heisenberg point:

4 J o
R 33)
T Jz —-J1
From Eq. (29), it follows that the excitation gap has the

asymptotic form

4 J
Amp =~ —J| exp (—2 = ) (34)
T

J,—J1

The excitation gap Ay close to the transition point from
QSL to SDW can be compared to exact results Ag obtained
from Bethe ansatz methods for the XXZ chain. From the
exact expressions derived in Ref. [38], we obtain the following

asymptotic behavior:

2 1/2
Ap =~ 47 J, exp —”—< L ) .39
2\/§ Jz - JJ_

The nonanalyticity is correctly predicted by the mean-field
theory, and only the power-law exponent appearing in the
exponential function is not captured correctly.

We conclude that the slave-fermion mean-field theory
provides a rather accurate description of the one-dimensional
spin chain near the critical Heisenberg point. This is possible
because a nontrivial order parameter (x) is introduced that
does not vanish even in one dimension. The theory provides
quantitatively reasonable results and describes correctly the
qualitative behavior at the singular phase transition from
QSL to the conventional symmetry broken SDW phase. We
now show that it moreover offers a simple explanation of
the observed asymmetric spectral weight in the single-hole
spectral function of the Heisenberg spin chain.

4. Spectral weight of spinon excitations

We proceed by calculating the matrix elements that de-
termine the weight in the single-hole spectra based on the
slave-fermion mean-field theory. The relevant matrix elements
are of the form

M= Wl fr o lWo) P =7 < ks <, (36)

which describe the creation of a hole in the ground state of the
spinon system. Here,

/2
o) = [] []F .10 (37)

k=—7/2 o

is the ground state of the undoped spin chain.
The full spectral function A(k,w) is a convolution of the
spinon part and the holon part,

g
Alk,w) = Z /dwhdeS(w — ws — wy)
kh ky=—m

X Ok ky+k, As (kg ,05) Ap (k). (38)

Neglecting the coupling of the holon to collective excitations of
the spin chain, see Sec. V B, the holon spectrum is determined
by Aj(kn,wpn) = 8(wy, — €,(ky)). The spinon part is given by
Agkg,wg) = Zn 8wy — wn))\”g, where the eigenstate |, ) has
energy w,. ’

For every kj, there exists one unique state |y,,) with A} # 0.
The corresponding A, := 2} canbe calculated by mapping the

original spinon operators f;, , onto the transformed operators
Fi, +.0. This leads to

cos? (%) Ik < /2,
=1 (39)
sin (75) lks| > /2,
where the mixing angle is determined by
8(J, —J
ang, = I (40)
4x J1 cos(ky)

In the isotropic Heisenberg case, J, = J, = J, the only
solution to the self-conistency equation is § = 0, leading to
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Ok, = 0 and thus

1 k| < 7/2,
[t ki< an
0 |kg| > /2.

ks

This discontinuity in A4, gives rise to the sharp drop of spectral

weight observed in Figs. 1(b), 3, and 5(a) when k; is varied

across the value 77 /2. Itis a direct signature for the spinon Fermi

sea, which in turn is a key signature of a quantum spin liquid.

In the Ising limit J; = 0, we obtain the classical Néel state
with § = £1 and x = 0. This yields 6;, = /2, i.e.,

A =13 (42)

In this case, discrete translational symmetry is broken, which
leads to a mixing of momenta k; and k; + 7 and a homoge-
neous redistribution of spectral weight across all k. There is
therefore no discontinuity in the distribution spectral weight at
the zone boundary k; = +m /2.

B. Renormalization of holon properties: The holon-polaron

In our analysis of the single-hole spectrum in Sec. IV A,
based on the spectral building principle, we neglected cou-
plings of the holon to the spin environment. We now discuss
leading order corrections to this picture, which scale as J/¢.
Experimentally, the relevant parameter regime of the ¢-J*
model is J/t < 1, therefore these corrections are generically
small.

The essence of spin-charge separation is that the spinon
and the holon are not bound to one another and can be
treated independently. Nevertheless, when the holon is moving
through the spin chain, it interacts with the surrounding spins
and becomes dressed by collective excitations with vanishing
total spin. This effect can be understood by the formation of
a polaronic quasiparticle [60], which we will refer to as the
holon-polaron from now on. Note that this situation is different
from two dimensions. In that case, there is no spin-charge
separation and a magnetic polaron carrying spin 1/2 is formed
by a hole moving in a two-dimensional Néel state [61-69].

We start from the 7-J* Hamiltonian (8), which is an exact
asymptotic representation of the Fermi-Hubbard model for
large U at half-filling. Then we use a formulation in squeezed
space [59], where the holon effectively moves between the
bonds of the lattice on which it switches off the superexchange
interaction. The collective excitations of the spin chain, which

can be understood as particle-hole pairs f'f in the spinon
Fermi sea discussed in the previous section, are then described
using the bosonization formalism [70] and assuming an infinite
system. In combination, we arrive at a conventional polaron
Hamiltonian that can be solved perturbatively for weak po-
laronic couplings J « t. Note that weak polaronic coupling
corresponds to large coupling U > ¢ in the original Fermi
Hubbard model. For details of our calculations, we refer to
Appendix E.

We calculated the leading-order corrections to the holon-
polaron properties. For the ground-state energy of the holon-
polaron, we obtain

J J?
E) =21 — 1 7(0.0343 +6.54m* +5.31|C|*). (43)

This energy is measured relative to a chain with the same
number of spins but without the holon. Here, m = (N; —
N,)/2L denotes the magnetization per length. The nonuniver-
sal constant |C|*> & 0.14 was determined by Eggert and Affleck
[71] from comparison of the spin-structure factor obtained
from bosonization and quantum Monte Carlo calculations.

The effective mass of the holon polaron is defined by
expanding its energy Ey(py) around momentum pp = 0 where
Ey is minimized,

1
Eqn(py) = Ey + 52— piy + Opy,.

44
M, 44
For the renormalized holon mass, we obtain
1
— =2t —2.77J +39.5Jm?
My,
JZ

— T(0.188 +87.2m* +432|C|H. (45)

The expressions (43) and (45) are correct up to terms of order
OWJ3/t%).

For parameters as in Fig. 5(a), i.e., t = 8J and m = 0, we
obtain corrections to the holon energy of AE) = E) + 2t =
—0.27J. The ground-state energy per bond in the spin-chain
without the hole is Eyg/L ~ —0.44J, see, e.g., Ref. [37].
Hence we expect the lower edge of the spectrum at w_ =
—2t 4+ (0.44 — 0.27)J = —15.83J. The corrections are of the
correct order of magnitude, as can be seen by comparison to the
value w_ ~ —15.80J, which has been obtained from a finite
size scaling of exact diagonalization results [72]. We expect
that the dominant source for errors are finite size effects and the
ambiguity of the ultraviolet cut-off chosen in the bosonization.
In the context of Bose polarons in one dimension, it has been
shown that the latter effect can lead to sizable corrections to
bosonization results [73]. For the renormalized mass, we obtain
2t My, = 1.22, which corresponds to a 22% mass enhancement.
This value is consistent with the exact numerical results in
Fig. 5, butitis too small for a meaningful direct comparison due
to finite-size effects and in particular the required momentum
resolution.

In principle, both the holon mass and energy renormaliza-
tion can be measured experimentally by close inspection of the
spectrum. However, as demonstrated above, the overall effect
is very weak. Using ultracold atoms, the 7-J model can also be
implemented independently of the Fermi-Hubbard model by
using polar molecules [34] or Rydberg dressing [32,33]. This
allows one, in principle, to tune the polaronic coupling J/t to
arbitrary values, smaller or larger than one. When J > ¢, we
expect a strong renormalization of the holon-polaron properties
which can be studied in the future using a formalism along the
lines of the one presented in Appendix E.

In contrast to the situation for the #-J* model, the limit
J/t — 0 is not well defined for the ¢-J model. We show in
Appendix E that one obtains infrared-divergent integrals to
lowest order for the energy and the effective mass because the
next-nearest-neighbor terms are missing.

The dressing of the holon with collective excitations can
lead to small corrections in the shape of the spectral function.
In addition to coherent delta peaks, an incoherent background
associated with collective excitations appears, as expected
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from the Luttinger liquid description. The latter can be derived
even at finite doping using a squeezed space description [74].

VI. EXTENSIONS

The scheme for measuring the spectral function of a single
hole can be generalized to implement different spectroscopic
probes using ultracold atoms. In this section, we briefly
illustrate two examples, although a detailed analysis is devoted
to future work. We show how the dynamical structure factor
S(w,k) can be measured in one-dimensional spin chains
(Sec. VIA), and discuss how the scheme can be extended to
implement the analog of double photoelectron spectroscopy
[75,76] (Sec. VIB).

A. Dynamical spin structure factor

The spectral function A(k,w) probes the properties of a
single hole interacting with the surrounding spins. To obtain
information about the spin system alone, more direct mea-
surement schemes are required where no charge excitations
are generated. The most common example is the dynamical
spin structure factor S(k,w), where a spin-flip excitation with
momentum k is created at an energy . Using a Lehmann
representation similar to Eq. (5) it can be defined by

Stk = 5 3 251
x 8(hiw — EN + EY, (46)

with | M), EM denoting the eigenstates and energies of the
system S with total magnetization M. In solids, S(k,®) can be
measured in inelastic neutron scattering experiments [77].

To directly measure the dynamical spin structure factor
S(k,w) using a quantum gas microscope, we propose to replace
the empty probe system S9! by a spin chain, which is fully
polarized along the z direction, see Fig. 10(a). Instead of the
modulated tunnel coupling f“y from Eq. (2), the system can be
coupled to the probe by superexchange interactions,

Jy = Z Si -8 gt 47)

where S,;det denotes the spin operator on site i in the probe
system. By modulating the tunneling amplitude ¢, as in the
case of the spectral function, the resulting superexchange
coupling j, is also modulated with the same frequency
Wshake- The time-dependent perturbation thus reads ﬁpert(t) =
87y sin(@ghakeT)Jy» cf. Eq. (1).

Similar to the case of the spectral function, the perturbation
creates an excitation in the probe system Sdet: here, the
excitation is a magnon carrying spin S° = —1 with momentum
—k and energy w,,(—k), where w,,(k) denotes the magnon
dispersion relation. In order to measure the momentum of the
magnon, we assume that spin up and down states have different
magnetic moments. By applying a magnetic field gradient
along the x direction before taking a spin-resolved image [9]
one can thus implement the Wannier-Stark mapping discussed
in Sec. II B for the single magnon in $%!. Similarly, a magnetic
field gradient along the y direction can be used to realize
spin-dependent energy offsets A,, analogous to the energy

spin excitation
momentum k

(b)
3 _ —_ " 2
7
Ve
2 yz 1.5
o — —~
= ~
5 z N 1
3 7 N
4 -
0 4 o 0.5
-1 0 T2 g
k[1/d] S(k,w)

FIG. 10. Direct measurement of the dynamical spin structure
factor. (a) The empty probe system is replaced by a fully polarized spin
chain and coupled to the system using superexchange interactions in
the y direction. By detecting a single magnon created in $%' and mea-
suring its momentum, the dynamical spin structure factor S(k,w) can
be measured. In (b), we calculate S(k,w) for the isotropic Heisenberg
model in a finite-size box of length L = 16 atatemperature T = 0.2J.
It shows the expected broad continuum reflecting the fractionalization
of a spin-flip excitation into a pair of spinons. The black dashed lines
correspond to the theoretically expected upper and lower boundaries
at zero temperature.

offset A considered in the case of the spectral function. Finally,
by measuring the position of the magnon after applying the
Wannier-Stark mapping, the excitation rate I'(k,w) is obtained,
which is directly related to the dynamical spin structure factor

2w o,
Lk,w) = 7'8]y| S(k,w), (48)

as obtained by Fermi’s golden rule.

In Fig. 10(b), we show an example for the dynamical spin
structure factor S(k,w), calculated at finite temperature and for
realistic system sizes accessible in current experiments. The
spin flip creates a pair of two fractionalized spinon excitations.
As a result, one can observe a broad spinon continuum, which
is considered a key indicator for a quantum spin liquid.

B. Double photoelectron spectroscopy

Further insight into the nature of excitations in the system
can be obtained by measuring their spatial correlations. An
interesting method which achieves this goal in solids is double
photoelectron spectroscopy [75,76], where a correlated pair
of two photoelectrons is emitted and detected. Similarly,
processes can be considered where two atoms are transferred
into the initially empty probe system S!. To avoid interactions
between the two emitted atoms, one could e.g. consider a
situation with two probe systems Sff’{z, one to the left and one
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to the right of the system S, and post-select on cases with one
atom per probe system.

The resulting spectrum contains pairs of individual one-
particle events as well as two-particle processes which provide
additional information about the system. The two-particle
contributions can be distinguished from one-particle effects
by using coincidence measurements. In this technique, one
post-selects events where both excitations are created simulta-
neously. In the quantum gas microscope setups discussed here,
this can be achieved by extending S in the y direction. One
can use the traveled distance from the system S in y direction
as a measure of the time that passed between the creation and
the detection of a particle.

From the coincidence measurements described
above, information about the two-hole spectral function
Ak, ko ki k) w) can be extracted, see Ref. [76]. It
contains information about the correlations between the
two created holes in the system. These correlations are
expected to be weak in a system with one-dimensional chains
with spin-charge separation, where holons form a weakly
interacting Fermi sea [37,78]. On the other hand, in systems
that are superconducting, correlations are expected to play
an important role and give rise to distinct features of Cooper
pairing in the two-hole spectrum [79]. Using ultracold atoms,
situations with attractive Hubbard interactions U < 0 have
been realized [11], which become superconducting at low
temperatures. Here the method described above could be
applied to directly access the strong two-particle correlations
present in this system.

VII. SUMMARY AND OUTLOOK

In this work, we have proposed a measurement scheme for
the single-particle excitation spectrum A(k,w) in a quantum
gas microscope. Our method can be understood as an analog of
angle-resolved photoemission spectroscopy (ARPES), which
has been key to the study of excitation spectra in many
strongly correlated materials. In our method, the weak tunnel
coupling from the system under investigation to an initially
empty detection system is modulated with frequency w. The
spectral function A(k,w) can then be obtained directly from the
tunneling rate into a single-particle eigenstate of the detection
system with momentum k and energy € (k).

We have analyzed the scheme for single-hole spectra in
one-dimensional spin chains. Effects from finite size, nonzero
temperature, and the presence of sharp edges are included
in our numerical simulations. We discussed two characteris-
tic features of the spectral function A(k,w): (i) spin-charge
separation and (ii) the distribution of the spectral weight.
(i) Spin-charge separation can be identified in the spectral
function both for isotropic and anisotropic spin couplings. It
reveals that a hole created in the system separates into a spin-
less holon and a spinon. Moreover, their different characteristic
energy scales ¢ and J, respectively, can be resolved. (ii) For the
isotropic Heisenberg model, we observed a strong suppression
of the low-energy spectral weight at momenta k > /2. The
ground state of the isotropic Heisenberg model is a quantum
spin liquid with gapless excitations [37]. We discussed a
slave-fermion mean-field description of this state, which can
be qualitatively understood as a Fermi sea of noninteracting

spinons with Fermi momentum /2 [55]. This description can
explain the sharp decrease of the spectral weight when the
spinon momentum kg crosses the corresponding spinon Fermi
momentum at 77 /2.

While related ARPES measurements of the spectral func-
tion in solids have already shown distinct spinon and holon
peaks at low energies [51], an observation with ultracold atoms
would allow to distinguish spinon and holon dispersions on
all energy scales, because phonon contributions and effects
from higher bands are absent. Moreover, the sharp decrease of
the spectral weight at 7t /2 is present at temperatures currently
achievable in experiments with ultracold fermions. Hence it
could provide the first direct signature of a Luttinger spin liquid
of cold atoms.

The sharp step in the spinon spectral weight across its Fermi
momentum is to some extent reminiscent of the Fermi arcs
observed in the pseudogap phase of quasi-2D cuprates. To
explore the relation of these two phenomena experimentally,
ultracold atoms can be used to study the dimensional crossover
between the 1D and 2D Fermi Hubbard model in the future. In
two-dimensional systems with long-range antiferromagnetic
order it is expected that spinon and holon are bound together in
a confined phase [61-66], similar to mesons, which are bound
states of two quarks [80,81]. The transition to the pseudogap
phase at finite doping and the microscopic origin of Fermi
arcs observed in ARPES is poorly understood. Our method
for measuring the spectral function can be generalized to two
dimensions, where a second layer can be utilized as the probe
system.

Much of the physics discussed in this paper can be related
to simple models of noninteracting spinon and holon slave
particles. This approach is successful due to a large separation
of energy scales associated with holon and spinon dynamics
(t and J, respectively). When ¢ and J become comparable,
however, corrections to the simple physical pictures become
relevant. We systematically studied leading order corrections
in J/t for the Fermi-Hubbard model at strong coupling.
A bosonization formalism was used to describe the holon
dressing by collective excitations of the spin chain, and we
have derived expressions for the renormalized holon energy
and its effective mass.

An interesting future direction of research is the study of
the 7-J Hamiltonian with a single hole by tuning the ratio
t/J. The holon can be understood as a mobile impurity, with
a tunable bare mass given by ~1/2¢, which is interacting with
collective excitations of the spin chain. This allows one to
explore connections with one-dimensional impurity problems,
for which rich physics have been found close to [73,82-86]
and far from equilibrium [87-89].
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APPENDIX A: IMPLEMENTATION OF THE
MEASUREMENT SCHEME FOR THE ¢-J* MODEL

A balanced two-component spin mixture of ultracold
fermionic atoms in an optical lattice allows for a clean imple-
mentation of the #-J* model introduced in Eq. (8) in the limit
of large U/t > 1. To create the optical lattice configuration
necessary for the detection scheme, we propose a standard
retroreflecting laser configuration along the x direction with
a lattice depth of V, and tunneling ¢, and a superlattice
configuration in the y direction that creates several copies of
decoupled double-well systems [see Fig. 1(a)]. This has the
advantage of obtaining several measurements per experimental
cycle. However, a standard lattice along the y direction could
also be used and the energy offset A could be created with a
digital micromirror device.

The superlattice potential can be created for example by
two retroreflected laser beams at wavelengths A,/2 and A,
[90], which create a short and long wavelength lattice of depth
VVI and V7. By setting their phase difference ¢ close to /2
a controlled energy offset between the two sites of the double
well can be introduced with bare tunneling 7. The total optical
potential is given by

V(x,y) = Vi cos’Qmx/A,) + V cos’ Ry /Ay)

+ V) cos*(Amy/hy — @). (A1)

The lattice depths along the y direction can be chosen suffi-
ciently deep, such that the tunneling between different double
wells is negligible. In addition, the energy offset is much larger
than all other energy scales A > U,t (but smaller than the
energy gap to the next band) to make direct tunneling processes
off resonant. This also ensures that there are no atoms in
S9t when loading the fermionic spin mixture from the initial
harmonic trap into the lattice.

To implement the detection scheme for the spectral
function, we propose to periodically modulate the depth
of the long wavelength lattice according to Vy’(t) = V}l, +

SVVI sin(@shakeT). This leads to an induced oscillatory tun-
nel coupling dt, along the y direction between the spin
system S and the detection system S9! Thereby the
perturbation described in Eq. (2) can be realized. The
strength of the induced tunneling is given by §&t, =
8V; [ wi(y)cos’(2my /M) wr(y)dy, where wi(y) and wr(y)
denote the Wannier functions of the left and right lattice sites
of the double-well system created by the lattices along the y
direction [91].

APPENDIX B: MOMENTUM SHIFTS FOR THE SPECTRAL
BUILDING PRINCIPLE

In this Appendix, we discuss the different shifts for holon
and spinon momenta that have to be taken into account in the
application of the spectral building principle in Eqgs. (12) and
(13). Strictly speaking, there is no translational invariance in
squeezed space. However, itis a good approximationupto 1 /L.
The first momentum shift we discuss is due to these corrections.
The holon moves along L lattice sites. Its momentum is
therefore quantized in units of 27 /L. By contrast, there are
only L — 1 spins, such that the spinon momentum is k; =
ng2m /(L — 1) with ng integer. Therefore we have to shift the
momentum to account for the different quantization conditions
for spinon and holon. The spinon momentum k; = k — k;, in
Eq. (12) is thus replaced by

k —kp

kK =k—k .
s h+L—1

(B

This is the smallest possible shift to obtain the correct quanti-
zation of k as an integer multiple of 27t /(L — 1).

In a chain with periodic boundary conditions, a further
momentum correction arises: the holon shifts the spins by one
lattice site every time it moves across the entire system. When
the spins are translated by one site, the wave function picks
up an overall phase ¢'P, where Py is the total momentum
of the spin chain after removing the holon. Py = Py + k; is
determined from the spinon momentum k; up to an additive
constant Py, which is independent of the momentum. Thereby
a twisted periodic boundary effect with twist angle given by
the spinon momentum P; is introduced. This corresponds to
a shift of all holon momenta k;, by the momentum P of the
spins divided by the system size L. For periodic boundary
conditions, we thus have to replace kj, in Eq. (12) with

P

ky, =k — f

In Figs. 3(a) and 3(b), we included the corrections from

Eq. (B1) and (B2) for the positions of the gray dots and found
by comparison to our numerical calculations that Py = 7.

At small but finite temperatures, there exist collective
excitations which carry momentum 7. They contribute to P
in Eq. (B2) and thus shift the holon momentum in the case of
periodic boundary conditions by an additional amount of 7 /L,

(B2)

2 + kg
ky =ky — -.
h h L
Correspondingly, additional peaks appear between the ones
found at zero temperature, which are marked by blue circles
in Fig. 3(a).

(B3)

APPENDIX C: THE SPECTRAL FUNCTION
OF THE MAJUMDAR-GHOSH MODEL

‘We would like to gain a deeper understanding how the nature
of the ground state in a spin chain is related to the single-hole
spectral function. Many models underlying frustrated quantum
spin systems can be described in terms of resonating valence-
bond states [44]. To understand how the valence-bond nature
influences the spectral function, we study the Majumdar-Ghosh
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FIG. 11. The Majumdar-Ghosh spin chain. (a) Visualization of
the model realized on a zigzag chain. Next-nearest-neighbor hopping
terms for the hole are not included here. In (b), the spectrum of a
Majumdar-Ghosh spin chain with 20 sites and periodic boundary
conditions with hopping * = 8J and at temperature 7 = 0 is shown.
Gray dots correspond to spinon and holon dispersion, see Eq. (C2).

model. Its ground state can be represented exactly using
resonating valence-bond states.

By adding next-nearest-neighbor couplings for the spins
to Eq. (9), we arrive at the Hamiltonian of the Majumdar-
Ghosh model [44,53,54] interacting with a holelike impurity
described by h s

Fng =t Z(thh 4+ He)+ 7Y 8-Sy

+EZSi .Si+2_JZﬁ;ﬁ
i j

Note that the impurity is only switching off nearest neighbor
interactions in our toy model. We defined the spectral function
as usual, by removing a spin and creating the hole-like impurity
at the same site.

Without the hole, the Majumdar-Ghosh model describes
certain materials, where the atoms form a zigzag chain [92], see
Fig. 11(a), and constitutes an example of an exactly solvable,
frustrated spin system. Its degenerate ground states are exactly
known, for a pedagogical discussion, see, e.g., Ref. [44]. They
spontaneously break the translational symmetry and consist
of states in which neighboring spins form a singlet. The two
lowest energy states with this property, which are related to
each other by a shift by one lattice site, are degenerate in
the thermodynamic limit and are separated from the excitation
spectrum by a gap.

In Fig. 11(b), the spectral function of a single hole in a
Majumdar-Ghosh spin chain is shown. Gray dots correspond to
the combined dispersion relation of the holon and the spinon,
e(k) = e, (k) + e;(k — ki) with €,(k,) = —2t cos k;, and the

iS;-S. (@

Majumdar-Ghosh dispersion relation [93]

€s(ks) =J é + ! cos(2k;), (C2)
4 2
where k, is restricted to half of the Brillouin zone. The
distinct lines in the spectrum are remarkably well described by
Eq. (C2), demonstrating that spin-charge separation applies.
The comparison to the isotropic Heisenberg spin chain with-
out frustration highlights an interesting feature. An asymmetry
in the distribution of spectral weight around |k — k| = 7w /2 is
clearly visible. However, the spectral weight is not as clearly
restricted to half of the Brillouin zone as in the spectrum of
the Heisenberg chain. Thus a valence bond solid nature of
the ground state is not sufficient to explain the sharp decrease
of spectral weight observed for the anisotropic spin chain in
Fig. 5.

APPENDIX D: SQUEEZED SPACE FORMALISM
FOR ONE HOLE IN A SPIN CHAIN

In this Appendix, we derive the effective Hamiltonian
describing a single hole inside a one-dimensional spin chain.
For concreteness we discuss the 7-J* Hamiltonian from Eq. (8),
but generalizations to other couplings are straightforward. The
hole can be described by a bosonic representation where the
spins are mapped to constrained fermions fja and the holons
to bosonic operators fzj In this case, ¢, = fzj fis- This
representation was used in our theoretical analysis in Sec. V
and we discuss it here in more detail.

After introducing bosonic operators A ; and spinons fm
as discussed in the beginning of Sec. V, we can simplify
the holon degree of freedom by effectively removing it from
the spin chain. This can be achieved by defining a basis
of the Hilbert space of a spin chain with a single hole, with

basis states ﬁle) ® |61, ...,6L_1), Where

fiis 10 (D1)

similarly to Eq. (17). Here, 6; = 1, |. The index i labels spins
in the chain from left to right, independent of the holon position.
Note that only L — 1 spins appear in Eq. (D1) because there
is no spin on the physical si}e occupied by the holon, and we

|517 --'96‘L71> = flT,(Tl

used the spinon operators f to define a constrained fermion
representation of spins in squeezed space.

Next, we need to express the original Hamiltonian, Eq. (8),
formulated using operators ¢;,, in the new basis. Without
doping, the Hamiltonian

H = JZS/’-H ‘Sj,
J

corresponds to a Heisenberg spin chain. In the case with
doping, there exist no exchange interactions between the two
spins adjacent to the hole. For a single holon, we can thus write
the Hamiltonian in Eq. (8) as Hi_ye = H, + Hy + Hann with

A 14 A
Si=5fluoupfis O

/\ A ~ 1 2. 2
=7 841 -8;(1—hlhy, § = 5fjopa,,gf,,ﬁ.
J
(D3)
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The hopping term
H=—1P Y el 6P
(i.j).o

moves the holon by one site while the order of fermions f
in squeezed space is not modified. One can write H, most
conveniently as

Ho=—1) hlh

(i, J)

(D4)

=2t Y cos(bhlhi.  (D5)
k
For the next-nearest-neighbor tunnelings, the situation is
more complicated. They are of a general form

HNNN = E 80,0, 1,7 E CH_ZU H—l TC,_H 6o +Hec,

O'O' 'L'T

(D6)

where the coefficients g can be read off from Eq. (8). The term
in Eq. (D6) modifies the order of spins because it moves a
fermion from site i to i + 2. This involves an exchange of the
fermions at sites i and i 4+ 1, which introduces an additional
minus sign. We can see this by calculating the action of Fxnx
on a basis state:

Haanh510) @ 1. ..

To lighten the notation, we consider the action of a single term
in the sum in Eq. (D6). Representing the basis state in terms

of the original éia operators yields

D7)

161,Gi415 -+ -)-

A A A A At Af At

Cii2.6Ci1 cCi1,0CioCl g o CigCity 5, e |0)
At At i—1
=05 --Ci15 (D7 005005,

l+l r( l)l AH—ZU e |O>

In the notation introduced above, this state can be identified
with

(D8)

h,el.. (D9)

The next-nearest-neighbor term leads to an exchange of the
spins on sites i and i 4+ 1 in squeezed space, which can be
described by a term of the form 45, - S',~+1 — 1, see, e.g.,
Supplementary Material in Ref. [12]. By taking into account
the minus sign from the fermion exchange above, we arrive at
the following expression,

_8()”,5;8‘E/,(~I,'+| y0i—1,T,0,0i42, .. )

N - 1
HaNN = —Zh +2h ( S — Z) +H.c.. (D10)

From the second term in the brackets, we derive the corre-
sponding term — % J cos(2ky,) in the holon dispersion, Eq. (11).

In summary, the #-J* Hamiltonian for a single hole can be
written in squeezed space as

N - 1
T == hy by, | 2t costkn) + 77 cos(2hen)

ki

+ = Z ]+2h'Sj+1-Sj+H.C.]

JrJZS,-+1 -8;(1 = hthy).
J

(D11)

APPENDIX E: EFFECTIVE POLARON DESCRIPTION

We study the interaction of a single holon with the sur-
rounding spin environment. It can be created by first removing
a fermion from the spin chain, leading to the creation of
a spinon-holon pair. The essence of spin-charge separation
is that the spinon is not bound to the holon. Thus, after
waiting for sufficiently long, we can assume that spinon and
holon propagate through the system independently. We now
provide a detailed calculation of the holon properties when
it becomes dressed by collective spin excitations and forms a
holon-polaron. In particular, we derive Egs. (43) and (45) from
the main text for its renormalized energy and the renormalized
mass.

Starting from the #-J* Hamiltonian, we first perform a
Lee-Low-Pines transformation into the holon frame. As a next
step, bosonization techniques are employed to describe the spin
chain itself, as well as the interaction of the holon with the col-
lective spin excitations. Here we assume an infinite system and
neglect finite-size corrections. Finally, we explicitly calculate
the holon energy and its renormalized mass in the regime of
weak polaronic coupling, J < t.

1. Lee-Low-Pines transformation

Our starting point is the ¢#-J* Hamiltonian (8) formulated
in squeezed space [59], see Eq. (D11), where the spinless
holon is effectively hopping between the bonds of the physical
lattice. As a first step, we apply the unitary Lee-Low-Pines
transformation [94]

Urip = exp(i Piiy), (E1)

where Xy, = Z ]h h; ;j 1is the position operator of the holon

and P, is the total momentum operator of the spins. In the

new basis, the holon is always placed in the center, and the

transformed Hamiltonian reads

e HOup = — 2t cos(py — P)+ 7Y _8; - §;
(i.J)

A oA J N
—JSo- 8, —Zcos(th—ZPs)
J & 2i(ph—P. S Q. 2i(pn—P.
—(S - Soe i(pn—Fs) + 8- Se i(pn s))'
2

(E2)

Here, py denotes the total conserved momentum of the holon-
polaron.

The first term in Eq. (E2) corresponds to the recoil energy
of the holon when it scatters on a spin-wave excitation which
changes the total momentum P carried by the spin system. The
second term describes the unperturbed spin chain without the
holon. The interaction between the holon and the spin chain
within the 7-J model is given by —J 8, - §;. The last three
terms in the equation describe next-nearest-neighbor hopping
processes present in the Fermi-Hubbard model at large U.
These terms have the same scaling with J as the interactions
—J So .8 1 in the simpler #-J model and should be treated on
equal footing to understand the properties of the holon-polaron.
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.

Pr(z) i

FIG. 12. Bosonization of a spin chain doped by a mobile holon.
The spin operators can be described by two chiral fermions ¥ g (x)
interacting with the holon at position %,. Our starting point is the
unperturbed chain, which is an exact solution when the tunneling rate
t of the holon is larger than spin-exchange interactions, ¢ > J.

2. Bosonization

In order to calculate ground-state properties of Hamiltonian
(E2), we use the bosonization technique to describe the
unperturbed spin chain. Here we provide a brief overview,
see, e.g., Refs. [37,70,95] for a complete derivation. In this
formalism, spin operators are first expressed in terms of
Jordan-Wigner fermions 1/ (x ) counting the number of up spins.
In this basis, S"z(x) = 1/A/T(x)1ﬁ(x) — 1/2 and the case of zero
magnetization corresponds to a system at half-filling. When the
net magnetization vanishes and mutual interactions between
the Jordan-Wigner fermions are neglected, they form a Fermi
sea around kp = /2, in units of the inverse lattice constant
a = 1. By linearizing around kg and extending the linearized
branches to momenta =00, one can introduce two chiral fields
@R,L(x) corresponding to right (R) and left (L) movers. The
situation is illustrated in Fig. 12.

The interactions between Jordan-Wigner fermions renor-
malize the properties of collective particle-hole excitations
around the Fermi surface. In the bosonization formalism, this is
described by introducing bosonic fields (}AﬁL,R(x), related to the
Jordan-Wigner fermions by &L,R(x) o exp(Fi \/HQSL,R(X)).
The fields qAbL,R(x) can be decomposed into normal modes
13q with momentum g > 0 for right movers (¢ < 0 for left
movers), where [lSq,lA)j,,] = 84,4~ In addition, so-called zero
modes have to be included, where 7i;, g counts the total number
of left and right movers relative to the Fermi sea at kp = /2.
Their number can be changed by the operators exp(i /47 ég Ry,
namely  exp(iv/4mdy i r = (AL F 1) explivarndy™).
Putting everything together one obtains [95]

sgn(q)

P L0
—5 LR
L = VLIl

=" + (€"*b, + H.c),

dLr(X)
(E3)

where L is the length of the spin chain (not counting the
holon) and we assumed periodic boundary conditions.
We furthermore _introduce < the shorthand notation
$Lr(0) = G5 + L g + d g (x).

Using the formalism described above, the collective excita-
tions of the antiferromagnetic spin chain can be described as

7‘20 = JZS,- . Sj
({i,J)

=Ey+nJ / dx : (3:d(x))* + 41—‘(axé(x))2 . (E5)

(E4)

= Eo+ Y _vilqlblb, + 7
q

(A7 + fAg). (E6)

In the second line, we introduced @(x) = Pr(x) + (%),
0(x) = pr(x) — ¢dL(x) anq :---: denotes normal ordering
with respect to operators b,. Note that umklapp terms have
been neglected in this expression. The ground-state energy
E\ of the spin chain is known exactly from Bethe-ansatz
calculations [37],

Ey=L(3 —In(2))J = —L x 0.4431J. (E7)
The excitations described by B; carry no spin and their velocity
v is given by [37]

Vg = —— (E8)

7
The ultraviolet momentum cut-off Ayy is determined by the
inverse lattice scale 1/a. We set Ayy = 7 /2 in units where
a=1.

The total momentum operator of the spin system contains
contributions from collective excitations as well as the zero
modes. Assuming that |ny r| < L for typical values of 71y g,
we can write

N T . PR
Po= S — i) + ) qblb,. (E9)
q

3. Interaction terms

The interaction of the holon with collective spin excitations
is determined by the term

N N N J . N . 5
Hiw = —=JSo- S| + E(S“ - Spe? =) L Hex) (E10)

in the Lee-Low-Pines frame, see Eq. (E2). To express itin terms
of bosonized operators, we first note that the energy density of
the free spin chain is given by J S (x) - S (x + 1). By inspection
of Eq. (E5) we can write

—(8xé(x))2 ;.
(E11)

S -Sx+ D~ —+ T (3p(x))* +

This term describes correctly the effect of long-wavelength
fluctuations on nearest neighbor spin correlations. Because of
the constant term added to the expression, the ground-state
expectation value (8(x) - 8(x + 1)), is correctly reproduced.

In combination with Eq. (E7) we obtain the following
representation:

Sx)-Sx+1)

1 ,( A2 A%
=Z—1n(2)+71 —+—

4L7
iy
jT —_—
+ (L +

n_ 2n igx:ch Nl
_L>‘/TZ \gle'*i(b, — b’ )
q

i 2 Viada'l:b,

qq'>0

+ 4|C 2™ cos[v/4m (fr(x) + Gr())].

Wy.q(0)b,,

(E12)
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Here, i+ = fig & 7i;. and we defined
e—ila—ahx  _ p—ilgt+g)x
Wy (x) = (_ei(quq’)x eia—a)x

and 1_32 = (b}.b,). In the last line of Eq. (E12), we have
also included umklapp scattering terms. Their prefactor is the
number |C|?, which is a nonuniversal constant that cannot be
derived within the bosonization formalism. Its numerical value
|C|? ~ 0.14 has been determined by Eggert and Affleck [71]
from comparison of the spin-structure factor obtained from
bosonization and quantum Monte Carlo calculations.

The first three lines in Eq. (E12) describe forward scattering
processes, which leave the populations 7i r of the zero modes
unchanged. The last line corresponds to umklapp scattering,
where the 71_ changes by two units because a right mover
scatters into a left-mover or vice versa. The sum 71, = 7ig +
Ay, = mL is conserved and can be expressed in terms of the
magnetization per unit length

(E13)

m = (Ny — N,)/2L. (E14)

In the following, we allow for a finite magnetization m # 0 but
assume that i_ = O(L) is not an extensive quantity.

To understand the scaling in the thermodynamic limit
L — oo, we introduce operators b(q) = /L/2mb, with
[b(¢),b"(¢")] = 8(q — ¢') and write Eq. (E12) in an integral
formusing Zq 2/L — [ dq withq integrated over —Ayy <
q < Auv,

S@)-8Sx+1)

1 . ~ n
=7~ @+ im* + m / dq+/1q1e'i(b(q) — b'(—q))

1 ’ 7 o
+3 [ dadaViaq: B @W, i)
qq'>0

+ 4CPe™ cos[VAT (Grx) + Pr(N))]. (E15)
The field 4312 (x) can be expressed as
. . Auy 1/2
o) = B + C i+ [ dgd —(¢""b@) + He),
(El6)

and a similar expression exists for qAbL(x).

The interactions in Eq. (E10) can now be written in the
bosonization language using Eq. (E15). We will distinguish
forward scattering terms (F) of different orders in b and
umklapp (U) scattering terms:

Hine =AY + A +Ho + (3 — In@) + 7°m?)

x J[cos(2(pn — Py)) — 11. (E17)

a. Linear Frohlich-type terms

First, we consider only forward scattering terms that are
linear in b operators in Eq. (E10),

A0 = g7m [ dgigliciia) - 5o

x [1 = cos(2(pn — P) — q)]. (E18)

Notably, the form of this term is identical to the interac-
tion terms in the ubiquitous Frohlich polaron Hamiltonian
[73,83,96].

This allows us to introduce a dimensionless polaronic
coupling constant op = (wm)?. When ap < 1, the Frohlich
coupling is weak and can be treated perturbatively. The starting
point for such analysis is Eq. (E17) with 7—18’2) =0 when
ap = 0. The resulting Hamiltonian commutes with B}Bq and
can be solved exactly by plane waves. When ag > 1, on the
other hand, the strong-coupling (or Landau-Pekar) variational
wave function can be used [60,97]. Note that our derivation is
only valid at weak polaron couplings o < 1. By expanding
around the Fermi sea at half-filling of Jordan-Wigner fermions,
we assumed that m < 1 is small.

b. Two-particle excitations

By keeping only forward scattering terms which are
quadratic in b operators in Eq. (E10), we obtain

J / N N /
AP =1 f dqdq \/|qq'|:[Q*(g)wq,q«ov_a(q)
qq'>0

1. - . 5 A,
- EQT(Q)(Wq,q/(—1)62’(”“&) +H.c)b(g )]
(E19)
The matrix W, ,(x) in the LLP frame becomes

—eilat+qx p2iq’
. (B2
eia—a"x p2iq’ (E20)

Voo e~ ia—9")x p=2iq
nX) = . , .,
9.4 _ez(q+q )xe—21q

For a system at zero magnetization, m = 0, these are the
leading-order terms in the effective holon-polaron Hamilto-
nian.

¢. Umklapp scattering

Finally, umklapp scattering terms give rise to the following
interactions:

Ty = — 2J|C*[2 cos(v4m $(0)) 4 cos(vAr d(—1))
x =Pt cos(Vamd(1))e =P,

where ¢(x) = @ (x) + dr(x).

(E21)

4. Holon polaron at weak polaronic coupling

Now we analyze the properties of the holon polaron in the
weak polaronic coupling regime, J « t. Our starting point is
a free holon at momentum p;, and no spin excitations,

[¥0) = |Pn)4l0)10),-

The occupation of the zero modes is characterized by |n_),
and ny = Lm is conserved.
To zeroth order, the holon energy is given by

(E22)

EY = —21 cos(py). (E23)

We obtain the following first-order contribution to the holon-
polaron energy,

E" = J(*m® — InQ2)[cosQ2pr) — 11 — J /4. (E24)

125117-19



A. BOHRDT, D. GREIF, E. DEMLER, M. KNAP, AND F. GRUSDT

PHYSICAL REVIEW B 97, 125117 (2018)

In the following we calculate second order corrections in
J to the holon-polaron energy term by term. Furthermore,
by expanding the result around py, = 0 to quadratic order, we
calculate the mass renormalization of the holon-polaron.

a. Forward scattering
From the Frohlich-type terms (E18), we obtain the follow-
ing second-order contribution,
[1 —cospy — @)1
2t cos(pp) — 2t cos(ph — q)
(E25)

2
EQ = —Tn’m? f dqlq|

From the two-particle terms (E19), we obtain a second-order
contribution,

J2
ED) =——/ dqdq'lqq’|
MR 64 g0

[1 —cosQpn+g + ¢
Qq,q’(ph)

where Q, ,(pn) = —2t cos(pn — g — q') + 2t cos(pn).

; (E26)

b. Umklapp scattering

Now, we calculate the leading-order contribution of the
umklapp scattering term Eq. (E21) to the holon-polaron energy.
We start by noting that

VAT G+ AN | Yo = |n_ £2),. (E27)

The momentum is given by I‘A’Sln_)0 =n_m/2, see Eq. (E9).
The action of exp(i+/ 47 ¢(x)) on the bosonic state |0) ,» can be
understood by writing

VIR |0y Z exp <_ / dgBi(@)b(q) - H.c.) 10),
(E28)

where ¢ (x) = (]Sf(x) + éﬁ (x). The last expression corre-
sponds to a coherent state [ | 4 1Bx(@)), with

B:(q) = isgn(q)|q|~" 21" (E29)
Note that the amplitude
1B(@? = g1 = 1B (E30)

is independent of x.

By summing over the allowed virtual states, defined by Fock
states of b operators and |+2),, we obtain an expression for
the holon-polaron energy due to umklapp scattering,

an 1
EQ, =821C1 Y B@I™ pqr
no [1 ng! Qo(pn)

ng q

3 1
X <§ + 3 cos(2Q + 4py) + 2cos(Q + th)).
(E31)
The energy denominator is given by

Qo(pn) = —2tcos(pn) + 2t cos(pp —m — Q)  (E32)

and depends only on the total momentum

0= /dqqnq.

To simplify Eq. (E31), we note that the sum an of the
occupations n, is taken over

(E33)

|ﬁ(51)|2n" e_lﬁ(f{)‘Z
ng! '

q

Mng) = (E34)
This defines independent Poisson distributions for all momen-
tum modes g. Because the remaining terms only depend on the
total momentum Q, it is sufficient to know the full counting
statistics p(Q) of the latter with respect to the independent
Poisson distributions:

1
EZy =82C1* Y p(Q)
(0]

Qo(pn)

x <% + %COS(ZQ +4pn) +2cos(Q + 2Ph)>'
(E35)

To calculate the full counting statistics p(Q), we construct
the generating functional

GOX) = ) Mnpe™™? = exp [— / dq|B(@)(1 - e—i’%]

4 .
e — Q2Ci(X7/2)
Here, y =0.577216 is the Euler constant and Ci(x) =

— fxoo cos(t)/tdt denotes the cosine integral. By taking a
Fourier transform, we obtain the full counting statistics

(E36)

p(Q) = %/dXG(X)e”‘Q. (E37)

Combining this with Eq. (E35), we arrive at

5
B2 = JZIC|4e—2y2_3 /oo dQ/wdxwezc«xm)
’ T —oo 0 X*Qo(pn)
3 1
X (5 + 3 cos(2Q + 4py) + 2cos(Q + 2Ph)>-
(E38)

¢. Renormalized mass and energy around py, = 0

Now we analyze the results from Eqgs. (E23)-(E26) and
(E38) and calculate the holon-polaron ground-state properties
at p, = 0. Up to quadratic order in p,, we obtain
En(p) = En(0) + 5pp M, ' + O(py).
The ground-state energy E},(0) contains contributions from the

five different terms in the effective Hamiltonian,
En(0) = E(0) + E(0) + 1 (0) + Eyp(0) + Egy(0).
(E40)

(E39)

A similar expression follows for the holon-polaron mass:

1 1 1 1 1
=—+—5+ + +

— . (B41)
©) (D 2) 2) 2
My M” M ME, MG, M3
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The different contributions are given by

EQ0) = —21 (E42)
EN0) = -5 (E43)
1(12;1(0) ]t2 m2n2<1 + %2 — %) (E44)
EZL0) = —J—zﬁ(m 167 + 1),  (E45)
E(0) = —T|C|4 x 5.31. (E46)

By combining these results, we obtain Eq. (43). For the
effective mass, we obtain

(M}(lo))—l — Zt, (E47)

(M) = —471n@) - 7°m?, (E48)
2

~ 3

(MZ) ™ = =m0 e =24, (E49)

2
@ \~1 J°
(Vi) == 00+ 197" 1600 (850
(M}%)‘l — —T|C|4 x 43.16. (ES1)

By combining these results, we arrive at Eq. (45).

d. Divergent integrals in the t- J model

In our discussion of the holon-polaron, so far, we restricted
ourselves to the 7-J* model where next-nearest-neighbor holon
hopping is included. We can repeat our perturbative analysis

for the simpler ¢-J model, where the last three terms in
Eq. (E2), corresponding to next-nearest-neighbor hopping, are
discarded. In this case, we obtain

En(pn) = =2t cos(py) + J(In@2) — + — 7’m?), (E52)

plus terms of orders O(J?/1).

The second-order expressions O(J2/t) involve divergent
integrals when the #-J model is used. For example, the Frohlich
type terms from Eq. (E18) give rise to an energy correction

E® ( 0) = il 22 / ﬂ/zd — 9 (E53
= ——m
hFILPh = t 0 7= cos(q)

for the 7-J model. This expression diverges logarithmically
with the infrared cutoff AR,

1
—/ dg— ~1n AR.
A 4

In a finite-size system, Ajg = 1/L with L the system size, and
Effl):l( pn = 0) =~ —1In L is weakly divergent.

Similarly, we find that the correction to the effective mass
from two-particle excitations is logarithmically divergent in the
t-J model, 1/ M]S2%2 ~ —In L. On the other hand, the energy

Efl 2 1s convergent. The umklapp terms lead to a power-law
dlvergence of the holon-polaron ground-state energy,

EZ (pn = 0) = (E54)

) o p(Q)
EX)(py = 0) =~ / ot
p(r)
— | do———, E55
/ Q(Q—ﬂ)2 (£55)

in the ¢-J model.
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