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We numerically investigate the link between the delocalization-localization transition and entanglement in a
disordered long-range hopping model of spinless fermions by studying various static and dynamical quantities.
This includes the inverse participation ratio, level statistics, entanglement entropy, and number fluctuations in
the subsystem along with quench and wave-packet dynamics. Finite systems show delocalized, quasilocalized,
and localized phases. The delocalized phase shows strong area-law violation, whereas the (quasi)localized phase
adheres to (for large subsystems) the strict area law. The idea of “entanglement contour” nicely explains the
violation of area law and its relationship with “fluctuation contour” reveals a signature at the transition point.
The relationship between entanglement entropy and number fluctuations in the subsystem also carries signatures
for the transition in the model. Results from the Aubry-Andre-Harper model are compared in this context. The
propagation of charge and entanglement are contrasted by studying quench and wave-packet dynamics at the
single-particle and many-particle levels.
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I. INTRODUCTION

Ground state wave functions of the vast majority of com-
monly encountered Hamiltonians are characterized by the
so-called “area law” of entanglement [1–3]. The entanglement
entropy of a subsystem with respect to its complement, scales
not as the volume of the subsystem in question, but rather
as the surface area that links the subsystem to its environment.
This is loosely justified on the grounds that since the couplings
are local (for the most extensively studied Hamiltonians),
quantum correlations in the ground state are also local in nature
and therefore the contributions to the entanglement entropy
come from correlations at the surface alone. Gapless models
show a log L correction to the law [4–6]—correlations here
are stronger than area law because such ground states are at
a critical point and quantum fluctuations induce long-range
correlations, whereby a region deep inside the subsystem
offers a nonvanishing contribution to correlations with a region
far outside it. Such mild area-law violations are also fairly
extensively studied and accepted to be a consequence of the
criticality of the model. Stronger violations of the area law
have also been reported [7–10].

Long-range couplings are ubiquitous in real physical sys-
tems, quantum and classical [11,12]. A wave of current interest
exists in uncovering the novel physics that emerges when inter-
actions are made long range [13–15]. Although the majority
of such work is on classical systems, there is indeed plenty
of interest and work on quantum systems. An inexhaustive
list includes frustrated magnets [16,17], spin glasses [18,19],
and various ultracold atomic [20–22] and optical systems [23].
One of the characteristics of long-range couplings is that even
one-dimensional models can give rise to higher-dimensional
physics. In quantum models, one of the special consequences
of this would be that by making the couplings to die sufficiently
slowly, there ought to be stronger violations of the area law
than observed in gapless systems. With this hunch in mind,
we make a detailed study of a long-range disordered hopping

model in one dimension, where the strength of the couplings
fall off with distance as a power law with exponent σ .

In the power-law model, by tuning the exponent σ , we are
able to discern three distinct phases: one in which the ground
state is delocalized and displays a strong area-law violation,
a second intermediate phase in which the ground state is
quasilocalized and adheres to the area law for large subsystem
sizes, and a third short-range class where the ground state is
localized and subscribes to the area law. The much studied
Aubry-Andre-Harper (AAH) model [24,25] is included for
comparison and contrast. The AAH model has the well-known
self-dual structure which gives a localization-delocalization
transition, with the localized phase being characterized by an
area-law abiding entanglement entropy. The quantum phase
transition point has the well-known log L correction to the
area-law entanglement entropy—we find that in fact, the entire
delocalized phase carries the log L correction.

To characterize the phases, we employ several tools in-
cluding inverse participation ratio (IPR), level spacing ratios,
entanglement entropy, subsystem number fluctuations, and
nonequilibrium wave-packet dynamics keeping track of the
spatial distribution of the wave packet. For free fermionic
models, entanglement entropy has been argued to be closely
connected to subsystem number fluctuations [26–31]. We find
evidence in support of this connection, both in the statics and
the dynamics that we study in our model. In this context, we
also study a recently introduced quantity called “entanglement
contour” which quantifies the contribution from each site
in the subsystem to the entanglement. The advantage of
this microscopic quantification is that features like area-law
violation and central charge of the system can be obtained
from a single subsystem calculation, without the need for any
subsystem scaling as with other quantifiers of entanglement
[32]. Also its relation with “fluctuation contour” that originates
from the number fluctuations in the subsystem, is useful as a
comparative tool [33]. Entanglement contour nicely captures
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the the area law and its violation in the disordered long-range
hopping model. Also the relationship between the two contours
shows striking behavior across the delocalization-localization
transition point.

Nonequilibrium dynamics of a closed quantum system has
become a topic of great interest in current research [34–36].
Nowadays one of the key perspectives for understanding
different types of phases is the study of entanglement prop-
agation in many-body systems. This can be probed by tracking
quasiparticles in many cases [37,38]. Also contrasting behavior
of various types of transport such as the transport of charge,
correlation, and entanglement in quantum systems is being
used to characterize phases in many-body systems. For ex-
ample, both the Anderson localized and many-body localized
phases show no charge transport [39,40]; in contrast, the
former shows no growth of the bipartite entanglement entropy
with time but the latter shows a logarithmic growth [41,42].
Recently charge transport and entanglement transport have
been contrasted in bond-disordered short-range models [43].
We study nonequilibrium dynamics in our bond-disordered
long-range model, finding evidence for the contrast between
charge and entanglement propagation. Another aspect of study
of long-range models is the generalization of Lieb-Robinson
bounds which suggest that in short-range models [44], the
velocity with which correlation spreads is bounded and hence
results in a light-cone-like spreading of correlation. This
leads to a linear growth of entanglement entropy with time
following a sudden global quench in short-range models as
predicted by related CFT [38]. The light-cone picture can break
down in long-range models; this has been seen theoretically
and experimentally in ultracold ion traps for translationally
invariant long-range models [37,45–48]. We numerically test
the breakdown of the light-cone picture in our disordered
long-range model and find different results in the delocalized,
quasilocalized, and localized regimes, which we will discuss
later.

The paper is organized as follows. In Sec. II we discuss the
delocalization-localization transition in the disordered long-
range hopping model. In Sec. III we explore the entanglement
of free fermions in the model at the single-particle and many-
particle levels. In Sec. III A we talk about the single-particle
entanglement in the model. In Sec. III B we study entanglement
of fermions and its connection to the number fluctuations
in the subsystem. In Sec. III C we implement the idea of
the entanglement and fluctuation contours. In Sec. III D we
compare our long-range model with the short-range AAH
model. In Sec. IV we investigate the nonequilibrium dynamics
at the single-particle and many-particle levels and finally we
summarize in Sec. V.

II. RANDOM LONG-RANGE HOPPING MODEL

We consider a Hamiltonian of the following generic type:

H =
N∑

i �=j

(tij c
†
i cj + H.c.) +

N∑
i

vic
†
i ci , (1)

where c
†
i (ci) is the single fermion creation (annihilation) op-

erator at the ith site. In the long-range random hopping model
tij = J

uij

rij
σ is the strength of hopping and vi = 0. uij is chosen
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FIG. 1. (a) Surface plot of IPR of the single-particle eigenstates
as a function of σ for system size N = 4096 and 100 realizations of
disorder. Here α stands for the index of single-particle eigenstates
in ascending order of energy. The color green lies right at the
bottom of the bar legend, and is barely visible due to its very small
value (∼1/N )—it corresponds to the IPR of delocalized eigenstates.
(b) Variation of D2 with N showing change of slope around σ = 1.
(c) The level-spacing ratio r as a function of σ for increasing system
sizes N , averaged over 100 realizations of disorder. The two dashed
horizontal lines denote r = 0.529 and r = 0.386, respectively. Error
bars are of the same order as the samples shown in the three regions;
for other data points, error bars are suppressed to enhance clarity.

from [−1,1], a uniform distribution of random numbers, and
rij = (N/π ) sin(π |i − j |/N) is the geometric chord distance
between the ith and j th sites, when the sites are arranged in a
periodic ring. Here J , the maximum magnitude of the hopping
term, is the unit of energy, which we put to unity J = 1.
In a very similar model [49,50], where rij = |i − j |, σ = 1
has been shown to be the delocalization-localization transition
point, in close connection with the power-law random banded
matrix (PRBM) [51–54] model. For σ < 1 (σ � 1), all the
eigenstates are delocalized (localized) [49].

To quantify the point of the localization transition, we
compute the inverse participation ratio (IPR), which is defined
as

I (α) =
N∑

i=1

|ψi(α)|4, (2)

where the coefficients are drawn from the αth normalized
single particle eigenfunction |ψ(α)〉 = ∑

i ψi(α) expanded in
the complete set of the Wannier basis |i〉, which represents the
state of a single particle localized at the site i of the lattice.
The IPR of all the eigenstates as a function of σ is shown in
the surface plot of Fig. 1(a). We see the presence of localized
states at the edges of the band near σ = 1, which is essentially
a finite size effect [49].

We also calculate the participation moments averaged over
all the eigenstates. The qth participation moment is obtained by
averaging over all the eigenstates and disorder configurations:

Pq =
〈∑N

α=1 Pq(α)

N

〉
, (3)
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FIG. 2. Probability distribution pi(t) for finding a single particle, initially at the middle of the lattice, at each site of the lattice for increasing
values of time (in units of J −1) (a) for σ = 0.5 (delocalized phase), (b) for σ = 1.5 (quasilocalized phase), and (c) for σ = 3.0 (localized
phase), respectively. For all the plots N = 2048 and number of disorder realizations is 100.

where Pq(α) = 1/
∑N

i=1 |ψi(α)|2q . However, Pq ∝ NDq (q−1).
In a fully delocalized (localized) regime Dq approaches unity
(zero) as the thermodynamic limit is approached. It is evident
that log Pq

log N
∝ Dq(q − 1) and from the variation of Dq with the

system size, one can identify the point of transition in the
thermodynamic limit. We choose q = 2 and D2 is plotted with
the system size in Fig. 1(b). The D2 vs N plot changes slope
at σ = 1, which is the point of the localization transition.

The mean of the ratio r [55,56] between adjacent gaps (δ) in
the spectrum can be used to identify a crossover from Wigner-
Dyson statistics in the delocalized phase to Poisson statistics
in the localized phase. Defining

rk = min(δk,δk+1)

max(δk,δk+1)
, (4)

where δk = εk+1 − εk is the kth energy gap, the mean ratio
is r = 〈r〉, where the bar represents an average over the
spectrum, and the angular brackets the average over disorder.
It is known from random matrix theory that the mean ratio
r is approximately 0.529 in the delocalized phase and 0.386
in the localized phase [55,56]. Figure 1(c), based on the finite
sizes considered here, suggests that the system is in the ergodic
phase in the region 0 � σ � 1. Then r starts decreasing till it
reaches the localized phase around σ = 2. The intermediate
phase showing intermediate distributions is discussed in the
following analysis.

In order to better understand the presence of different
phases in the system, we have considered a wave packet
initially localized at the middle site i0 of the lattice, i.e.,
ψi(t = 0) = δi,i0 , and calculated the evolution of the spatial
distribution of the wave packet with time. The probability
of finding a particle at site i at a given instant t is given
by pi(t) = |ψi(t)|2. The spatial dependence of the probability
distribution for increasing time is shown in Fig. 2. It is to be
noted that in the quasilocalized phase [Fig. 2(b)], the central
part of the wave packet rapidly drops down to a smaller value,
which then barely changes with time, whereas the tails of
the wave packet keep spreading with time. In the delocalized
phase, the occupancy at the initial site along with all the other
sites rapidly decreases and the wave packet takes the form
of a uniform distribution [Fig. 2(a)], whereas in the localized
phase, the dynamics of the wave packet is almost absent and it
becomes almost exponentially localized [Fig. 2(c)]. Figure 2
thus shows that the quasilocalized phase is distinct from both
the delocalized and localized phases, and yet carries some
character of each of these phases.

III. ENTANGLEMENT IN THE MODEL

Phase transitions in extended quantum systems are known
to be captured by different measures of entanglement [2,57,58],
such as concurrence, entanglement entropy, etc. In the subse-
quent part of this section, we will calculate the von Neumann
entanglement entropy between a suitable subsystem and its
complement, both for single-particle and many-particle states.
We will investigate if there is a violation of the area law of the
entanglement entropy and analyze our results on the basis of the
localization transition. We will discuss local particle-number
fluctuations and its relation with entanglement entropy in the
context of the transition in our model. Also we discuss the
entanglement contour and fluctuation contour in this context.

A. Single-particle entanglement

First we discuss single-particle entanglement entropy,
which has been argued to be a useful resource for quan-
tum information processing [59,60]. In order to calculate
the entanglement entropy between two subsystems A and B
for the normalized single-particle states, one writes down a
normalized single-particle eigenstate in the following way:

|ψ〉 =
∑
i∈A

ψici
† |0〉A ⊗ |0〉B +

∑
i∈B

ψi |0〉A ⊗ ci
† |0〉B , (5)

where |0〉A/B is the vacuum state in the subsystem A/B. Then
the reduced density matrix ρ

sp
A = TrB(|ψ〉 〈ψ |) has two eigen-

values pA = ∑
i∈A |ψi |2 and pB = 1 − pA [61] (see Appendix

A for more details). The single-particle entanglement entropy
is then given by

S
sp
A = −pA ln pA − pB ln pB. (6)

This entropy is bounded between ln 2 and 0. In a delocalized
eigenstate, S

sp
A increases with L, the size of the subsystem A,

as pA = L/N , and reaches the maximum value ln 2, when
L = N/2. In a single site localized state S

sp
A is 0 as pA = 1

or 0 and does not show any variation with the subsystem size.
The variation of S

sp
A with L in different phases for our model is

shown in Fig. 3(a). In the quasilocalized phase, Ssp
A varies with

L but its maximum value is less than ln 2 and the maximum
value decreases as σ increases towards σ = 2. The curves
deviate more from the delocalized ones as L increases towards
N/2 because in the quasilocalized eigenstate the central part
of the wave function is more localized compared to the tails.
The variation of S

sp
A with σ can be seen from Fig. 3(b). The de-

localized (σ < 1), quasilocalized (1 < σ < 2), and localized
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FIG. 3. (a) Scaling of single-particle entanglement entropy S
sp
A

with subsystem size L for different values of σ . (b) Variation of S
sp
A

with σ , where L = N/2. The system size N = 2048 and number of
disorder realizations is 100 for both the plots.

(σ > 2) phases are clearly seen from the plot. Also it is worth
mentioning that the quasilocalized phase shows large intrinsic
fluctuations in S

sp
A . This results in large error bars that cannot

be significantly reduced by increasing the number of disorder
realizations. This is obvious because in the quasilocalized
phase, for an eigenstate, the probability distribution for finding
a single particle has multiple peaks and they can appear in
random places in the lattice for different realizations of disorder
(not shown here) thus making pA a highly fluctuating quantity.
In the localized phase the probability distribution is more or
less singly peaked, hence pA is always close to 0 or 1, whereas
in the delocalized phase the probability distribution has no peak
and it is a uniform one, hence pA ∼ L/N giving rise to smaller
error bars in S

sp
A .

B. Fermionic entanglement and fluctuations

In this subsection we consider noninteracting spinless
fermions at half-filling in the system and investigate signatures
of the localization transition via entanglement in many-body
states. The connection between localization and entanglement
is subtle. Intuitively, one would expect that the greater the
delocalization, the more the entanglement and vice versa;
however, this correlation is not absolute and counterexamples
are available [62]. We also discuss the relationship between
subsystem number fluctuations and entanglement entropy in
the model. We start with a brief discussion of the calculation
of the entanglement entropy of fermions in the ground state
[63–65] (see Appendix B for details). For the fermionic many-
body ground state |	0〉, the density matrix can be written as
ρ = |	0〉〈	0|. The entanglement entropy between two subsys-
tems is then given by SA = −Tr(ρA log ρA), where the reduced
density matrix ρA = TrB(ρ). However, for a single Slater
determinant ground state, Wick’s theorem can be exploited to
write the reduced density matrix as ρA = e−HA

Z
, where HA =∑

ij HA
ij c

†
i cj is called the entanglement Hamiltonian, and Z

is obtained from the condition Tr(ρA) = 1. The information
contained in the reduced density matrix of size 2L × 2L can
be captured in terms of the correlation matrix C of size L × L

[63] within the subsystem A, where Cij = 〈c†i cj 〉. The corre-
lation matrix and the entanglement Hamiltonian are related
by [63–65]

C = 1

eHA + 1
. (7)
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FIG. 4. Participation ratio of MEM, denoted as P mem, as a func-
tion of σ for increasing system sizes N , averaged over 100 disorder
realizations. Subsystem size L = N/2 for fermions at half-filling.

Using this relation, the entanglement entropy for free fermions
is given by [64,65]

SA = −
L∑

m=1

[λm log λm + (1 − λm) log(1 − λm)], (8)

where λm’s are the eigenvalues of the correlation matrix C. It
has been conjectured that the zero mode of the entanglement
Hamiltonian has information about topological quantum phase
transitions [66]. The same conjecture can be extended to a
nontopological system [9]. It follows from Eq. (7) that the zero
mode of the entanglement Hamiltonian would correspond to
the eigenfunction of the correlation matrix, whose eigenvalue
is equal (closest) to 0.5. As this eigenmode contributes the
maximum to the entanglement entropy, it is called the maxi-
mally entangled mode (MEM). The participation ratio of the
MEM reflects the localization transition at σ = 1 (Fig. 4). This
is a nice example of detecting the localization transition from
the entanglement spectra without having any prior knowledge
about the original Hamiltonian.

Now we will discuss the scaling of the entanglement
entropy with subsystem size. Typically, short-range models
of noninteracting fermions show logarithmic violation of the
area law of entanglement entropy, i.e., SA ∼ Ld−1 log L in d

dimensions [67]. In our disordered long-range model we see
superlogarithmic area-law violation in the delocalized phase
where 0 < σ < 1. In fact it goes as Lβ , where the exponent
β = 1 at σ = 0 and β decreases as σ increases (Fig. 5). In the
quasilocalized regime 1 < σ < 2 it shows area law for larger
subsystem sizes, whereas in the localized phase σ � 2 it shows
a strict area law.

Next we discuss entanglement and its indirect experimental
measurement. It has been argued [33] that fluctuations of a
globally conserved quantity inside a subsystem can measure
entanglement entropy as the quantity shares eigenfunctions
with the reduced density matrix ρA and hence provides a good
basis for Schmidt decomposition of the many-particle eigen-
state (see Ref. [33] for a rigorous proof). In our canonical setup,
total particle number is conserved and we study fluctuations
in the particle number inside the subsystem, which is also
an experimentally measurable quantity [68,69]. The particle
number fluctuations inside some subsystem A can be defined
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FIG. 5. A linear-log plot showing the scaling of the entanglement
entropy SA with subsystem size L for increasing σ for fermions at
half-filling. For this plot lattice size N = 2048 and number of disorder
realizations is 100.

as

δ2NA =
∑
i∈A

〈
n2

i

〉 − 〈ni〉2. (9)

A close connection exists between entanglement entropy and
fluctuations in the local observables in the subsystem, e.g.,
magnetization in a spin system or particle number in free
fermionic systems [26–31]. The relationship becomes a pro-
portionality for certain gapless models, and the proportionality
constant to leading order has also been obtained [30].

We adopt this quantity to study our long-ranged model, and
look at the scaling of the particle number fluctuations with the
subsystem size. The number fluctuations in the subsystem can
be calculated using the following relation:

δ2NA =
L∑

m=1

λm(1 − λm). (10)

This quantity also shows a similar scaling as SA with the
subsystem size [70], pointing to a proportionality between
them, even in this long-range off-critical model. We will
see that the proportionality constant offers a signature for
the localization-delocalization transition in the model though.
Likewise, the proportionality constant shows a sudden jump
at the phase transition in the AAH model as well, as will be
shown at the end of this section.

C. Entanglement contour and fluctuation contour

In this subsection we will define and study the entangle-
ment contour [32] and the fluctuation contour [33]. These
quantities contain microscopic details of entanglement and
number fluctuations. Specifically, the contour keeps track of
the contribution from each site within the subsystem, to the
quantity under consideration. Entanglement contour is defined
as the contribution [Cs(i) � 0] from the degrees of freedom
at each site i in subsystem A to the entanglement entropy SA

such that SA = ∑
i∈A Cs(i). One can calculate Cs(i) using the

following relation [32]:

Cs(i) =
L∑

m=1

gi(m)Sm, (11)
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C
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(i)

σ=0.0
σ=0.5
σ=0.8
σ=1.0
σ=1.3
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FIG. 6. Spatial distribution of the scaled entanglement contour
Cs0(i) in the subsystem for different σ . The lattice size N = 2048
and number of disorder realizations is 100, used for the plot. Here i

is the site index in the subsystem and subsystem size L = N/2 for
half-filled fermions.

where Sm = −[λm log λm + (1 − λm) log(1 − λm)]. Here λm’s
are the eigenvalues of the correlation matrix C or the entan-
glement spectra. gi(m) describes the spatial pattern of the mth
normalized eigenstate |φ(m)〉 of matrix C and hence of the en-
tanglement Hamiltonian HA, i.e., gi(m) = |φi(m)|2. Similarly,
one can define the contour of subsystem particle-number fluc-
tuations (also called as fluctuation contour) Cn(i) = 〈δniδNA〉,
which is an obvious decomposition of the particle-number
fluctuations (δ2NA) in A such that δ2NA = ∑

i∈A Cn(i). In the
canonical ensemble δNA = −δNB . Then Cn(i) = −〈δniδNB〉.
So one can interpret Cn(i) as the correlation between number
(density) fluctuations at site i and those in the whole of
subsystem B. It can also be defined as [33]

Cn(i) =
L∑

m=1

gi(m)λm(1 − λm), (12)

where all the terms have the same meaning as defined previ-
ously.

It turns out that for free fermionic systems Cn(i) and Cs(i)
show similar spatial dependence [33]. Spatial dependence
of the scaled entanglement contour Cs0(i) = Cs(i)/Cs(1) of
the random long-range hopping model is shown in Fig. 6.
The scaled fluctuation contour Cn0(i) = Cn(i)/Cn(1) shows a
similar spatial dependence [70]. Since there are two boundaries
between two subsystems in a ring and because the entangle-
ment and the number fluctuations decay as one moves away
from the boundaries, contours are symmetric functions of sites
with respect to the midpoint of subsystem A. We fit the decay
of the entanglement contour with the function 1/xγ . Since the
entanglement entropy is the sum of all the contributions of the
entanglement contour, one may guess that the entanglement
entropy dependence should be given by the integral

∫
1
xγ dx,

which in turn suggests that the exponent β should be given by
β ≈ 1 − γ . Indeed, we find evidence for this (Fig. 7), deep in
the delocalized phase.

For a finer understanding of the entanglement contour at
the boundaries and in the bulk of the subsystem, the histogram
of Cs(i) is plotted in Fig. 8. In the delocalized regime, the
entanglement contour has a finite value at all the sites and
the histogram is a sharply peaked distribution, whereas the
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FIG. 7. The exponent β calculated from the subsystem scaling of
the entanglement entropy and the other exponent γ determined from
the decay of the entanglement contour in the subsystem are compared.
In this log-log plot Lβ (solid lines) and L1−γ (dashed lines) are plotted
to establish the relation β ≈ 1 − γ in the delocalized phase σ < 1.

distribution gets broadened and the peak shifts towards 0 as one
approaches the point of quasilocalization σ = 1 [Fig. 8(a)]. In
the quasilocalized regime the entanglement contour deep in the
bulk starts vanishing [Fig. 8(b)], which explains the validity
of the area law for larger subsystem size. In the localized
regime the entanglement contour almost vanishes in the whole
bulk region and one gets a strict area law in this regime. This
is also evident from the histogram for σ = 2.0 in Fig. 8(b)
which shows a sharp peak at 0 with almost no broadening.
The fluctuation contour also shows similar behavior as the
entanglement contour (not shown here).

Since the entanglement entropy and local number fluctua-
tions are intimately related, it is useful to study this relationship
at a microscopic level by calculating the ratio of the two
contours of the related quantities, i.e., K(i) = Cs(i)/Cn(i).
This ratio for increasing values of σ in the delocalized phase
is shown in Fig. 9(a). It reveals a uniform proportionality
between the two contours in the deep delocalized regime.
The proportionality becomes nonuniform as σ approaches the
transition point σc = 1. In the (quasi)localized regime this
nonuniformity becomes so much worse that we omit these
data in the interest of clarity. A histogram in Fig. 9(b) shows a
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FIG. 8. Histogram of the scaled entanglement contour Cs0(i) (a)
in the delocalized phase (σ < 1) and (b) in the (quasi)localized phase
(σ > 1), respectively. For both the plots spinless fermions at half-
filling are considered in a system of size N = 2048. Here i indicates
sites in the subsystem, whose size L = N/2 and number of disorder
realizations is 100.
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FIG. 9. (a) Spatial distribution of the ratio of two kinds of contour
K(i) of half-filled fermions for increasing σ in the delocalized phase.
(b) The corresponding histogram of K(i). Here lattice size N = 2048
and i is the site index within subsystem L = N/2 and number of
disorder realizations is 100.

peaked distribution of K(i) for smaller σ and the distribution
gets broadened with almost a vanishing peak for larger σ .

Next we study the proportionality constant K of the rela-
tionship SA = Kδ2NA for free fermionic models. In a gapless
system, SA ∝ log L and K = π2/3 for a 1D Fermi gas as
shown in a recent article [30]. However, in a gapped system
K is not known in general; furthermore, K is not believed
to be a universal quantity. This motivates us to investigate
K in our long-range model. Though entanglement entropy
and number fluctuations in the subsystem vary in a similar
fashion with σ [Fig. 10(a)], near the transition they conspire
in such a way that the ratio of them leaves a signature for
the transition in the model [Fig. 10(b)]. The proportionality
constant K shows a maximum at σc = 1 and becomes almost
constant in the localized phase (σ > 2). Large error bars in
the (quasi)localized regime in Fig. 10(b) are a reflection of the
largely broadened distribution of K(i) in the same regime.

D. Comparison with the AAH model

In the following we have done a similar study as above
in the AAH model which is a short-range model that shows
a sharp localization-delocalization transition at finite disorder.
The AAH model can be described by a Hamiltonian of the same
form as Eq. (1) where tij = δi,j+1 and vi = λ cos(2πηi). Here

η is a “Diophantine number” (e.g.,
√

5−1
2 , inverse of the “golden

mean”) and λ is the strength of the quasiperiodic disorder
[24,25]. All the single-particle eigenstates get localized at
λc = 2 [71].
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N = 1024
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FIG. 10. (a) Variation of the entanglement entropy SA and number
fluctuation in the subsystem δ2NA of half-filled fermions with σ . Here
the system size N = 2048. (b) The ratio of the two quantities K as a
function of σ for different system sizes N . In both the plots subsystem
size L = N/2 and number of disorder realizations is 100.

125116-6



ENTANGLEMENT CONTOUR PERSPECTIVE FOR “STRONG … PHYSICAL REVIEW B 97, 125116 (2018)

1 10 100
L

0

1

2

3

S A

λ = 0.0
λ = 1.0
λ = 1.5
λ = 2.0
λ = 2.5

(a)

0 100 200 300
i

π2/3

6

9

K
(i)

λ = 0.0
λ = 1.0
λ = 2.0
λ = 2.1

(b)

3 6
K(i)

0

5

10

15 λ = 0.0
λ = 1.0
λ = 2.0
λ = 2.1

(c)

∆Κ

FIG. 11. Results from the 1D AAH model. (a) Scaling of the
entanglement entropy SA with the subsystem size L for increasing
λ. The x axis is plotted in log scale. (b) The ratio of entanglement
contour to fluctuation contour K(i) in the subsystem for different λ.
(c) The corresponding histogram of K(i). For the plots (a)–(c) N =
610. (d) Proportionality constant K as a function of λ for increasing N .
The inset is a fit to the �Kc vs 1/N data points (black square), where
�Kc = K(λ = 2.025) − K(λ = 1.975). The red curve represents the
fitting curve given by �Kc = 1.12 − 5.47/N0.51. For all the plots, the
subsystem size L = N/2 [except for (a)] for fermions at half-filling.

Our results for the Harper model are summarized in Fig. 11.
In the tight-binding model without any disorderSA ∼ log L. As
the quasiperiodic disorder is turned on, in the delocalized phase
(λ < 2) SA retains the factor of log L which is a modulated
area-law behavior and in the localized phase (λ � 2) SA shows
a strict area law, as shown in Fig. 11(a). In the delocalized
regime K(i) is close to π2/3 in the bulk, whereas as one
enters the localized regime it is no longer a constant and starts
fluctuating [Fig. 11(b)]. This is also evident from the histogram
of the same quantity. The distribution gets broadened and the
peak almost disappears in the localized phase Fig. 11(c). Also
K shows a jump at the transition point λc = 2 [Fig. 11(d)]. We
define �Kc = Kλ=2+δλ − Kλ=2−δλ near the quantum critical
point λc = 2, the scaling of which with the system size N is
well fitted by the functional form �Kc = 1.12 − 5.47/N0.51

for δλ = 0.025 [the inset of Fig. 11(d)]. As N → ∞, �Kc =
1.12. So when δλ → 0, dK/dλ will diverge to ∞ at λc = 2
and hence the K vs λ plot will become vertical at λc = 2
in the thermodynamic limit. The proportionality constant K

indeed captures transitions in the system although it changes
differently in the two models studied here.

IV. NONEQUILIBRIUM DYNAMICS

Having studied the static quantities to analyze different
phases, in this section we investigate the dynamical properties
of the model. A nonequilibrium situation can be created by
changing a parameter of the Hamiltonian, locally or globally,
through adiabatic or sudden processes. Here we study the
dynamics of entanglement entropy following a sudden global
quench in the bond-disordered long-range model and compare
the results with those of charge transport in the system. We
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σ = 1.3
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FIG. 12. (a) Quench dynamics of the entanglement entropy SA

of half-filled fermions with time (in units of J −1) for increasing σ

from an initial DW type state. (b) Similar plot for subsystem number
fluctuations δ2NA. For both the log-log plots N = 2048, L = N/2,
and number of disorder realizations is 100. The thick line segment
shows linear dependence on time for comparison.

also briefly discuss correlation transport in the system in
the context of velocity bounds on transport and the related
light-cone picture [44]. We calculate the growth of bipartite
entanglement entropy SA(t) = −Tr{ρA(t) ln[ρA(t)]}, between
two halves of the system A and B for our model at half-filling.
The data we present are with an initial state of the density-
wave (DW) type |	〉 = ∏

i c2i
† |0〉, which is evolved under

the Hamiltonian at a particular σ [72]. The DW state can be
achieved by turning on an additional strong repulsive nearest
neighbor interaction and then suddenly turning it off. We have
checked that qualitatively similar results are obtained when
the initial state is the many-body ground state of half-filled
fermions corresponding to the Hamiltonian at σ = 2.5, with a
quench carried out to various other values of σ . To calculate
entanglement entropy, we use standard free fermion techniques
[63,72] (see Appendix C for details). Variation of SA(t) with
time for the DW type of initial state is shown in Fig. 12(a).
The entanglement entropy varies with time in faster-than-linear
fashion for σ < 1 before it saturates, indicating the existence
of a nonequilibrium steady state. In the (quasi)localized regime
(σ > 1), after a superballistic transientSA(t) goes in a sublinear
fashion with time before reaching a saturating steady state. In
the delocalized phase, the saturation value S∞

A barely changes
withσ ; however in the quasilocalized phase,S∞

A decreases with
increasing σ . In the localized phase (σ > 2) the entanglement
growth becomes substantially suppressed as compared to the
corresponding translationally invariant nearest neighbor model
[73], where the entanglement entropy reaches the saturation
at a time tsat ∼ L/2. Also the saturation values of SA in the
localized phase are negligibly small. The number fluctuations
δ2NA, which are essentially density-density correlations, re-
veal similar dynamics as SA(t) [Fig. 12(b)].

In short-range models with translational invariance, fol-
lowing a global quench correlation transport happens with a
constant velocity, defined as the Lieb-Robinson bound [44],
giving rise to a sharp causal light-cone-like view of the cor-
relation transport in space-time, outside of which correlations
are exponentially suppressed [38]. This leads to linear growth
of entanglement entropy in such models [73]. Breaking of
translation invariance in short-range models can give rise to
a much slower light cone, e.g., a logarithmic light cone in the
Anderson-localized phase [74] and hence the entanglement
entropy also shows a slow growth. More than a linear growth
of the entanglement entropy with time indicates the violation
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FIG. 13. (a)–(c) Surface plot showing the spreading of the amount of correlation log10 |Cd (t)| in time (in units of J −1) and the lattice distance
d for σ = 0.8, 1.3, 2.1, respectively. Here d = |i − j | is the lattice distance between sites i and j . The colors represent different ranges of
values of the correlation, indicated in the bar legend attached to each figure—the numbers mentioned in the bar legend are the powers to be
which ten is raised. For all the plots half-filled fermions are studied with N = 2048, L = N/2, and number of disorder realizations is 100. The
initial state is the DW state, described in the text.

of the picture based on Lieb-Robinson bounds, which also
bound the rate of growth of the entanglement. This kind of
violation has actually been seen very recently in ultracold
ionic experiments with translationally invariant long-range
interacting spin models [37,45]. Also theoretical investigations
have been carried out for translationally invariant long-range
free fermionic models in this context [46–48]. To test the
validity of the light-cone picture for correlation transport in
our long-range free fermionic model with disordered hopping,
we calculate the two-point correlation function Cd = 〈ci

†cj 〉 as
a function of time (tJ ) and distance (d = |i − j |) between the
sites i and j inside the subsystem as depicted in the surface plot
in Fig. 13. At time tJ = 0 the correlation matrix is diagonal
with zero off-diagonal elements due to the product state
structure of the initial DW state and the entanglement entropy
is zero. At later times, different sites at distance d = |i − j |
start getting correlated. The correlation transport is more than
linear or superballistic in nature within very short time scales
tJ ∼ 1, which shows up as a transient in the quasilocalized
(1 < σ < 2) and localized (σ > 2) phases. However, in the
delocalized phase, the superballistic part is predominant as the
time scale for the saturation of entanglement is shorter (tsatJ ∼
1). This explains the superballistic entanglement growth in the
system and violation of the picture based on Lieb-Robinson
bounds. However, later time dynamics of the correlation
reveals different behaviors of the light-cone picture in three
different phases as we detail it in the following. As we can see
from Fig. 13(a) for σ = 0.8, one can still perceive sublinear
light cones in the delocalized regime. Sublinearity indicates a
decreasing velocity of the correlation transport with time as
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FIG. 14. (a) The single-particle entropy S
sp
A as a function of time

(in units of J −1) for increasing σ . (b) Similar plot for the width wsp

of the single-particle wave packet. The thick solid line shows the
linear dependence on time for comparison. For all the log-log plots
N = 2048, L = N/2, and number of disorder realizations is 100.

opposed to a constant velocity in the linear light-cone picture.
The light cone becomes more prominent and more sublinear
in the quasilocalized regime as can be seen in Fig. 13(b). Very
sharp sublinear light cones are visible in the localized regime
[Fig. 13(c)], where velocities of the correlation transport
depend on the threshold values of the correlation. Sublinearity
of light cones is more in this regime and hence the growth of
entanglement entropy is very slow in the same regime. Such
a change in light-cone picture from less prominent to more
prominent can be seen in the three regimes (σ < 1, 1 < σ < 2,
and σ > 2) also for the corresponding translationally invariant
long-range hopping model with initial DW state [46]. In
contrast to our model though, in the nondisordered model, all
the light cones look linear and the related velocity bounds on
the correlation transport decrease as σ decreases.

Next we will compare entanglement transport with charge
transport in the system at the single-particle and many-particle
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FIG. 15. (a) and (b) Variation of width w of the many-particle
wave packet and the occupation density of the initially occupied sites
nloc, respectively, with time (in units of J −1) for increasing σ . In the
delocalized phase nloc is just the filling fraction in the long-time limit.
(c) and (d) Variation of the entanglement entropy SA and number
fluctuations in the subsystem δ2NA, respectively, with time (in units
of J −1) for increasing σ . The thick solid line shows linear dependence
on time for comparison. For all the log-log plots N = 2048, L = N/2,
and number of disorder realizations is 100 for fermions with filling
fraction 0.1.

125116-8



ENTANGLEMENT CONTOUR PERSPECTIVE FOR “STRONG … PHYSICAL REVIEW B 97, 125116 (2018)

levels. Single-particle entanglement entropy S
sp
A is calculated

by choosing the subsystem A such that it continues to be half
the size of the total system, but it is now taken to be centered
around the initial localized wave packet in the middle of the
lattice. The dynamics of S

sp
A reveals superballistic nature in the

delocalized phase but in the (quasi)localized phase the initial
superballistic behavior is followed by a ballistic part before
saturation [Fig. 14(a)]. Also the average width of the initially
localized wave packet is calculated, which is defined as

wsp(t) =
√∑

i

(i − i0)2pi(t), (13)

where pi(t) = |ψi(t)|2 as also mentioned earlier and i0 is the
center of the lattice. The dynamics of the width in different
phases is shown in Fig. 14(b). In the (quasi)localized phase,
after a ballistic transient, wsp(t) goes sublinearly before it
reaches a saturation value and the exponent of the sublinear
variation decreases as σ increases. This signals a sharp contrast
between charge transport and entanglement dynamics even
within the single-particle picture. Although both the quantities
reach saturation at the same time, the saturation values decrease
abruptly with σ in the quasilocalized phase and becomes
vanishingly small in the localized phase.

We also study the expansion dynamics of a cloud of
fermions of a given filling and initial state in which fermions
sit around the center of the lattice. This type of initial state
can be prepared by switching on a trap potential and suddenly
switching it off to study the evolution of the system under
the quenched Hamiltonian. We calculate the expansion of the
width of the many-particle cloud, which can be quantified by
[75]

w(t) =
√

1

Np

∑
i

(i − i0)2〈ni(t)〉 − 1

Np

∑
i

(i − i0)2〈ni(0)〉,
(14)

where Np is the total number of particles and 〈ni〉 is the average
occupation at site i, whereas i0 is the center of the lattice.
Simultaneously another quantity nloc, which is the sum of the
occupation densities at the initially occupied sites, is also in-
vestigated as a function of time. This quantity is defined as [76]

nloc(t) = 1

Np

in. occ.∑
i

〈ni(t)〉. (15)

The width of the many-particle wave packet w in different
phases is shown in Fig. 15(a) and it shows the same qualitative
feature as wsp. The variation of nloc with time nicely matches
with the dynamics of w [Fig. 15(b)]. It decreases rapidly to the
saturation value, which is filling fraction in the delocalized
phase and barely changes in the localized phase. In the
quasilocalized phase, it saturates to an intermediate value,
which increases abruptly as σ increases in the same phase. Also
we calculate the entanglement entropy for the same initially
localized many-particle state by choosing a subsystem of L =
N
2 consecutive sites, whose center coincides with the center of
the lattice. It shows the same qualitative feature as S

sp
A [compare

Figs. 14(a) and 15(c)]. Therefore, similar to the single-particle
picture, there is a contrast between charge transport and
entanglement propagation in the many-particle picture. The
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FIG. 16. (a) and (b) Scaling of the saturation values of the
entanglement entropy S∞

A and width of the many-particle wave-packet
w∞, respectively, with the system size N . (c) and (d) Variation of S∞

A

and w∞, respectively, with σ . For (c) and (d) N = 2048. For all the
plotsL = N/2 and number of disorder realizations is 100 for fermions
with filling fraction 0.1.

number fluctuations also show similar dependence on time but
it is smoother than SA [Fig. 15(d)]. The roughness of SA and S

sp
A

may be an artifact to the special choice of the subsystem. This
whole analysis has been carried out at a filling of 0.1; however,
we have verified that there is no qualitative dependence of these
results on the filling fraction since there is no mobility edge in
the energy spectra. The saturation values of the many-particle
entanglement entropy and the width of the wave packet show
similar variation with the system sizes N [Figs. 16(a) and
16(b)]. In the delocalized phase both the quantities go linearly
with N , whereas in the quasilocalized phase the dependence
is sublinear and they become almost independent of N in
the localized phase. This is quite expected as it reflects the
sensitivity of the three phases to the boundaries of the system.
The variation of these two quantities with σ is shown in
Figs. 16(c) and 16(d) and they show similar dependencies. In
the delocalized phase both the quantities have almost constant
and very high values, whereas in the quasilocalized phase their
values decrease abruptly with σ and for large σ in the localized
phase, become tiny and almost σ independent.

V. CONCLUSION

To summarize, in this paper we study many static and
dynamical quantities to investigate the link between the
delocalization-localization transition and entanglement of
spinless fermions in a random long-range hopping model.
Within the system sizes used for numerical analysis, the system
shows a delocalized phase for σ < 1 and a localized phase for
σ > 2. One also obtains a quasilocalized phase for 1 < σ < 2,
as reflected by the level-spacing ratio and wave-packet dynam-
ics, but this phase may vanish in the thermodynamic limit as
hinted in the plots of level-spacing ratio for different system
sizes. Scaling of the entanglement entropy with subsystem
size reveals strong area-law violation in the delocalized phase,
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whereas the (quasi)localized phase seems to adhere (for larger
subsystems) strictly to the area law. In addition to the eigenval-
ues of the entanglement Hamiltonian, the maximally entangled
mode or the zero mode of the entanglement Hamiltonian,
also captures the localization transition, despite it being a
nontopological system. The entanglement contour, which is
constructed out of both the eigenvalues and the eigenfunctions
of the entanglement Hamiltonian, gives a picture of the spatial
distribution of entanglement inside the subsystem and nicely
explains the violation of the area law in the system. Particle-
number fluctuations in the subsystem have similar dependence
on space and time as the entanglement entropy. The ratio of
these two quantities shows a sharp signature at the point of the
localization transition. However, the nature of this signature
is dependent on the model in question as it is different in the
AAH model from our long-range model. The distribution of
the ratio of the entanglement contour to the fluctuation contour
is sharply peaked in the delocalized phase but the peak starts
vanishing as one goes into the (quasi)localized phase.

Also we study quench dynamics and wave-packet dynamics
of fermions at the single-particle and many-particle levels. At
both the levels the entanglement propagation and the charge
transport show a sharp contrast. Entanglement entropy shows
superballistic behavior both in the delocalized phase and
the (quasi)localized phase, although this appears only as a
transient in the latter. This superballistic behavior is attributed
to the picture based on the Lieb-Robinson bounds for the
spreading of correlation post a global quench. Contrastingly,
the width of the wave packet varies ballistically with time in
the delocalized phase while in the (quasi)localized phase after
ballistic transient it shows a subballistic behavior with time
before it saturates. In a short-range model with disorder, the
light-cone picture is valid, and therefore the time dependence
of entanglement entropy is always subballistic in general.
However, in our model long-range couplings give rise to
superballistic behavior. The saturation values of the width and
entanglement entropy show similar dependence as a function
of the system size and σ reflecting the presence of three phases
in finite systems.

In our study, we have been able to explain the strong
area-law violation in our long-range model by implementing
the idea of entanglement contour and connect them to the
delocalization-localization transition in the system by studying
quench and wave-packet dynamics. We hope that our results
regarding the relationship between entanglement entropy and
number fluctuations will help boost the possibility of indirect
measurement of entanglement in experiments. Also we have
shown explicitly the contrast between charge and entanglement
transport, which is one of the current topics of interest. As a
future possibility, one can also look for many-body localized
phases in an interacting version of this model. We hope that
our work can trigger experimental studies of the disordered
long-range model in ongoing ionic trap experiments.
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APPENDIX A: SINGLE-PARTICLE ENTANGLEMENT
ENTROPY

Here we provide a detailed discussion about the methodolo-
gies used in the paper to calculate, namely, the single-particle
entanglement entropy (Appendix A), the fermionic entangle-
ment entropy (Appendix B), and nonequilibrium dynamics of
the entanglement entropy (Appendix C).

A normalized single-particle eigenstate |ψ〉 can be ex-
pressed as

|ψ〉 =
∑
i∈A

ψici
† |0〉A ⊗ |0〉B +

∑
i∈B

ψi |0〉A ⊗ ci
† |0〉B ,

(A1)
where |0〉A = ⊗

i∈A
|0〉i and |0〉B = ⊗

i∈B
|0〉i .

We define |1〉A = 1√
pA

∑
i∈A ψici

† |0〉A and |1〉B =
1√
pB

∑
i∈B ψici

† |0〉B .

Here pA = ∑
i∈A |ψi |2, pB = ∑

i∈B |ψi |2, and
pA + pB = 1.

Notice that 〈0|0〉A = 〈0|0〉B = 1 and 〈1|1〉A = 〈1|1〉B = 1.
We can now write Eq. (A1) as

|ψ〉 = √
pA |1〉A ⊗ |0〉B + √

pB |0〉A ⊗ |1〉B . (A2)

The density matrix of the full system ρsp = |ψ〉 〈ψ |.
The reduced density matrix of subsystem A ρ

sp

A = TrB[ρsp],
which is given by

ρ
sp
A = pA |1〉A 〈1|A + pB |0〉A 〈0|A . (A3)

Single-particle entanglement entropy S
sp
A = −Tr[ρsp

A

ln(ρsp
A )], which can be written as

S
sp
A = −pA ln pA − pB ln pB. (A4)

APPENDIX B: FERMIONIC ENTANGLEMENT ENTROPY

In the following we explain the methodology to calculate
entanglement entropy of Np noninteracting spinless fermions
in the ground state of a 1D lattice of N sites under periodic
boundary condition. The generic Hamiltonian is given by

H1 =
N∑

i,j=1

tij c
†
i cj + H.c. (B1)

The diagonal form of the Hamiltonian is given by

H1 =
N∑

k=1

εkb
†
kbk, (B2)

where bk = ∑N
j=1 ψj (k)cj .

We calculate the entanglement entropy for the fermionic
ground state, which is defined as

|	0〉 =
Np∏
k=1

b
†
k |0〉 . (B3)
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Due to Slater determinant structure of |	0〉, all higher corre-
lations can be obtained by two-point correlation Cij = 〈c†i cj 〉
[63–65]. The density matrix of the full system ρ = |	0〉 〈	0|
and the reduced density matrix of subsystem A ρA = TrB(ρ).
By definition a one particle function, in this case a two-point
correlation in the subsystem, can be written as

Cij = Tr[ρAc
†
i cj ]. (B4)

However, this is possible according to Wick’s theorem only
when the reduced density matrix is the exponential of free
fermionic operator [63],

ρA = e−HA

Z
, (B5)

where HA = ∑L
i,j=1 HA

ij c
†
i cj is called the entanglement

Hamiltonian, and Z is obtained to satisfy the condition
Tr[ρA] = 1.

The entanglement Hamiltonian can be written in the diag-
onal form as

HA =
L∑

k=1

hka
†
kak, (B6)

where ak = ∑L
j=1 φj (k)cj . The reduced density matrix is then

given by

ρA = exp
[ − ∑L

k=1 hka
†
kak

]
∏L

k=1[1 + exp(−hk)]
. (B7)

Using Eq. (B7) we can write Eq. (B4) as

Cij =
L∑

k=1

φ∗
i (k)φj (k)

1

ehk + 1
. (B8)

This shows the matrices C and HA share the eigenstate |φk〉
and their eigenvalues are related by

λk = 1

ehk + 1
, (B9)

where λk’s are eigenvalues of matrix C in the subsystem.
The entanglement entropySA = −Tr[ρA ln(ρA)], which can

be simplified [77] using Eqs. (B7) and (B9) as

SA = −
L∑

k=1

[λk log λk + (1 − λk) log(1 − λk)]. (B10)

APPENDIX C: NONEQUILIBRIUM DYNAMICS
OF FERMIONIC ENTANGLEMENT ENTROPY

In this Appendix we discuss how to calculate dynamics
of fermionic entanglement entropy in our model, under the
Hamiltonian H and an initial many-particle state |	in〉, which
is not the many-particle ground state of H. The Hamiltonian

is given by

H =
N∑

i �=j

tij c
†
i cj + H.c. (C1)

The Hamiltonian can be written in the diagonal form, which is
given by

H =
N∑

k=1

εkb
†
kbk, (C2)

where bk = ∑N
j=1 ψj (k)cj . Assuming h̄ = 1, the time evolu-

tion of the Heisenberg operators bk(t) is given by

ḃk = 1

i
[bk,H]

= 1

i
εkbk. (C3)

Hence, bk(t) = e−iεk t bk(0).
Here, for example, we consider a density-wave (DW) type

of initial state, defined as

|	in〉 = c
†
2c

†
4 · · · c†N |0〉 , (C4)

where lattice sites N is even and number of fermions Np =
N/2.

In order to calculate the dynamics of the entanglement
entropy one first constructs an L × L correlation matrix within
the subsystem A or B, i.e., Cij (t) = 〈	in| c†i (t)cj (t) |	in〉,
where i,j ∈ A. Below we detail the the calculation of
〈	in| c†i (t)cj (t) |	in〉:

〈	in| c†i (t)cj (t) |	in〉

=
N∑

k,k′=1

ψi(k)ψj (k′)e−i(εk−εk′ )t 〈	in| b†k′(0)bk(0) |	in〉

=
N∑

k,k′=1

N∑
i ′,j ′=1

ψi(k)ψj (k′)ψ∗
i ′ (k)ψ∗

j ′(k′)e−i(εk−εk′ )t

×〈	in| c†i ′cj ′ |	in〉

=
N∑

k,k′=1

N∑
i ′=2,4,...

ψi(k)ψj (k′)ψ∗
i ′ (k)ψ∗

i ′ (k
′)e−i(εk−εk′ )t .

(C5)

The fermionic entanglement entropy SA(t) following the diag-
onalization of the L × L correlation matrix is given by

SA(t) = −
L∑

m=1

[λm log λm + (1 − λm) log(1 − λm)], (C6)

where λm’s are the eigenvalues of the subsystem correlation
matrix.
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