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Pauli metallic ground state in Hubbard clusters with Rashba spin-orbit coupling
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We study the “phase diagram” of a Hubbard plaquette with Rashba spin-orbit coupling. We show that the
peculiar way in which Rashba coupling breaks the spin-rotational symmetry of the Hubbard model allows a
mixing of singlet and triplet components in the ground state that slows down and changes the nature of the Mott
transition and of the Mott insulating phases.
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I. INTRODUCTION

Spin-orbit coupling (SOC) refers to the entanglement be-
tween the spin and the orbital degrees of freedom of electrons
dictated by the Dirac equation [1]. Affecting the most funda-
mental symmetries of the Hamiltonian, SOC may give rise to
new states of matter [2,3] and open new transport channels [4].
Over the years, it has been shown to have profound effects on
the phase diagram of correlated insulators [5,6] to significantly
modify the transport properties of disordered metals [7] and to
change the nature of the superconducting state [8,9], just to
mention few examples.

The manifestations of SOC in solids and heterostructures
are intimately related to the structure and symmetries of their
low-energy Hamiltonian. In bulk oxides with 5d electrons, the
main source of SOC is the atomic contribution which acts
“locally,” modifying the ordering and degeneracy of the atomic
orbitals [6], and it competes with Hund’s exchange coupling to
determine the electronic properties of the material [10–12]. A
somewhat complementary situation arises in weakly correlated
materials where SOC yields nonlocal spin-dependent effects
and it induces nontrivial modifications of the band structure.
In these regards, a paradigmatic example is represented by
Rashba SOC [13,14].

The latter arises in systems where structural inversion sym-
metry is broken, as it happens in heterostructures or quantum
wells, and it has long been at the focus of intense research
efforts [15] since, due to its tunability, it holds promises for
spintronics [16] and quantum device applications.

Recently, the discovery that large values of Rashba cou-
pling can be achieved going outside the realm of weakly
correlated metals and semiconductors at the interface between
complex oxides [17,18], in organic halide perovskites [19,20],
on the surfaces of antiferromagnetic insulators (AFIs) [21],
and in the bulk [22,23], and on the surface [24,25] of polar
materials opened up new research avenues for solid-state
physics. Remarkable examples are the connection between
ferroelectricity and the Rashba interaction in GeTe [26] or
the temperature-dependent interplay of Rashba coupling and
magnetic interactions found in HoRh2Si2 [21]. In this context,
understanding the role of electronic correlation in Rashba-
coupled materials has become of crucial relevance. What

makes this task even more intriguing is the possibility to
investigate how spin-dependent transport [4] and topological
phases [3] are affected by the presence of strong electron
correlation and, conversely, how the physics of Mott metal-
insulator transition and of Mott insulators can change in the
presence of relativistic spin-dependent tunneling terms. Beside
its fundamental relevance, an understanding of this interplay
would help to design new devices that exploit the tunability of
Rashba SOC and the high susceptibility of correlated materials.

II. MODEL AND SYMMETRIES

We consider the simplest model featuring the interplay
between Hubbard-like interactions and a Rashba SOC:

H = −t
∑
〈ij〉

c
†
i cj − tR

∑
〈ij〉

c
†
i (�αij × �σ )zcj + U

∑
i

ni↑ni↓,

(1)

where �σ is the vector of Pauli matrices, �σ = (σx,σy,σz), c
†
i

and ci are spinor creation and annihilation operators, niσ =
c
†
iσ ciσ , and we introduced the vector �αij = (αx

ij ,α
y

ij ,0), with
α

μ

ij = i(δij+aμ
− δij−aμ

) and aμ denoting the unitary translation
in the μ direction.

The model depends on three energy scales: the Hubbard
on-site interaction, U , the standard hopping t , and the “Rashba
tunneling amplitude,” tR , quantifying the energy associated
with spin-flipping hopping events. The strong-coupling limit,
U � t,tR has been considered in Refs. [27–29]. There the au-
thors show that tR yields a generalized Heisenberg model with
Dzjaloshinskii-Moriya and compass interactions [5], and they
consider superconductivity [27] and the spin-wave spectrum
[28,29]. In Ref. [30], instead, cluster dynamical mean-field
theory [31] is employed to map out the phase diagram of the
model, showing that SOC favors a metallic phase at weak
coupling and discussing various magnetic orders that arise in
the insulating regime.

In the present paper, to gain a deeper physical under-
standing, we solve [32] a 2 × 2 Rashba-Hubbard plaquette as
depicted in Fig. 1(a). Featuring two spatial directions along
which the electrons can hop, this is essentially the minimal
system where the chiral nature of Rashba coupling can emerge
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FIG. 1. (a) Spin structure of the Rashba spin-orbit coupling
Hamiltonian. (b) Eigenvalue crossing induced by spin-orbit coupling
at U = 8t . (c) Discontinuity of the bond spin and charge across the
transition. (d) Total spin of the plaquette in the states with s and d

symmetries. In all panels, dashed and solid lines indicate, respectively,
the ground and excited state energies. Light gray lines represent the
noninteracting results in panels (b) and (c).

[33,34]. Furthermore, its Hamiltonian can be diagonalized
analytically both at U = 0 and at tR = 0 [35,36].

We start by discussing the symmetry properties of the
model. Since the Rashba SOC induces a SU(2) gauge structure
on the lattice [37,38], similar to what happens in the presence
of U(1) gauge fields [39], the lattice translation group must
be defined properly. In particular, in the case of the plaquette,
the presence of SOC implies that all the symmetries of the
D4 dihedral group have to be combined with appropriate spin
rotations to leave the Hamiltonian invariant. The explicit form
of these discrete transformations is, in the case of rotations,

H = Uθ
† H Uθ with Uθ = RL(θ ) ⊗ e−i θ

2 σz , (2)

where RL(θ ) rotates clockwise the whole plaquette state by
an angle θ = nπ/2, with n integer. As discussed in details
in Appendix A, the single-particle eigenstates of the nonin-
teracting Hamiltonian can be thus classified according to the
corresponding quantum numbers and they show a twofold
degeneracy because of time-reversal symmetry. This implies,
in particular, that in the absence of interaction, i.e., for U = 0,
at half-filling the ground state has s-wave symmetry, i.e., it
is invariant under π/2 rotation of the plaquette. The first
two Kramers degenerate doublets, filled in at half-filling, are
indeed formed by states acquiring opposite phases under π/2
rotations. At U = 0, s-wave symmetry of the ground state
can be thus traced back to time-reversal symmetry and, in
particular, to Kramers degeneracy.

Interestingly, interactions modify this picture. In fact, in
the presence of interaction, at half-filling, all states become
intrinsically many-body and, since they have an even number
of electrons, they do not possess Kramers degeneracy, the

symmetry of the ground state under rotations may thus change
and the structure of the spectrum is modified, as we show
in the following by direct numerical diagonalization of the
Hamiltonian.

The symmetries of the Hamiltonian also constrain the
average values of the observables. Here we consider the bond
charge, or bond-resolved kinetic energy, ρij = 〈(c†i cj + H.c)〉
and the spin current 〈jμ

ij 〉 = −〈(i c
†
i σμcj + H.c)〉, with i and

j indicating different lattice sites and μ = x,y,z. Rotational
symmetry implies that the bond charge and the z component of
the spin current are the same for all the bonds of the plaquette.
The value of the x and y components of the spin current instead
depend on the orientation of the bond. Bonds directed along
x feature a nonzero 〈jy〉 and a vanishing 〈jx〉 while bonds
directed along y have a nonzero 〈jx〉 and a vanishing 〈jy〉. The
invariance under Uπ/2 in particular yields 〈jy

12〉 = 〈jx
23〉 while

reflection symmetry implies 〈jx
12〉 = 〈jy

23〉 = 0. Eventually, the
different components of the current are related by a continuity
relation

t
〈
j

y

12

〉 = tR
〈(
ρ12 − jz

12

)〉
. (3)

The symmetry constraints and the continuity equation are
derived in Appendix B.

Let us now discuss the properties of the ground state. At
tR = 0 and finite U and t we recover a Hubbard plaquette,
whose ground state is a spin-singlet with d-wave symmetry
[35,36] and in the large U/t limit it evolves into a short-range
resonating valence bond (RVB) state [40,41].

As we increase the Rashba amplitude tR , a second state
having s-wave symmetry, therefore more similar to the nonin-
teracting ground-state induced by the Rashba coupling, starts to
compete with the d-wave RVB-like state. At a certain critical
value of tR = t∗R(U ), a level crossing occurs and the ground
state changes from the RVB-like ground state to the s-wave
state, as shown in Fig. 1(b), and it yields a discontinuous
behavior in various physical quantities. As an example, in
Fig. 1(c) we show the nonzero components of the spin current
〈jμ〉 and of the charge on the 1-2 bond. The latter basically
measures the expectation value of the kinetic energy. Beside
the discontinuity at tR = t∗R , in Fig. 1(c) we notice that, as
the ratio tR/t increases, the current becomes completely spin
polarized and the bond charge associated to spin-conserving
tunneling events is strongly suppressed. The relation between
the two behaviors is controlled by the continuity Eq. (3).

III. PAULI METAL

Figures 1(b) and 1(c) demonstrate the presence of a change
in the structure of the ground state, illustrating its most evident
consequences. We now discuss the origin of this transition and
the nature of the two competing states. To this end, we recall
that since SOC breaks spin-rotational symmetry, the total spin
S2 = 〈�S · �S〉 with Sμ = ∑

i c
†
i σμci of the system is not a good

quantum number. Both states therefore are a mixture of singlet
and triplet components with total spin projection Sz = 0. Time-
reversal symmetry indeed forbids the mixture of states having
Sz = 0 with states having Sz 
= 0. The total spin S2 in the s-
and d-wave ground states is shown in Fig. 1(d) as a function of
U . There we see that the total spin, and thus the weight of the
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FIG. 2. Left panels (a), (c): Log-log plot of the behavior of the
kinetic-energy-reduction factor, q, and of charge gap, �c = EN+1 +
EN−1 − 2EN , as a function of U for different values of spin-orbit
coupling. Right panels (b), (d): density plot of the magnetization and
absolute value of the second derivative of the charge gap with respect
to U , |∂�c/∂U 2| in the plane U/t , tR/t .

triplet, is much larger in the state with s symmetry. This can
be easily understood considering that, due to Pauli principle,
forming a triplet with d symmetry requires the occupation of
states with higher momentum and higher energy than in the
case of s-wave symmetry. In Fig. 1(d), we also notice that in
both states S2 increases with U and it saturates in the large U

limit.
This suggests the following qualitative picture. For a finite

value of Rashba SOC and small U , the ground state has s

symmetry; as we increase U , the system exploits the additional
degree of freedom given by the breaking of SU(2) spin symme-
try to screen the effect of the Hubbard interaction increasing
the weight of high-spin configurations. This metallic state
exploits Pauli principle to override the effect of the Hubbard
repulsion and we label it as a “Pauli metal.” Such Pauli-
enabled screening happens both in the ground (s-wave) and
in the excited (d-wave) state; it is, however, more efficient
in the s-wave ground state since, as explained above, in this
state the triplet component can be much larger.

The existence of this Pauli metal has profound conse-
quences on the Mott transition. A first marker of Mott localiza-
tion in our small cluster is the kinetic-energy-reduction factor
with respect to the noninteracting value q = ρ12/ρ

(0)
12 , which

we report in Fig. 2(a) (notice that the U axis has a logarithmic
scale) for the two competing states and, for reference, for the
case without Rashba coupling. The reduction of q measures the
correlation-driven localization of the carriers. A Mott transition
would correspond to a vanishing q which, however, cannot be
realized in our finite-size system, even if a clear crossover takes
place between a weak-coupling regime whereq changes slowly
with U and a strong-coupling regime where q drops faster.

The plot clearly shows that the Rashba coupling leads to
a larger value of q with respect to tR = 0 for both solutions
because of the Pauli-screening mechanism, which increases
the metallic character and pushes the Mott transition to larger
values of U . Interestingly, the s-symmetry solution is the least
correlated at small U while the d-symmetry ground state is
the least correlated for large U . Therefore, on both sides of
the level crossing, the system is in the most metallic of the two
states. As we show below, depending on the value of tR/t , Mott
localization may or may not coincide with the level crossing
between the two states.

To better estimate a critical value Uc(tR) for the onset of
Mott localization, we consider the charge gap �c ≡ EN+1

0 +
EN−1

0 − 2EN
0 , where EM

0 denotes the energy of the M-particle
ground-state. In Fig. 2(c), we show a log-log plot of the charge
gap as a function of U/4t for two different values of tR 
= 0,
as opposed to the case tR = 0 (solid black line); where �c

is linear in U for every value of the interaction, we find a
rather well defined crossover. For small values of U , when the
system is in the s-wave state and Pauli screening is effective,
the gap is essentially independent on U , indicating that it is
simply the finite-size gap of our plaquette, which would vanish
in the thermodynamic limit, while for U > U ∗, the gap is
linear in U as expected in a Mott insulator. This shows that
the Pauli screening qualitatively affects the metallic state and
therefore leads to a much better defined Mott transition than
in the standard Hubbard model.

Moreover, for small tR [tR = 0.6t in Fig. 2(c)], the localiza-
tion transition coincides with the level crossing in the ground
state, and the insulating state has d-wave symmetry, while for
large tR [tR = 1.5t in Fig. 2(c)], Mott localization occurs as a
crossover within the s-wave symmetry state. In this case, the
sudden change from s to d shifts to extremely large values of
U . For example, for tR = 1.5 t we find U ∗ > 40t .

To illustrate the general structure of the phase diagram in the
{U,tR} plane in Fig. 2(d), we show a plot of the absolute value
of the second derivative of the charge gap with respect to U , i.e.,
|∂2�c/∂U 2|. Both the level crossing between s and d states and
the Mott transition yield a change of slope in the dependence of
the gap on U and thus a peak in its second derivative. However,
as one can see in Fig. 2(d), the Mott crossover is not sharp but
it yields a very broad peak and it appears, in the plot, as a
halo (highlighted by the dashed line) located just below the
level crossing from s to d wave that obviously gives rise to
a sharp change of the observables. Going to much larger U ,
we notice a very weak but sharp change in the gap, which is
associated to the onset of Nagaoka’s ferromagnetism [42] in
the ground states with N ± 1 electrons. In Fig. 2(b), we show
how the physics we described reveals in the total ground-state
spin, which clearly has a substantial jump at the level crossing.

IV. PHASE DIAGRAM

The whole behavior of the plaquette ground state may
be summarized by drawing a phase diagram in the {U,tR}
plane. To this end, we notice that the symmetry of the Mott
insulating state (s or d) leads to distinctive magnetic orderings
in the strong-coupling region. The different orderings are
characterized in Fig. 3, where we show the spin-spin corre-
lation functions, 〈Sμ

i S
μ

j 〉, along the 1-2 bond. This information
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FIG. 3. Spin-spin correlation functions along the bonds directed
along x as a function of U/t (a) and of tR/t (b).

is sufficient to reconstruct the spin-spin correlations across
the whole plaquette even if, due to the presence of Rashba
coupling, the spin-spin correlation functions are anisotropic
in spin space and they depend on the direction of the bond.
Indeed, using the symmetry properties discussed above, one
can easily show that the spin-spin correlation for orthogonal
bonds in the x-y plane may be obtained one from the other
by exchanging the x and y components of the spin, so, for
example, 〈Sx

1 Sx
2 〉 = 〈Sy

2 S
y

3 〉.
In Fig. 3, we can clearly identify two cases: (i) For small

tR at large U , the ground state has d-wave symmetry and, as
shown in Fig. 3(a), the spin-spin correlations are all negative,
implying an anisotropic antiferromagnetic order that reduces to
the standard isotropic one as tR → 0, as shown in Fig. 3(b). (ii)
For large U and tR > t∗R , we instead have an insulating state
having s-wave symmetry. In this case, on each bond the in-
plane spin-spin correlations, 〈Sx

i Sx
j 〉 and 〈Sy

i S
y

j 〉, have opposite
signs, while the 〈Sz

i S
z
j 〉 spin-spin correlation becomes positive,

which corresponds, taking into account the symmetries, to a
spin-vortex magnetic order for the in-plane spin component
and a ferromagnetic order for the z spin-component. In this
case, reducing tR to a value closer to t∗R distorts the spin-vortex,
yielding a striped magnetic ordering. See the upper panel of
Fig. 4 for a schematic graphical illustration of the different
orders.

The above results are summarized in the lower panel of
Fig. 4, where we show a qualitative phase diagram of the
plaquette ground-state. For U < Uc and finite tR , we find the
Pauli metallic ground state; at larger U the system undergoes
a transition to a localized state. The localized state may have
s or d symmetry depending on the value of tR . In the former
case, the transition from the Pauli metallic ground state to the
localized state is continuous, as indicated by the dotted line
while in the latter it becomes a sharp level crossing. At large
U and tR < t∗R(U ), as we increase tR , we find a continuous
transition from an isotropic AFI to a more and more anisotropic
antiferromagnet. At tR = t∗R(U ), the system undergoes a sharp
change to an insulating ground state having symmetry s and a
striped magnetic order. At this point, a further increase of the
Rashba coupling tends to deform the spin texture of the ground
state, yielding a spin-vortex magnetic order for tR � t∗R . We
remark that, as shown in Fig. 4, while the transition between
the antiferromagnetic and the striped magnetic order is sharp,
since it implies a change of the ground-state symmetry, the
transition between the striped and and the spin-vortex ground

FIG. 4. Qualitative phase diagram of the Rashba-Hubbard pla-
quette in the {U,tR} plane. The spin patterns characteristic of the
four regions are schematically depicted just above the corresponding
regimes.

states is a smooth crossover since these two states have the
same topology.

V. CONCLUSIONS

In this paper, we have solved by a combination of sym-
metry arguments and exact numerical diagonalization, a 2 ×
2 plaquette with Hubbard and Rashba spin-orbit interac-
tions and we have shown that the Rashba coupling pro-
motes a Pauli-screening mechanism, which leads to a novel
metallic state, which is shown to be significantly more ro-
bust to Mott localization with respect to the pure Hubbard
model.

The Mott crossover is not the only correlation-driven
process of the present model, which shows a level crossing
between an s-wave state stabilized by the SOC and a d-wave
state, which is closer to the result for the pure Hubbard
model. The transition has a profound impact on the properties
of the Mott insulator and its magnetic ordering. While, for
large U and small tR , the Mott insulator has a standard
G-type antiferromagnetic ordering with only a quantitative
anisotropy between the different spin components, for large
tR , a phase with a spin-vortex texture is found along the x and
y directions while the z component retains antiferromagnetic
ordering.

The spirit of this paper is to solve exactly a minimal cluster
where Rashba coupling and Hubbard interaction may have a
nontrivial interplay. Future calculations using quantum cluster
methods will help us to elucidate how the physics discussed
in the present paper evolves when the system size grows. The
plaquette thus represents a basic “chiral unit” and it can be
used as basic building block to construct larger-size Rashba-
coupled correlated models, also in the presence of inhomo-
geneities as recently found in Refs. [43,44]. We expect that,
being associated with the breaking of SU(2) spin-rotational
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symmetry, the Pauli-screening mechanism will survive in
extended systems, thus yielding in general a more metallic
ground state.

With our simple model, we are indeed able to reproduce and
explain most of the phases obtained in Ref. [30] by means of
cluster dynamical mean-field theory. Clearly, since we focus
on a 2 × 2 plaquette, we are not able to identify commensurate
and incommensurate orders on larger scales discussed in Ref.
[30]. On the other hand, different from Ref. [30], our analysis
allows us to highlight the peculiar discontinuous nature of the
transition to the striped ordered phase that is associated with
a change in the ground-state symmetry, i.e., from d wave and
RVB-like to s wave. We also show that increasing Rashba SOC
not only favors the metallicity of the ground state but also
changes the nature of the metallic phase, allowing a mixing
between singlet and triplet components and enabling a new
mechanism of screening of local interactions.
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APPENDIX A: SYMMETRIES AND SINGLE-PARTICLE
SPECTRUM

In this Appendix, we analyze in more detail the conse-
quences of the symmetries of the Hamiltonian H in the case
of the plaquette.

As explained in Sec. II, in the presence of SOC, the plaquette
Hamiltonian is invariant under a group of combined spatial and
spin transformations, below indicated as D4σ , that includes
four discrete rotations and four reflections affecting both the
spatial orientation of the plaquette and the spin.

Correspondingly, as we now show, the single-particle eigen-
states can be classified on the basis of their symmetry properties
under certain D4σ group elements. Let us focus on rotations.
We have

H = Uθ
† H Uθ with Uθ = RL(θ ) ⊗ e−i θ

2 σz , (A1)

where θ is an integer multiple of π/2 and RL(θ ) rotates
the whole plaquette state by an angle θ clockwise. For θ =
π/2, transformation Uθ has four distinct eigenvalues, 
λν =
eiλ(π/4+ν π/2) with ν = 0,1, and λ = ±1. The single-particle
eigenvectors of the Hamiltonian H , Vνηλ, can be classified
using the indices λ and ν plus a third quantum number,
η = 0,1, while the eigenvalues Eην do not depend on λ.
Their values are reported in Table I. Note that while λ and
ν characterize the symmetry properties of the states, η is not

directly related to D4σ . In Table I, we set ε =
√

t2 + 2t2
R

and α = arctan
√

2tR/t and we introduced the momentum
eigenstates, |kσ 〉 = 1/2

∑
eikRJ |RJ σ 〉, with |RJ σ 〉 denoting

a state with one electron on site J ∈ [1, . . . ,4] and spin σ .

The twofold degeneracy of the single-particle spectrum can
also be ascribed to time-reversal symmetry; indeed, using the
standard representation of the time-reversal operator, T =
σyK, where K denotes complex-conjugation, one can easily
show that the vectors Vνη± are time-reversed doublets, i.e.,
T Vνη+ = Vνη−. By looking at Table I, we can understand that
in the absence of interaction at half-filling, the ground state
has s-wave symmetry, i.e., it is invariant under π/2 rotation
of the plaquette. The presence of Kramers degeneracy indeed
implies that the noninteracting four-electron ground state is
constructed by filling the first two doublets, and thus it involves
pairs of states that acquire opposite phases under π/2 rotations.
The s-wave symmetry of the noninteracting ground state can
be thus traced back to Kramers degeneracy, and it can be
ultimately demonstrated in general terms using the following
three relations:

[T ,H ] = 0, [Uθ , H ] = 0, and T UθT = U−θ, (A2)

analogous to that proposed in Ref. [40].

APPENDIX B: CONTINUITY EQUATIONS

Starting from the Hamiltonian H [Eq. (1)], we can write
the following Heisenberg equation of motion for the local spin
density S

μ

i :

i∂tS
μ

i = −it div
[
j

μ

i

] − tR
∑

j

[c†i σ
μ(�αij × �σ )zcj − H.c.],

(B1)

where S
μ

i = c
†
i σ

μci and div[jμ

i ] = ∑
κ (jμ

i,i+aκ
− j

μ

i,i−aκ
). Let

us first consider the general case of a nonhomogeneous SOC
where α

μ

ij = i(δi,j+aμ
γ

μ

i,i−aμ
− δi,j−aμ

γ
μ

i,i+aμ
), and γ

μ

ij = γ
μ

ji .
Equation (B1) reads

i∂tS
x
i = −itdivjx

i − itR
[
γ

y

i,i+yρi,i+y − γ
y

i,i−yρi,i−y

+ γ x
i,i+xj

z
i,i+x + γ x

i−x,ij
z
i−x,i

]
,

i∂tS
y

i = −itdivj
y

i − itR
[
γ x

i,i−xρi,i−x

− γ x
i,i+xρi,i+x + γ

y

i,i+yj
z
i,i+y + γ

y

i,i−yj
z
i−y,i

]
,

i∂tS
z
i = −itdivjz

i + itR
[
γ

y

i−y,ij
y

i−y,i

+ γ x
i−x,ij

x
i−x,i + γ

y

i,i+yj
y

i,i+y + γ x
i,i+xj

x
i,i+x

]
. (B2)

We notice that the previous set of equations agrees with those
obtained in previous works [45,46]. For an homogeneous
Rashba across the plaquette we have γ x

12 = 1, γ
y

23 = 1, γ x
34 =

1, and γ
y

41 = 1. Equation (B2) applied to site “1” of the
plaquette in turn yields

Ṡx
1 = −t

(
jx

12 − jx
41

) − tR
(
jz

12 − ρ14
)
,

Ṡ
y

1 = −t
(
j

y

12 − j
y

41

) − tR
(
jz

41 − ρ12
)
,

Ṡz
1 = −t

(
jz

12 − jz
41

) + tR
(
jx

12 + j
y

41

)
. (B3)

As we show below, the symmetries of the Hamiltonian
constrain the average values of the spin and charge currents
so that, in the ground state, the current jz and the bond charge
are homogeneous across the plaquette,

jz
12 = jz

23 = . . . and ρz
12 = ρz

23 = . . . , (B4)
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TABLE I. One-particle eigenvalues and eigenvectors of the Hamiltonian H. The third column shows the symmetry properties of the
eigenstates.

E0− = −ε(1 + cos α)
V0−+ = e−iπ/4 sin α/2 |π/2 ↑〉 + cos α/2 |0 ↓〉
V0−− = eiπ/4 sin α/2 |−π/2 ↓〉 + cos α/2 |0 ↑〉 
0± = e±iπ/4

E1− = −ε(1 − cos α)
V1−+ = e−iπ/4 sin α/2 |π ↑〉 + cos α/2 |π/2 ↓〉
V1−− = eiπ/4 sin α/2 |π ↓〉 + cos α/2 |−π/2 ↑〉 
1± = e±i3π/4

E0+ = ε(1 − cos α)
V0++ = ei π

4 cos α/2 |π/2 ↑〉− sin α/2 |0 ↓〉
V0+− = e−i π

4 cos α/2 |−π/2 ↓〉− sin α/2 |0 ↑〉 
0± = e±iπ/4

E1+ = ε(1 + cos α)
V1++ = eiπ/4 cos α/2 |π ↑〉− sin α/2 |π/2 ↓〉
V1+− = e−iπ/4 cos α/2 |π ↓〉− sin α/2 | − π/2 ↑〉 
1± = e±i3π/4

while jx and jy satisfy the following relations:
〈
j

y

12

〉 = 〈
jx

41

〉
and

〈
jx

12

〉 = 〈
j

y

34

〉 = 0. (B5)

Averaging Eqs. (B3) over the ground state, imposing 〈Ṡμ

i 〉 = 0,
and using the constraints, Eqs. (B4)–(B5), we eventually obtain
the continuity Eq. (3) introduced in Sec. II:

0 = tR
〈(
ρ12 − jz

12

)〉 − t〈jy

12〉. (B6)

To conclude this section, we show how the constraints,
Eqs. (B4)–(B5), on the currents can be obtained starting from
the invariance of Hamiltonian Eq. (1) under D4σ transforma-
tions:

〈
jx

12

〉 = 〈
U†

π/2j
x
12Uπ/2

〉 = −〈
j

y

23

〉
,

〈
j

y

12

〉 = 〈
U†

π/2j
y

12Uπ/2
〉 = 〈

jx
23

〉
,

〈
jz

12

〉 = 〈
U†

π/2j
z
12Uπ/2

〉 = 〈
jz

23

〉
, (B7)

where the unitary transformation U†
π/2 is defined in Eq. (A1).

From the last equation, it follows that the z component of the
spin current is homogeneous across the plaquette. Another
element of D4σ is Ur = R(1 ↔ 2,3 ↔ 4) ⊗ e−i π

2 σx , where
R(1 ↔ 2,3 ↔ 4) is a reflection with respect to a vertical axis.
By applying the latter transformation to jx

12〈
jx

12

〉 = 〈
U†

r j
x
12Ur

〉 = 〈
jx

21

〉
, (B8)

which implies 〈jx
12〉 = 0. We conclude that 〈jy

23〉 = 〈jx
34〉 =

〈jy

41〉 = 0.
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