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Electrons behave like a classical fluid with a momentum distribution function that varies slowly in space
and time when the quantum-mechanical carrier-carrier scattering dominates over all other scattering processes.
Recent experiments in monolayer and bilayer graphene have reported signatures of such hydrodynamic electron
behavior in ultraclean devices. In this theoretical work, starting from a microscopic treatment of electron-electron,
electron-phonon, and electron-impurity interactions within the random phase approximation, we demonstrate that
monolayer and bilayer graphene both host two different hydrodynamic regimes. We predict that the hydrodynamic
window in bilayer graphene is stronger than in monolayer graphene, and has a characteristic “v shape” as opposed
to a “lung shape.” Finally, we collapse experimental data onto a universal disorder-limited theory, demonstrating
that the observed violation of the Wiedemann-Franz law in monolayers occurs in a regime dominated by impurity-
induced electron-hole puddles.
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For most metals, electronlike quasiparticles with Fermi-
Dirac statistics move ballistically like classical billiard balls
between collision centers, while the scattering cross sections
during the collisions are treated quantum mechanically. These
properties are captured by solving the Boltzmann equation for
the semiclassical distribution function. In the unusual case
where the carrier-carrier scattering dominates over all other
kinds of scattering, a coarse-graining procedure transforms the
Boltzmann equation into hydrodynamic quantities governed
by classical fluid mechanics [1]. Various proposals for effects
that are peculiar for electrons can manifest themselves in such
a hydrodynamic regime including a nonmonotonic tempera-
ture dependence of resistivity that marks the transition from
boundary-limited to viscous flow [2], an electron Bernoulli
effect [3], spontaneous excitation of plasma oscillations [4],
signatures of electron viscosity in magnetotransport [5,6], and
faster than ballistic electron transport [7].

In spite of more than 50 years of theorizing about electron
hydrodynamics, experimental observation has been sparse and
disputed (see, e.g., Ref. [8]). The reason is that in many
experimental configurations electron-impurity scattering dom-
inates at low temperatures while electron-phonon scattering
dominates at high temperatures providing a small window in
temperature (if any) for observing such electron hydrodynam-
ics. The experimental situation changed recently with reports
of charge carriers behaving hydrodynamically in monolayer
[9,10] and bilayer graphene [9,11] from groups at Harvard,
Manchester, and Geneva (see also Ref. [12] that reported a large
viscous contribution to the resistance of palladium cobaltate).

It is important to note that gapless (or narrow band-gap)
materials support two very different types of hydrodynamic
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regimes depending on whether the temperature is larger or
smaller than the Fermi energy. At low temperature, only one
carrier contributes to the hydrodynamic Fermi liquid and
the transport can be described using a single macroscopic
charge current evolving under the standard Navier-Stokes
equation [13]. This is in contrast to high temperature, where
electron and hole densities are comparable giving rise to a
hydrodynamic plasma that involves three coupled macroscopic
currents [14,15]. While the Manchester and Harvard groups
used samples of comparable quality, the former observed only
single fluid hydrodynamics, and the latter only the coupled
plasma regime.

In this Rapid Communication, we show that for monolayer
and bilayer graphene, a large and robust hydrodynamic window
exists over a wide range of carrier densities and temperatures
supporting both the plasma and single-carrier hydrodynamic
regimes (for monolayer, this requires impurity concentrations
lower than ∼1011 cm−2, while no such constraint applies for
bilayers). We predict very different hydrodynamic windows for
monolayer and bilayer graphene due to a subtle competition
between different scattering mechanisms. The difference be-
tween the experiments is that the negative nonlocal resistance
measurement at Manchester (which is a proxy for viscous
backflow) is observed only in the single-carrier regime, while
the violation of the Wiedmann-Franz law seen at Harvard
occurs in the electron-hole plasma regime. We find curiously
that the largest violations of the Wiedemann-Franz law occurs
in a regime where the electrical conductivity is well described
by a disorder-limited theory. Our calculation of the interaction-
limited quasiparticle lifetime in bilayer graphene shows a
universal scaling collapse in agreement with the observation
in Geneva of electron-hole scattering limited transport [11].

Our main goal is a careful comparison of the various
scattering mechanisms in order to decide when the electronic
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FIG. 1. Hydrodynamic window in (a) monolayer graphene and (b) bilayer graphene determined by comparing the carrier-carrier scattering
rate to that of impurities and phonons. For monolayer graphene the lung shape is determined by the competition between electron-impurity
scattering that dominates at low temperature and carrier density, and electron-phonon scattering that dominates at high temperature and density.
The solid white line traces the points where these two contributions are equal. For bilayer graphene, we find that the electron-electron scattering
is much stronger than in monolayer graphene at the Dirac point, but drops off faster as a function of carrier density. This yields the v shape where
electron-electron interactions dominate over electron-phonon interactions at low carrier density, but are weaker at higher carrier density. The
dashed black lines show crossover from the plasma regime that comprises thermal occupation of both electrons and holes to the single-carrier
regime. Regardless of the amount of disorder, at sufficiently high temperature, bilayer graphene supports both types of hydrodymamics. Impurity
concentration nimp = 9×109 cm−2 is used for both panels.

system is described by the hydrodynamic equations. We
therefore look at the contribution to the quasiparticle lifetime
τ (ε) = h̄/2 Im[�(ε)], where �(ε) is the corresponding self-
energy calculated within the random phase approximation
(RPA) for that scattering process. At a given carrier density
n and temperature T , the contribution of a given scattering
mechanism to the quasiparticle lifetime is obtained by thermal
averaging [16]

〈τ−1〉 =
∫ ∞
−∞ dε|ε| ∂nF (ε−μ)

∂ε
τ−1(ε)∫ ∞

−∞ dε|ε| ∂nF (ε−μ)
∂ε

, (1)

where nF is the Fermi-Dirac distribution. Different ways of
performing this average give quantitatively different but quali-
tatively similar results; we choose this form of thermal averag-
ing to be consistent with Ref. [16]. The chemical potential μ is
found by solving n = ne − nh [17]. For monolayer graphene,
the self-energy �RPA(ε) for various scattering mechanisms is
known in the literature [see, e.g., Ref. [18] for electron-electron
(e-e) scattering, Ref. [19] for electron-impurity (e-imp) scat-
tering, and Ref. [20] for electron-phonon (e-ph) scattering];
however, here we do thermal averaging for the e-ph and e-imp
contributions. For bilayer (discussed in more detail below),
we calculate the self-energy for the e-e scattering mechanism
within the RPA, in addition to performing the thermal average
for e-ph and e-imp contributions. In the plasma regime where
there are both electron and hole carriers, we count all appro-
priate channels, i.e., 〈τ−1

cc 〉 = 〈τ−1
ee 〉 + 〈τ−1

eh 〉 + 〈τ−1
hh 〉 (which

for notational simplicity, we generically call 〈τ−1
ee 〉 for the re-

mainder of this Rapid Communication). The above procedure
determines 〈τ−1

ee 〉, 〈τ−1
e-imp〉, and 〈τ−1

e-ph〉. We then identify the

hydrodynamic regime as when 〈τ−1
ee 〉 > 〈τ−1

e-imp〉,〈τ−1
e-ph〉.

Our main results can be seen in Fig. 1. The color axis
shows the ratio of the e-e scattering rate to maximum of the
other scattering rates (e-imp and e-ph). Dark red represents
the regions where collisions between carriers dominate the

quasiparticle lifetime. The most striking feature is that the
window for hydrodynamics is “lung shaped” in monolayer
graphene, while it is “v shaped” in bilayer. The absolute
magnitude of the ratio is also larger in bilayer graphene,
implying that hydrodynamic effects are stronger. We now
describe some features of the hydrodynamic window. For
monolayer, the e-imp scattering rate diverges at n → 0 and
T → 0 which explains the reduced hydrodynamic window
both close to the Dirac point and at low temperature (this
divergence also causes electron-hole puddles which we discuss
later). The white line marks the points in the (n,T ) phase
space where τe-imp = τe-ph implying that the crossover to the
hydrodynamic window below this line is set entirely by the
competition of e-e and e-imp scattering. Above the white line
(i.e., at higher density and temperature) the emergence of
hydrodynamics is determined only by the competition between
e-ph and e-e interactions. The suppression of the window at the
Dirac point above the white line is caused by the transverse
optical mode at the Brillouin zone boundary, commonly
referred to as the A′

1 mode [20]. At any given temperature,
the hydrodynamic window eventually closes with increasing
density since both e-e scattering decreases (because of Pauli
blocking and enhanced screening) and acoustic phonon scat-
tering increases. The lung shape arises because the A′

1 phonons
peak at the Dirac point and decrease sharply with density, while
the acoustic phonons, which are minimal at the Dirac point,
increase with density. Bilayer graphene has a very different
hydrodynamic window due to the stronger e-e scattering and
weaker e-imp scattering. Regardless of the amount of disorder,
at sufficiently high temperature, e-imp scattering contributes
negligibly to the quasiparticle lifetime, e.g., for an estimated
nimp = 9×109 cm−2 for bilayer graphene on h-BN, this is
already the case at T � 10 K. Unlike the monolayer case, there
is no high-temperature cutoff to the hydrodynamic window
because there is no analog to the A′

1 phonon mode [21]. At the
Dirac point, we find that the acoustic e-ph and e-e scattering
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FIG. 2. (a) Electron-phonon scattering. Monolayer graphene is mostly acoustic phonons (dashed line) at high density and A′
1 optical phonon

at very low density. For bilayer, both acoustic (dashed line) and surface polar phonons contribute to the total τe-ph (solid lines). Inset shows
results at charge neutrality for the total phonon scattering rate (solid lines) and the acoustic phonon contribution (dashed lines). For monolayer
graphene, we use α = 0.57. (b) Electron-electron scattering follows a universal scaling function. Solid (dashed) lines in the main panel represent
the total (interband) e-e scattering rate. Dashed black lines represent high-density asymptotes of the universal scaling function. Inset shows the
collapse of εF〈τ−1

ee 〉−1 as a function of single parameter εF /kBT for different temperatures. For εF � kBT , the scaling function is linear for
both monolayer and bilayer graphene while for εF 	 kBT (beyond the range shown in the inset) bilayer has a stronger x4 power law compared
to the x∼2 for monolayer.

rates increase linearly with temperature, but the coefficient of
the e-e scattering rate is much stronger. Hence, we find the
hydrodynamic regime in bilayer graphene for the full range
of parameters explored in Fig. 1. In addition, as indicated by
the dashed lines in Fig. 1(b) both the plasma hydrodynamic
fluid and the single-carrier hydrodynamics always exist in
bilayer graphene. The v shape arises because although e-e
scattering peaks at the Dirac point, it decays strongly as a
(universal) function of εF /kBT , implying a larger window at
higher temperatures.

We now describe our calculations in more detail. For
monolayer graphene, the e-ph scattering is dominated by the
in-plane longitudinal and transverse acoustic modes [we use
the expressions from Ref. [20], but convert the transport scat-
tering rates to quasiparticle rates by removing the (1 − cos θ )
Boltzmann factor before performing the thermal average using
Eq. (1)]. Our results are displayed in Fig. 2(a) (blue curves).

We note that at fixed temperature, electron scattering with
A′

1 modes (acoustic modes) decreases (increases) with density
giving rise to a nonmonotonic e-ph scattering rate as a function
of density. For bilayer the dominant phonons are the acoustic
[21] and surface polar [22] modes, which we suitably adapt
before doing the thermal average for each mode separately
and adding the rates together to obtain the results in Fig. 2(a)
(red curves). We note that the total e-ph rate is an almost
constant function of density, and increases linearly in T . The
weak temperature dependence of bilayer phonons compared to
monolayer phonons [see inset to Fig. 2(a)] illustrates why there
is no high-temperature cutoff of the bilayer hydrodynamic
regime.

Since we find no calculation in the literature of the quasi-
particle lifetime in bilayer graphene due to e-e scattering,
we calculate it starting from the RPA approximation for the
self-energy [18]

Im[�λ(k,ω)] = −
∫

d2q
(2π )2

∑
λ′

Im

[
V (q)

ε(q,ω − εk−q,λ′ + μ,T )

]
Fλλ′(θk,k−q)[nB(ω − εk−q,λ′ + μ) + nF(−εk−q,λ′ + μ)], (2)

whereV (q) = 2πe2/(κq) is the Coulomb potential,nB/F (x) ≡
1/[exp(βx) ∓ 1] the Bose (Fermi) distribution function, λ,λ′
are band indices (± denote the conduction and valence
bands), Fλλ′(ϕ) = (1 + λλ′ cos 2ϕ)/2 the chirality factor, and
ϕ the scattering angle. εk,λ = λh̄2k2/(2m�) are parabolic-band
single-particle energies and ε(q,ω,T ) ≡ 1 − V (q)�(q,ω,T )
refers to the dynamical RPA dielectric function first calculated
in Ref. [23]. We show in Fig. 2(b) our calculations of 〈τ−1

ee 〉 as
a function of density for both monolayer and bilayer graphene.
The primary difference between the two is that for bilayer
graphene the scattering rate drops sharply as a function of
density, whereas for monolayers it drops much more slowly.
Remarkably, we show that after thermal averaging, εF〈τ−1

ee 〉−1

for both monolayer (m) and bilayer (b) graphene is given by a

one-parameter function Fm,b(εF /kBT ) [see inset to Fig. 2(b)].
For monolayers, this is an exact result for fixed α, while
for bilayers, the scaling requires T � 2α2(m∗v2

F ) ≈ 1700 K
(here α and vF are the monolayer fine-structure constant and
Fermi velocity, respectively, and m∗ the bilayer effective mass).
This is an especially useful result given that three numerical
integrals are required to evaluate e-e scattering at each density
and temperature. We find numerically that the scaling function
obeys the following asymptotes: At low density or high temper-
ature, Fm(x � 1) ∼ 4.9x and Fb(x � 1) ∼ 3.2x, while in the
opposite limit Fm(x 	 1) ∼ 2.1x1.7 and Fb(x 	 1) ∼ 0.4x4.
Our theoretical finding that the e-e scattering rate at the
Dirac point for bilayer graphene is linear in temperature, i.e.,
h̄〈τ−1

ee 〉 = 0.3kBT , was recently observed experimentally [11].
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FIG. 3. Collapse of nmin/nrms as a function of the scaled tem-
perature T/T ∗ where kBT ∗ = εF (n = nrms). Symbols correspond to
data extracted from the experiment of Ref. [10] and the solid line
corresponds to the universal disorder-limited theory. The second
dashed line marks the temperature when thermally excited carrier
density equals the disorder-induced electron-hole puddle density.

So far we have ignored the role of electron-hole puddles.
Reference [17] showed that when impurities were respon-
sible for both scattering electrons and for inducing density
fluctuations, the temperature-dependent charge conductivity
followed a one-parameter scaling. We show the scaling as
follows: nmin(T ), a quantity defined in the experimental work,
is determined by extrapolating a linear fit of log σ (n,T )
down to the minimum conductivity. The analogous theoretical
quantity is nrms where Ref. [24] showed that nmin(T = 0) =
nrms/

√
3 = (kBT ∗/h̄vF )2/π , where T ∗ is a corresponding

disorder temperature scale. Figure 3 shows the collapse of the
experimental nmin/nrms as a function of experimental T/T ∗
for the three samples reported in Ref. [10]. This implies that
for the experiment, the charge transport is limited by the same
mechanism responsible for the puddles.

This universal disorder-limited curve may be calculated the-
oretically. We obtain the e-imp-limited RPA-effective medium
conductivity [25,26] as a function of n and T and extract the ef-
fective density at Dirac point nmin(T ) using the same procedure
described above. Our theory shows excellent agreement with
experiment over a wide range, with weak deviations occurring
only at high temperatures T/T ∗ � 0.55. [This is when ther-
mally excited carriers outnumber the puddle carriers induced
by impurities, i.e., ne(0,Tc) + nh(0,Tc) = nrms, where Tc =√

3T ∗/π ≈ 0.55T ∗.] This confirms that charge conductivity at
temperatures at which the largest violations of the Wiedemann-
Franz law were observed is completely understood within a
model considering only charged impurity scattering.

Our results allow us to speculate regarding the recent
experiments. The Harvard experiments observed a strong
violation of the Wiedemann-Franz law (with Lorenz ratios as
high as 22) in a temperature range about a factor of 2 lower
than when we might expect the system to be hydrodynamic.
This was interpreted as a signature of the theoretically
predicted Dirac fluid [27,28] where the thermal conductivity
diverges and the electrical conductivity approaches a universal
minimum value of σ0 = 4/π e2/h. However, this would also

imply a nonmonotonic σmin(T ) as the plasma evolved from the
disorder-dominated puddle regime (where σmin increases with
T ) to the ideal Dirac fluid regime (where σmin = σ0 remains
constant with increasing T ). Not only does the experimental
electrical conductivity increase monotonically, but its value
quantitatively agrees with the disorder-limited theory in which
the absolute value of the conductivity is∼10σ0. This agreement
allows us to conclude that the violations of the Wiedemann-
Franz law seen in experiment arise from the thermal rather than
the charge transport sector (where this enhancement occurs
because in the plasma regime carrier-carrier collisions are
unable to relax thermal currents). Our calculations suggest that
if one moves out of the plasma regime (i.e., within the “lung
region” in Fig. 1), then there should be weak violation of the
Wiedemann-Franz law with a reduced Lorenz ratio, because
in the single-carrier collision-limited regime charge currents
are almost completely unaffected by carrier-carrier collisions,
while thermal currents can be strongly degraded [29,30].
This prediction is consistent with the Harvard experiment.
Our results show that the hydrodynamic regime is stronger
in bilayer graphene, becoming increasingly stronger at higher
temperature. However, we emphasize that deciding when the
system is hydrodynamic and when there is a violation of the
Wiedemann-Franz law are two separate questions, and one can
have one without the other [31]. In particular, the argument
for the conservation of thermal conductivity at the Dirac point
in monolayer graphene does not hold in bilayer graphene.
So although bilayer graphene is more hydrodynamic than
monolayer graphene, this does not guarantee strong violation
in the Wiedemann-Franz law.

Turning to the Manchester experiments, there is good
qualitative agreement with the shapes of hydrodynamic
window shown in Fig. 1 (i.e., a lung for monolayer and a v
shape for bilayer) and those seen experimentally. We note that
no whirlpools were observed in the plasma hydrodynamic
regime [dashed lines in Fig. 1(b)], possibly because of the
presence of electrons and holes moving in opposite directions.
In particular, our finding that the monolayer hydrodynamic
window is cut off by phonons at high temperature, but
not in bilayer graphene is consistent with the experimental
observations. The details of the lung-shape in monolayer
graphene is somewhat different, but our conclusion that
the low-temperature boundary is set by impurities and the
high-temperature boundary is set by phonons should remain
robust regardless of the impurity and phonon models used
(e.g., it seems that the ratio of A′

1 to acoustic phonon modes
is weaker in the experiment than in the best available models
[20]). Although the bilayer e-e scattering rate is larger at higher
temperature, giving a wider window in carrier density where
hydrodynamics can be observed, the viscosity is lower at higher
temperature making the whirlpools more difficult to observe.
Again, just like for the violation of the Widemann-Franz law,
there is not a perfect correlation between the hydrodynamic
regime and observations of negative vicinity resistance.

Note added. Recently, we noticed on arXiv a useful review
article on graphene hydrodynamics [32] that provides a broader
context for the relevance of our work.
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