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Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace
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Capital to topological insulators, the bulk-boundary correspondence ties a topological invariant computed from
the bulk (extended) states with those at the boundary, which are hence robust to disorder. Here we put forward a
different ordering unique to non-Hermitian lattices whereby a pristine system becomes devoid of extended states,
a property which turns out to be robust to disorder. This is enabled by a peculiar type of non-Hermitian degeneracy
where a macroscopic fraction of the states coalesce at a single point with a geometrical multiplicity of 1.
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Introduction. More than 30 years ago, the pioneering studies
on the topological origin of the quantum Hall effect with [1] and
without Landau levels [2] sparked a revolution that reshaped
condensed-matter physics. This reached a decisive moment
when new insights [3,4] ultimately led to the discovery of
topological insulators in two [5] and three dimensions [6].
Now, besides the accelerating advance on these already excit-
ing materials, a plethora of new trends is building momentum:
from the search of gapless but topological phases, such as the
Weyl semimetals [7], to new topological states in systems out
of equilibrium [8—10] and non-Hermitian lattices [11-16].

Whether or not non-Hermitian systems [11-18] can bear
nontrivial and stable topological states and, ultimately, the
existence of a main guiding principle, i.e., a bulk-boundary
correspondence, are issues at the center of an intense debate
and controversy [15,19-22]. One such fascinating focus of
discussion has been inspired by a one-dimensional (1D) model
where a non-Hermitian Hamiltonian is built as to encircle an
exceptional point (EP) in momentum space [15]. Exceptional
points are singularities in non-Hermitian systems where not
only the eigenvalues, but also the eigenfunctions coalesce, thus
making the Hamiltonian nondiagonalizable (defective) [23].
EPs, which can also be of higher order [24-28] as in this
Rapid Communication, lead to intriguing phenomena, such as
unidirectional invisibility [29], single-mode lasers [30,31], or
enhanced sensitivity in optics [28,32,33]. Curiously, although
bearing a gapless bulk, the lattice model of Ref. [15] has been
shown to exhibit a single zero-energy edge state localized on
one side of the system, a fact that has been related to a fractional
winding number of 1/2. In contrast, other authors argue that the
bulk-boundary correspondence altogether has to be abandoned
in these non-Hermitian systems [21]. Other recent studies add
further interest to this exciting area [16,22,34].

In this Rapid Communication, we examine the emergence
of an order unique to non-Hermitian systems, which, al-
though different from topological order, can be relevant for
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the discussion of the bulk-boundary correspondence in these
systems. Our main conclusions are illustrated using the one-
dimensional non-Hermitian lattice model of Ref. [15]. Beyond
the exceptional points, a macroscopic fraction of the states of a
large system may coalesce at a single energy with geometrical
multiplicity of 1 (i.e., the eigenspace is spanned by a single
nonzero eigenvector). Interestingly, we show that, besides
being dynamically stable (vanishing imaginary part of the
eigenenergy), these peculiar higher-order EPs can have [35]
an ordering effect including: A fully localized spectrum which
remains fairly robust to disorder; and the orthogonality of left
and right eigenstates (also called biorthogonality) which, in
contrast with the case of exceptional points, can span a large
range of system parameters [36]. Unlike usual Hermitian lat-
tices where localization is typically tied to defects or disorder,
here all states may be localized at the edge of a pristine lattice
thereby motivating the use of the word anomalous in our title.

We interpret the ordering effect near the peculiar higher-
order EPs in terms of an environment-mediated interaction
encoded in the non-Hermitian part of the Hamiltonian, that
leads to the condensation of the eigenstates onto a few
selected states. Although environment-mediated interaction
effects have been studied theoretically and experimentally in
the past [37—41], in none of the mentioned cases the effect was
as strong as in ours. Indeed, measures of non-Hermiticity, such
as the Hamiltonian’s defectiveness and the biorthogonality of
left and right eigenstates [42], are typically fragile close to
an EP, e.g., the branch point in the spectrum is removed by
any small perturbation in the parameter space. In contrast, we
find that around these particular higher-order EPs these strong
fingerprints of non-Hermiticity may effectively pervade over a
wide range of parameter values (even far from the coalescence)
with dramatic consequences.

Non-Hermitian model. To motivate our discussion let us
reexamine the 1D non-Hermitian model of Ref. [15],

Hy = ho(k)o, + <h2<k> + %)a 1)

where 0,0, are Pauli matrices, y is areal parameter tuning the
degree of non-Hermiticity of Hy, and & is the wave vector. i, (k)
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FIG. 1. (a) Scheme representing three cells of the lattice model
introduced in the text. The imaginary on-site energies lead to the
non-Hermiticity of the Hamiltonian. (b) Map of the PT-broken and
‘PT-unbroken regions as a function of the Hamiltonian parameters
v and r (both in units of y). (c¢) and (d) [(e) and (f)] show the real
and imaginary parts of the spectrum obtained for a system of N =
30 (N =31) unitcells and r = 0.5y.

and &, (k) are chosen as to encircle the EP located at (h,,h;) =
(£y/2,0). This is fulfilled by choosing: /i, (k) = v +r cos k
and h (k) = r sin k with v and r as real parameters. Now, the
model can be represented by a lattice with gains and losses on
different sublattices, see Fig. 1(a). This model can be realized
in an array of coupled resonator optical waveguides [43] and
in a photonic crystal [44] as pointed out by Lee [15].

The Hamiltonian of Eq. (1) commutes with the composed
parity-time PT operator [15]. PT symmetry is said to be
unbroken if all Hamiltonian eigenstates are also eigenstates
of the PT operator, thereby having real-value eigenenergies.
Figure 1(b) shows a phase diagram for the PT-broken and
‘PT -unbroken phases as a function of v and » for our model. We
emphasize that, although non-Hermitian Hamiltonians have
extensively been discussed in the context of PT -invariant alter-
natives to Hermitian quantum mechanics [45], non-Hermitian
Hamiltonians arise naturally in the context of open quantum
systems [46], systems with gain and loss (as in photonics [47]),
or because of the finite lifetime introduced by interactions [34].

Zero-energy edge states and parity effects. The bulk-
boundary correspondence, which determines the existence
of edge/surface states from bulk topological invariants, is
a leitmotif ubiquitous in the field of topological insulators
[48-50] and their more recent archetypes [51]. Much of
the current debate revolves around the existence or not of
such a relation in non-Hermitian systems and in this model
in particular [15,16,21]. With this motivation we start our
discussion by examining the zero-energy edge states in this

model, although as we will show later on their relevance is
lessened because of the presence of the higher-order EPs.

A finite section of the tight-binding lattice contains N unit
cells. N may be even or odd. In Figs. 1(c)-1(f) we show the
spectrum in the case of open boundary conditions forr = 0.5y
as a function of v (y is taken as the unit of energy). When
reaching v = 0.5y from the right, two states coalesce at the EP
into a single one with zero energy (and a vanishing imaginary
part which makes it also dynamically stable). This state turns
out to be localized at a single edge of the finite system, and its
existence has been attributed to a fractional winding number
[15]. Depending on the EP’s chirality [23,52], the zero-energy
state turns out to be localized on one edge or the opposite. For
v < 0.3y, the spectrum around Re(¢) ~ 0 becomes distinct
depending on the parity. Furthermore, for even N, the system
encounters an additional EP as v is lowered, the zero-energy
eigenvalue having algebraic (geometric) multiplicity 2 (1)
branches on two distinct states with nonvanishing energy (this
does not happen for odd N where the geometric multiplicity
is kept until v ~ 0).

An important question is how far away from the bulk’s EP
the existence of this state can be warranted. Figure 1 gives a
first hint, but let us now examine in more detail the localization
and the robustness against disorder of the full spectrum.

Anomalous globally localized spectrum. In usual topolog-
ical insulators, one devotes much less attention to the states
deep in the bands than to the potentially topological edge states
bridging the gap. A measure of localization of a state v, is the
inverse participation ratio (IPR) [53,54],

2
Iy =Y 1Y) / (Z |wa<r)|2> : )

The inverse of this number being roughly the average diameter
of the state (in one dimension). For extended states, 1/1,
is the system’s volume L¢. In Figs. 2(a) and 2(b) the color
scale encodes the IPR of each eigenstate, darker being more
localized. Interestingly, close to v = 0.5y all eigenstates, even
those in the bands, are localized. This anomalous localization is
maintained over a broad range of parameters. Indeed, the states
become extended only in the immediate vicinity of v = 0.

One can see analytically that there are only three linearly
independent eigenvectors at v = £0.5y where three EPs oc-
cur, one corresponding to ¢ = 0, and the others corresponding
to ¢ = &£r. Although the first has algebraic multiplicity 2
and represents an EP of the usual kind, the others have an
algebraic multiplicity of N — 1 which scales with the system
size, whereas the geometric multiplicities of all three points
remain 1. Therefore, even in the large-N limit, a macroscopic
fraction of all eigenstates coalesces onto the two states with
¢ = %r. The change in the spectrum as v changes is shown in
Fig. 2(c).

One may wonder about the nature of the localization in such
a pristine system. A closer analysis reveals that all the states
are localized on the same edge as shown in Fig. 2(d) for a few
values of v. Although isolated EPs where two states coalesce
cannot have such a global effect on the spectrum of a large
system, the multiple coalescences near these higher-order EPs
do. Indeed, all three eigenstates at v = +0.5y are localized at
the same edge thereby voiding the system of bulk states.
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FIG. 2. (a) Real and (b) imaginary parts of the eigenenergies
obtained as a function of v. This corresponds to a finite system
with N = 30. The color scale shows the inverse participation ratio.
(c) Details of the evolution of the spectrum as v increases from zero
to some value above the singular point v = 0.5y where EPs and
higher-order EPs emerge. The red arrows indicate whether the points
tend to coalesce or separate as v increases. (d) Probability density
associated with the eigenstates obtained for different values of v.
Note that all states remain localized at one edge.

Robustness to disorder. Robustness against disorder is
a characteristic feature of boundary states in a topological
insulator. These states are a special subset of states with
energies inside the bulk gap. In our case we will show
that the global localization of the eigenstates at one edge is
resilient to moderate amounts of disorder, even though the
origin of this robustness is not topological. The Hamiltonian
of Eq. (1) contains three parameters: y, v, and » on which
we introduce random disorder y, = y + dw,, v, = v + dw,,
and r, = r + dw,, where n is the cell index, w, is uniformly
distributed between —1 and 1, and d is the disorder strength.
The first three rows of Fig. 3 show the results for these three
types of disorder preserving the chiral symmetry. Even if the
spectrum is modified, the localized nature of the states remains.
Furthermore, the chiral disorder in r conserves PT symmetry
unbroken as we can anticipate from Fig. 1(b). In Fig. 3 (bottom
row), the effect of Anderson disorder breaking chiral symmetry
is shown. We set the on-site energies for each site equal to dw;
where i = 1,...,2N and again w, is uniformly distributed
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FIG. 3. Effect of increasing amounts of disorder d (from left to
right) in y, v, r, and on-site Anderson disorder on the spectrum. The
results for 300 realizations of disorder and N = 30 are superimposed.
The starting points for all plots are r = v = 0.5 and y = 1 as in the
third plotin Fig. 2(c). The color scale encodes the inverse participation
ratio and shows the resilience of localization against disorder.

between —1 and 1 (Fig. 3). Also, in this case, the global
localization of the eigenstates as captured by the IPR remains
quite robust to disorder. By robust here we mean that over
a range of disorder, the localization of the spectrum is not
compromised.

Measures of biorthogonality around the higher-order EPs.
We started our search looking to answer whether or not a bulk-
boundary correspondence holds for this system with regard to
its zero-energy edge states. Now, our interest has shifted to the
full spectrum, and the natural question is what causes this
seemingly collective behavior that renders all eigenstates to
be localized. The observed spectral properties may recall a
global effect, but this seems at odds with the fact that the
Hamiltonian is noninteracting. As we will see below, the key
is in the effective nonorthogonality of the eigenstates of the
non-Hermitian Hamiltonian.

The right and left eigenstates and eigenenergies of
obey: H [Ya) = €u [Va) and (| H = €o (Pal. If H is non-
Hermitian then (¢ | # (¥« |. A measure of the eigenfunctions’
biorthogonality is the phase rigidity r, defined as [46]

- el )

(ValVa)

Whereas a Hermitian system has r, = 1 for all «’s, when
approaching an EP r, — 0O for the states that coalesce. Fig-
ure 4(a) shows Y, |re|/(2N) with the summation extending
over all states « thereby providing an indication of the phase
rigidity of the full spectrum. Two interesting facts arise from
these data: (i) The range over which the system becomes
close to biorthogonal comprehends all the eigenstates in a
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FIG. 4. (a) Asameasure of the biorthogonality of the Hamiltonian
eigenstates, we plot the sum of the absolute values of the phase
rigidities r, defined in Eq. (3) normalized so that it gives the values
of 1 when the Hamiltonian is Hermitian and O when all the states are
biorthogonal. The main panel is for N = 30, whereas the inset shows
three values of N over a larger range of v. (b) Rank of the Hamiltonian
for a system containing N unit cells. The inset shows a zoom over the
v region close to the exceptional points.

region around v = 0.5y (note the logarithmic scale), and (ii)
this extends far beyond the EPs at v = 0.5y over a range
overlapping with that found for the localized states with regard
to the IPR. Strikingly, the biorthogonality measure becomes
stronger the larger the system as the v region where the phase
rigidity is vanishingly small grows exponentially with system
size (see the inset).

Additional insight is provided by the rank of the Hamilto-
nian versus v as shown in Fig. 4(b). These results are for finite

systems with N = 30, 50, and 100 unit cells. The Hamiltonian
has maximum rank 2N in the vicinity of v = 0 and drops
dramatically at v = 0.5y to reach the value of 3 (see the inset),
in agreement with our previous discussion.

As one moves away from the higher-order EPs, the eigen-
states change, but they do it so slowly that many of them are
still almost indistinguishable from each other [see Fig. 2(d)].
This is captured computing the rank of the Hamiltonian using a
numerical tolerance of 1078, see Fig. 4(b). The large difference
between the dimension of the Hilbert space (2N) and this
effective Hamiltonian’s rank is a witness of its defectiveness.

Interestingly, the small phase rigidity indicating nearly
biorthogonal eigenstates also follows from the global local-
ization around the higher-order EPs: The ket associated with
a left eigenstate ((¢|) of # is a right eigenstate of . The
spectrum of A is the same as that of the original Hamiltonian
but the associated eigenstates are localized on the opposite
edge. Therefore, their overlap decreases exponentially with
the system size (and so does the phase rigidity) leading to the
rampant biorthogonality observed in Fig. 4(a).

We interpret our findings as an effective interaction induced
by a common environment, much in the spirit of Ref. [40]. H
can be decomposed into a Hermitian Hy = (% + H)/2 and a
non-Hermitian part. The non-Hermitian part ¥ = (H — #H1)/2
stems from a common environment providing for gain and
loss. Since [¥,H] # 0, ¥ introduces the mixing among the
eigenstates of Hy which ultimately leads to the observed
defectiveness. At v = 0.5y the eigenvectors condense into a
space of dimension three, independent of the dimension of
the Hilbert space 2N. Remarkably, despite the decimation
of the available eigenstates induced by the environment, at
v = 0.5y, the three remaining eigenstates become stabilized
as their eigenenergies are real. This resembles the physics
of resonances in scattering problems pointed out by other
authors [25,55]. Thus, at the higher-order EPs the environment
represented by X “aligns” the eigenstates of the Hamiltonian
stabilizing them.

Final remarks. Here we put forward the ordering role of
exceptional points where a finite fraction of all eigenstates of
a non-Hermitian Hamiltonian coalesce. But many interesting
questions remain for future study: extensions to dimensions
other than one; uncovering a parent Hermitian Hamiltonian
leading to the same physics; the study of higher-order ex-
ceptional points condensing, such as an Aleph [56], the full
spectrum onto a single point. These issues may guard further
surprises in a field which is already blooming [28,32-34,57].
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