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Chiral Majorana fermion modes regulated by a scanning tunneling microscope tip
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The Majorana fermion can be described by a real wave function with only two phases (zero and π ) which
provide a controllable degree of freedom. We propose a strategy to regulate the phase of the chiral Majorana
state by coupling with a scanning tunneling microscope tip in a system consisting of a quantum anomalous Hall
insulator coupled with a superconductor. With the change in the chemical potential, the chiral Majorana state
can be tuned alternately between zero and π , in which the perfect normal tunneling and perfect crossed Andreev
reflection appear, respectively. The perfect crossed Andreev reflection, by which a Cooper pair can be split into two
electrons going into different terminals completely, leads to a pumping current and distinct quantized resistances.
These findings may provide a signature of Majorana fermions and pave a feasible avenue to regulate the phase
of the Majorana state.
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I. INTRODUCTION

Topological superconductors (TSCs), the superconducting
counterparts of topological insulators, have attracted more and
more attention for catching Majorana fermions in condensed-
matter systems [1–5]. The Majorana zero modes exhibiting
non-Abelian statistics [1,6,7] can exist in the core of super-
conducting vortices in the chiral TSCs and have potential ap-
plications in topological quantum computation. Exotic effects,
such as the 4π -periodic Josephson effect [8,9] and nonlocal
tunneling [10–12], could be the promising manifestation of the
zero-dimensional Majorana bound states. Theoretical propos-
als have shown that the chiral TSCs can be realized by inducing
superconductivity in quantum Hall systems, quantum anoma-
lous Hall insulators (QAHIs) [13,14], and two-dimensional
systems with spin-orbit coupling [15,16] via the proximity
effect of an s-wave superconductor. Moreover, there also exist
N one-dimensional chiral Majorana edge modes (CMEMs) in
the interface of chiral TSCs with topological Chern numberN .
Especially, a half-integer conductance plateau at the coercive
field in a hybrid TSC/QAHI structure based on the one-
dimensional CMEMs has been predicted by theoretical studies
[14,17–19] and has been observed recently in a transport
experiment [20], providing a transport signature of CMEMs
[14,21]. For promising applications of Majorana fermions, it
is important to control the Majorana modes in a feasible way
and explore more compelling experimental evidence of them
in the chiral TSCs [22,23].

The electron-hole conversion can occur at the interface
between a superconductor and a conductor, forming a Cooper
pair in the superconductor. Here the incoming electron can
be reflected as a hole in the same lead, known as local
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Andreev reflection (LAR) [24,25], or be scattered to the other
lead, known as crossed Andreev reflection (CAR) [26–29].
When bias occurs below the superconductor gap, the transport
properties of the system are mainly determined by the Andreev
reflections [25,30]. Because of the LAR and other processes,
such as normal reflection and normal tunneling, the probability
of the CAR is, in general, very small. Recently, some works
have focused on the Andreev reflections in the supercon-
ductor/topological system, and some exotic phenomena have
been predicted [31–41]. For example, a resonant CAR can be
obtained with other processes being prohibited through band
engineering of the electron/hole in the leads [31–33] or with
the assistance of the Majorana end sates [34]. In addition, by
utilizing the unidirectionality of the topologically protected
edge states, the quantized CAR is proposed in the systems by
coupling an s-wave superconductor with a QAHI ribbon [35]
and spin-valley topological insulator [36].

In this paper, we propose an avenue to control the phase
of the CMEMs in the hybrid TSC/QAHI system by using a
scanning tunneling microscope (STM) tip and demonstrate
a quantized perfect CAR caused by the phase regulation.
Because of the property that the Majorana fermion is a self-
Hermitian particle, its wave function is real, and its phase
can be only zero or π . Moreover, for a one-dimensional
chiral Majorana fermion with propagation velocity vM obeying
the Hamiltonian H = −ih̄vM∂x [42–44], the current density
jx = vM�∗�, and the wave function � is nonzero at any site
due to the current conservation condition. Consequently, the
phase of the Majorana fermion γ propagating forward along
the CMEM is only zero, i.e., γ → γ [42,43]. However, with
the branch cut introduced by the STM tip, the chiral Majorana
fermion cannot be regarded as a one-dimensional system any
more, leading to the possibility that its phase can be zero or π .
We show that the phase can be easily regulated from zero to
π , i.e., γ → −γ for the π phase. Corresponding to the zero
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FIG. 1. (a) Schematic diagram of the hybrid TSC/QAHI system
coupled by a STM tip. In the green region, a TSC state is induced
through the proximity effect by coupling with an s-wave supercon-
ductor. The gray tip is the STM tip. Black arrows label the QAHI
edge states, and magenta arrows indicate the CMEMs. (b) and (c)
The normal tunneling coefficient T , CAR coefficient T CAR, and LAR
coefficient T LAR as functions of μs without and with the STM tip,
respectively. The STM tip coupling strength � = 1, the coupling
position is in the middle of the upper edge of the TSC island, and
the contact region is 3 × 3 lattices in the numerical simulation. The
QAHI ribbon width W = 150a, and the size of the TSC island is
(Lx,Ly) = (20a,90a).

and π phases, perfect normal tunneling and quantized perfect
CAR can occur, respectively.

The organization of this paper is as follows. After this
introductory section, Sec. II describes the theoretical models
of the TSC/QAH system coupled with the STM tip and the
methods for calculating the tunneling coefficient, the LAR
coefficient, the CAR coefficient, and the current. Section
III presents the numerical results of the phase modulation
of CMEMs by the STM tip, coherence, and experimental
signatures. Section IV concludes this paper. Some auxiliary
materials are relegated to the appendixes.

II. MODEL

We consider a hybrid TSC/QAHI system in which a chiral
TSC island is introduced near one edge of the QAHI ribbon
and a STM tip couples to the TSC island, as shown in
Fig. 1(a). In fact, some recent experimental and theoretical
works have applied the STM tip to probe the Majorana fermion
[22,45,46]. Here we apply it to regulate the phase of the
Majorana state propagating forward along the CMEM. The
QAHI states have been predicted in some realistic proposals
by doping topological insulators with magnetic dopants and
have been experimentally realized in Cr-doped [47–51] and
V-doped [52] (Bi,Sb)2Te3 magnetic topological insulator thin
films. For the low-energy states near the � point, the two-band
Hamiltonian describing the QAHI state can be expressed as
[13] HQAHI = ∑

p ψ
†
pHQAHI(p)ψp, with ψp = (cp↑,cp↓)T and

HQAHI(p) = (m + Bp2)σz + A(pxσx + pyσy), (1)

where cpσ and c
†
pσ are, respectively, the annihilation and

creation operators with momentum p and spin σ =↑ , ↓ and
σx,y,z are Pauli matrices for spin. A, B, and m are material
parameters. For the numerical calculation, the Hamiltonian
HQAHI can be further mapped into a square lattice model in
the tight-binding representation [53],

HQAHI =
∑

i

[ψ†
i T0ψi + (ψ†

i Txψi+δx + ψ
†
i Tyψi+δy) + H.c.],

(2)

with T0 = (m + 4Bh̄2/a2)σz, Tx = −(Bh̄2/a2)σz −
(iAh̄/2a)σx , and Ty = −(Bh̄2/a2)σz − (iAh̄/2a)σy . Here
ψi = (ci↑,ci↓)T , and ciσ and c

†
iσ are, respectively, the

annihilation and creation operators on site i with spin σ .
a is the lattice length, and δx (δy) is the unit vector along the
x (y) direction. The topological properties of the Hamiltonian
HQAHI are determined by the sign of m/B. For m/B < 0,
the QAHI state with Chern number C = 1 is obtained, and
one chiral edge mode exists at each edge in a QAHI ribbon,
as indicated by black arrows in Fig. 1(a). For m/B > 0, the
Hamiltonian HQAHI describes a normal insulator state with
Chern number C = 0.

Near one edge of the QAHI ribbon, an s-wave supercon-
ductor is coupled to it [see the green region in Fig. 1(a)], and
the proximity effect can induce a finite pairing potential 
 in
the superconductor-covered QAHI region. In this region, the
electron and hole excitations are described by the Bogoliubov–
de Gennes (BdG) Hamiltonian, HBdG = 1

2

∑
p �

†
pHBdG(p)�p,

in the basis of �p = (cp↑,cp↓,c
†
−p↑,c

†
−p↓)T , and

HBdG =
(

HQAHI(p) − μs i
σy

−i
∗σy −H ∗
QAHI(−p) + μs

)
. (3)

Here a finite chemical potential μs has been taken into account
inside the TSC island. Using Eq. (2), the lattice version
of Hamiltonian HBdG can also be obtained. According to
the Altland-Zirnbauer symmetry classification scheme, the
HamiltonianHBdG, which has intrinsic particle-hole symmetry
but no time-reversal symmetry, belongs to the D-class TSC
[54]. The D-class TSCs in two dimensions can be described
by Chern number N and support N CMEMs. According
to the phase diagram of the Hamiltonian HBdG [13], for a
finite superconductor gap 
 and negative m, the TSC region
undergoes a phase transition fromN = 2 toN = 1 (also called
chiral TSC) by changing the chemical potential μs , and the
phase boundary is determined by the condition 
2 + μ2

s = m2.
It is worth noting that here N = 2 CMEMs are topologically
equivalent to one QAHI edge state (C = 1). Very recently,
the TSC with N = 1 was successfully realized experimentally
[20].

Then the Hamiltonian H of the whole setup consisting of the
hybrid TSC/QAHI ribbon coupled by a STM tip [see Fig. 1(a)]
is

H = HQAHI/BdG + HSTM + HC, (4)

where HQAHI/BdG, HSTM, and HC are the Hamiltonians of
the hybrid TSC/QAHI ribbon, the STM tip, and the cou-
pling between them, respectively. HQAHI/BdG is shown in
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Eqs. (1)–(3). The Hamiltonians HSTM and HC are

HSTM + HC =
∑
i,k

(εika
†
ikaik + tda

†
ikψi + H.c.), (5)

where aik = (ai↑k,ai↓k)T and aiσk and a
†
iσk are, respectively, the

annihilation and creation operators of the STM tip with spin
σ . Here the STM tip couples to only a few i sites, and td is the
coupling strength. The coupling strength is also characterized
by � = 2πρt2

d , with ρ being the density of states of the STM
tip.

Note that here the Hamiltonian of the STM tip is the same
as that of a metallic lead. So the effect of the STM tip can be
produced by coupling a metallic island to the TSC island in the
experiment, and similar results can also be obtained [23]. But
in a specific setup, the coupling strength between the metallic
island and the TSC island cannot be changed. By contrast, the
STM tip is movable, and the coupling strength � between the
tip and the TSC island can be controlled.

In the numerical calculation, we set m = −0.5, 
 = 0.35,
andA = B = 1 with a regularization lattice constanta = 1 and
h̄ = 1. For an estimation in real materials, h̄νF ∼ 260 meV nm
(νF is Fermi velocity), and the proximity-effect-induced su-
perconductor gap 
 = 0.35 meV [14]. The lattice constant
a = h̄νF /A = 0.26 μm [see Eq. (2)], and the TSC island
size (Lx,Ly) = (20a,90a) = (5.2 μm,23.4 μm) in Fig. 1(a),
where Lx and Ly are the length and width of the TSC
island. This size is similar to that of the experiment device
[20]. The normal tunneling coefficient T , CAR coefficient
T CAR, and LAR coefficient T LAR can be calculated using
the nonequilibrium Green’s function method combined with
the Landauer-Büttiker formula (see Appendix A for details
of the calculation [25,53,55–57]).

III. RESULTS

A. Phase modulation by the STM tip

For the case without the STM tip, the normal tunneling
coefficient T , CAR coefficient T CAR, and LAR coefficient
T LAR in the zero-incident-energy case as functions of the
chemical potential μs are shown in Fig. 1(b). Here the normal
tunneling is perfect with T = 1, but T CAR, T LAR, and normal
reflection R disappear regardless of the chemical potential μs .
For μs <

√
m2 − 
2 [the region to the left of the magenta

dashed in Fig. 1(b)], the TSC island is in the N = 2 phase,
which is topologically equivalent to the QAHI state. In this
case, the incident electron from the left side can be transmitted
transparently to the right side. On the other hand, for μs >√

m2 − 
2, the TSC island is in the N = 1 phase with a
single CMEM. Now when the incident electron ηL along the
QAHI edge state from the left side arrives at the interface
of the TSC and QAHI, it is separated into two Majorana
fermions, γ1 and γ2, i.e., ηL = γ1 + iγ2, with γ1 = 1

2 (ηL + η
†
L)

and γ2 = 1
2i

(ηL − η
†
L). Then γ1 and γ2 propagate forward along

the lower and upper CMEMs, respectively, indicated by the
magenta arrows in Fig. 1(a). Notice that the TSC island does
not touch the upper edge of the QAHI ribbon [Fig. 1(a)],
so γ1 and γ2 must meet at the bottom right corner of the
TSC island, and they combine into an ordinary fermion again
to the right QAHI terminal. Due to the reality constraint on

the wave function of the one-dimensional CMEM, when the
Majorana fermion propagates forward along the CMEM, it
cannot change its sign; that is, its phase can be only zero, with
γ1 → γ1 and γ2 → γ2 [42,43]. This means that the outgoing
particle is γ1 + iγ2 = ηR , which is an electron. Therefore, the
normal tunneling coefficient T = 1 and all other processes also
disappear in the chiral TSC phase.

In order to regulate the phase of the Majorana state, an STM
tip is coupled to one edge of the TSC island [see Fig. 1(a)],
which can break the one-dimensional channel behavior due to
the branch. Now the phase can be zero or π , and the outgoing
upper Majorana state can be γ2 or −γ2, which depends on the
chemical potential μs . When γ2 → γ2, the outgoing particle
ηR = γ1 + iγ2 is an electron; then the quantized perfect normal
tunneling occurs with T = 1 and T CAR = T LAR = R = 0. On
the other hand, while γ2 → −γ2, the outgoing particle is a
hole: γ1 − iγ2 = η

†
R . The occurrence of the perfect electron-

hole conversion leads to the quantized perfect CAR effect. In
this situation, the CAR coefficient T CAR is 1, and all other
processes (including the normal tunneling, normal reflection,
and LAR) are completely suppressed. Figure 1(c) shows the
normal tunneling coefficient T , CAR coefficient T CAR, and
LAR coefficient T LAR versus the chemical potential μs with
the coupling of the STM tip. As expected, with the increase
in μs , T and T CAR appear alternately as plateaus, with the
plateau values being 1 in the chiral TSC regime. Here both
normal reflection and LAR completely disappear because the
TSC island does not touch the upper edge of the QAHI ribbon,
so T + T CAR = 1. When T CAR = 0, the normal tunneling
coefficient T = 1, which corresponds to the perfect tunneling.
However, when T = 0, the CAR coefficient T CAR = 1, which
is the quantized perfect CAR. That is to say, under the coupling
of the STM tip the phase of the Majorana state can be adjusted
to zero or π by tuning the chemical potential μs , which
provides a different way to introduce the branch cut from the
interferometry of Majorana fermions by the superconducting
vortex [42,43].

Next, we study the effect of the coupling strength � of the
STM tip on T and T CAR. Here we consider the current at the
STM tip terminal to be zero; that is, the STM tip terminal is
open. Figure 2(a) shows the normal tunneling coefficient T

and CAR coefficient T CAR versus coupling strength � under
several chemical potentials μs which are at the centers of the
T = 1 plateaus [see Fig. 1(c)]. T remains unity, and T CAR

is always zero when increasing � from zero, indicating that
at these μs the phase of the Majorana state is zero and the
perfect tunneling occurs regardless of the coupling of the
STM tip. More interestingly, for other chemical potentials μs

located at the centers of the T CAR = 1 plateaus, the normal
tunneling coefficient T and CAR coefficient T CAR are strongly
affected by the coupling of the STM tip [see Fig. 2(b)]. When
the coupling strength � = 0, T = 1 and T CAR = 0, which
corresponds to the perfect tunneling. With an increase in �,
the normal tunneling coefficient T reduces from 1 to 0, and
the CAR coefficient T CAR increases from 0 to 1 rapidly. T

reaches 0 and T CAR is 1 even for a very small � (e.g., 0.001),
which is the quantized perfect CAR effect. This means that by
the coupling of the STM tip, the phase of the Majorana state
propagating along the CMEM can be regulated from zero to
π , and the perfect tunneling can be changed into the perfect
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FIG. 2. (a) and (b) The normal tunneling coefficient T and CAR coefficient T CAR versus the coupling strength � of the STM tip for several
chemical potentials μs . The μs in (a) and (b) are, respectively, the centers of the T = 1 plateaus and the T CAR = 1 plateaus in Fig. 1(c). In (a)
the three solid curves overlap, and so do the three dotted curves. (c) T CAR versus the coupling position of the STM tip with the different tip
sizes and μs = 2.1. Here the position index from 0 to 19 means from left to right along the upper edge of the TSC island [see Fig. 1(a)]. The
other unmentioned parameters are the same as in Fig. 1(c).

CAR. With a further increase in �, the perfect CAR can easily
remain with T CAR = 1 and T = 0.

Let us study the effect of the position of the STM tip
on the perfect CAR. Figure 2(c) shows the CAR coefficient
T CAR versus the coupling position of the STM tip with several
coupling sizes. Here the coupling size of the STM tip n × n

(with n = 3, 4, and 5) means that there are n × n = n2 sites in
the TSC/QAHI ribbon coupled to the STM tip. From Fig. 2(c),
we can see that T CAR = 1 always regardless of the coupling
position and the size of the STM tip. That is, the perfect
CAR can always take place and is robust against the coupling
position and the size of the STM tip. It is worth mentioning that
the size of the STM tip usually is very small in general STM
spectroscopy experiments. However, the size of the present
setup is on the micrometer level [20]. So the size of the STM tip
is also required to be large, e.g., about 100 nm or larger. Usually,
a large STM tip should be easy to realize experimentally.

Let us study the effect of the size of the TSC island on the
regulation of the phase of the Majorana state and quantized
perfect CAR. Figure 3 shows T , T CAR, and T LAR as functions

FIG. 3. T , T CAR, and T LAR versus μs for the different sizes of the
TSC island, (a) (Lx,Ly) = (20a,80a), (b) (Lx,Ly) = (20a,100a), (c)
(Lx,Ly) = (30a,90a), and (d) (Lx,Ly) = (40a,90a), with Lx and Ly

being the length and width of the TSC island. All the unmentioned
parameters are the same as in Fig. 1(c).

of μs for different sizes of the TSC island. As the length Lx

and width Ly of the TSC island change, the T = 1 plateaus
and T CAR = 1 plateaus easily remain, and they still appear
alternately. That is, the perfect tunneling and the perfect CAR
effect can occur regardless of the size of the TSC island. The
longer the length Lx of the TSC island is, the more frequent
the alternation between the perfect tunneling and perfect CAR
is. Moreover, Fig. 4 shows the switching period of T CAR with
respect to μs as a function of the length Lx of the TSC island.
It can be seen that the period is linearly determined by Lx . On
the other hand, without the coupling of the STM tip, T = 1
and T CAR = T LAR = 0 always, as shown in Fig. 1(b), no
matter what μs and the TSC island size are. This indicates
that the coupling of the STM tip can regulate well the phase
of the Majorana state from zero to π , which is independent
of the size of the TSC island.

In addition, we also study the effect of the TSC gap
 and the
chemical potentialμQAHI of the QAHI region on the regulation
of the phase of the Majorana state and the perfect CAR. The
perfect tunneling and perfect CAR can always survive as long
as μQAHI is in the bulk gap of the QAHI region, and they can
also hold over a wide range of the TSC gap 
. Hence, the

FIG. 4. The switching period of the T CAR with respect to μs as a
function of the length Lx of the TSC island. The black solid squares
are extracted from the curves of the CAR coefficient versus μs , and
the red solid line is the linear regression for the discrete black solid
squares. All the unmentioned parameters are the same as in Fig. 1(c).
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FIG. 5. (a) The configuration of the electronic Mach-Zehnder interferometer. PC1 and PC2 are two point contacts connecting the two
TSC/QAHI junctions, and a magnetic flux � is threaded in the cavity. The widths of terminals 1, 2, and 4 are 150a, 70a, and 150a, respectively,
and the size of the lower TSC/QAHI junction is (20a,90a). T1n and T CAR

1n from terminal 1 to terminal n (n = 2,4) as functions of � with (b)
μs = 1.87 and (c) 2.1, which correspond to the perfect tunneling and perfect CAR regimes. All the other unmentioned parameters are the same
as Fig. 1(c).

perfect CAR should easily be observed in the experiment, and
it can be solid proof for the existence of CMEM.

B. Coherence

With the coupling of the STM tip, the electron and hole may
go into and then come back from the STM tip, which is akin to
Büttiker virtual probes. Can the STM tip cause the dephasing?
Next, we study whether the outgoing electrons or holes remain
coherent by using an electronic Mach-Zehnder interferometer
with two point contacts (PC1 and PC2), as shown in Fig. 5(a)
[58]. In the PCs, by fine-tuning the coupling strength, an
incident electron is equally transmitted to two paths, similar
to beam splitters. Two TSC islands are introduced in the
transmission paths of the interferometer, and a magnetic flux
� is threaded in the cavity. PC1 splits the incoming edge
current from terminal 1 into two paths. After crossing the TSC
islands, they recombine again in PC2 and finally go to terminals
2 and 4. Figures 5(b) and 5(c) show the normal tunneling
coefficient T1n and CAR coefficient T CAR

1n (n = 2,4) from
terminal 1 to terminal n as functions of magnetic flux �, which
introduces a phase difference between the two paths via the
Aharonov-Bohm effect. In the parameter regimes in Figs. 5(b)
and 5(c), there are occurrences of the perfect tunneling and
perfect CAR in the region of the TSC/QAHI junction, with the
outgoing particles being electrons and holes, respectively. As
shown in Fig. 5(b) [Fig. 5(c)], the normal tunneling coefficient
T1n (the CAR coefficient T CAR

1n ) oscillates between 0 and 1 with
the increase in the magnetic flux �, but T12 + T14 = 1 and
T CAR

12 = T CAR
14 = 0 (T CAR

12 + T CAR
14 = 1 and T12 = T14 = 0).

Because the oscillating amplitudes of T1n and T CAR
1n equal

1, the electron and hole scattered off the TSC island are still
completely coherent despite the coupling of the STM tip. The
survival of the phase coherence results from the fact that the
Majorana state propagating forward along the CMEMs can
take only a phase of zero or π , and the phase cannot be changed
randomly by the coupling of the STM tip [59].

C. Experimental signature

Finally, we study the physically observable quantities
caused by the perfect CAR and the adjustment of the phase
of the Majorana state. We consider a six-terminal Hall bar, as

shown in Fig. 6(a). Here the TSC and lead 4 are grounded,
and a small bias V is applied to lead 1, with Vs = V4 = 0
and V1 = V . The other leads are the voltage probes with zero
current. Without the coupling of the STM tip, the perfect
normal tunnelings occur along the QAHI edge and the CMEM
with T CAR = T LAR = 0, as shown in Fig. 1(b). In this case,
the transport properties are completely the same as those of
the quantum anomalous Hall effect, with V2 = V3 = V4 = 0,
V5 = V6 = V1 = V , I1 = −I4 = (e2/h̄)V , longitudinal resis-
tances V23/I1 = V65/I1 = 0, and Hall resistances V62/I1 =
V53/I1 = h̄/e2 regardless of the chemical potential μs , where
Vnm ≡ Vn − Vm. However, with the coupling of the STM
tip, the results are essentially different, and the observable
quantities mentioned above are strongly dependent on the
chemical potential μs , as shown in Figs. 6(b)–6(d). Now
the perfect tunneling and perfect CAR occur alternately when
the TSC island is in the chiral TSC phase with N = 1. For
the perfect tunneling, the results are the same as above. But
for the perfect CAR, the voltage of lead 5 is V5 = −V instead

FIG. 6. (a) Schematic diagram of a six-terminal Hall bar system
consisting of the QAHI and TSC. (b) The voltages Vn, (c) the currents
I1 and I4, and (d) the longitudinal and Hall resistances as functions of
μs . The widths of leads 2, 3, 5, and 6 are 70a, and all the unmentioned
parameters are the same as in Fig. 1(c).
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of V [see Fig. 6(b)] because the CAR coefficient T CAR = 1.
Notice that V5 is negative and lower than the voltages of leads
1 and 4, so a pumping current will be driven. The current
I4 = I1 = (e2/h̄)V , as shown in Fig. 6(c), in which the currents
at both leads 1 and 4 flow into the center region. As there is no
external power in the right circuit loop consisting of lead 4 and
the superconductor lead in Fig. 6(a), this is a pumping current,
where the electrons in lead 1 draw those in lead 4 to combine
into Cooper pairs and eventually enter the superconductor
lead. The longitudinal resistance of the upper edge V23/I1 = 0,
which is independent of μs because of the unidirectionality of
the QAHI edge states. Nevertheless, the longitudinal conduc-
tance of the lower edge I1/V65 = 1

2e2/h at the half-integer
quantized value [Fig. 6(d)] due to the occurrence of the perfect
CAR. The left Hall resistance V62/I1 = h/e2, but the right Hall
resistance V53/I1 = h/e2 for the perfect tunneling and −h/e2

for the perfect CAR [see Fig. 6(d)]. These results give solid
proof of the CMEM. Moreover, considering that the proposed
setup is very similar to the one in the recent experiment [20],
the predicted perfect CAR should be experimentally observed
with current technologies.

In a realistic experiment involving the STM tip, the voltage
and conductance of the STM tip will be there for direct
readout whether or not signatures of the phase adjustment
from these experimental measurements exist. We calculate
both the voltage Vtip of the STM tip with its current being zero
and the conductance dItip/dV at the zero voltage Vtip = 0.
The results show that the voltage Vtip and the conductance
dItip/dV are zero for both T = 1 and T CAR = 1 phases, but
nonzero Vtip and dItip/dV appear at the transitions between
T = 1 and T CAR = 1 (see Appendix B). This means that
the measurements from the STM tip can only manifest the
transition between the two phases and cannot distinguish them.

IV. CONCLUSION

In summary, we have studied the effect of a STM tip on the
chiral Majorana edge modes and have demonstrated that the
phase of the Majorana states can be regulated by the coupling
of the STM tip. When a π phase is introduced for the Majorana
state, a perfect CAR occurs, and all other scattering processes
completely disappear. Moreover, the outgoing electrons and
holes can maintain phase coherence well despite the STM
tip. The physically observable consequences from the perfect
CAR were also studied in a six-terminal Hall bar setup,
in which the longitudinal and Hall resistances showed the
quantized plateaus. These findings give undoubtable proof of
the existence of the chiral Majorana edge mode and open an
avenue to control the phase of the Majorana state.
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APPENDIX A: DERIVATION
OF THE TRANSPORT FORMULA

By using the nonequilibrium Green’s function method, the
normal tunneling, CAR, and LAR coefficients can be obtained
from [55,56]

T̃nm(E) = Tr[�n
eeGr

ee�
m
eeGa

ee],

T̃ A
nm(E) = Tr[�n

eeGr
eh�

m
hhGa

he], (A1)

where e and h represent the electron and hole, respectively,
E is the incident energy, and n and m are the indices of the
terminals, including the left and right terminals in Fig. 1(a),
terminal n (n = 1,2, . . . ,6) in Fig. 6(a), and the STM tip
terminal. Gr (E) = [E − HBdG − ∑

n �r
n]−1 is the retarded

Green’s function, where HBdG is the BdG Hamiltonian of the
central region. �n(E) = i[�r

n − �a
n ] is the linewidth function.

The self-energy �r
n = �

a†
n stems from the coupling between

terminal n and the center regions. For the QAHI terminal, the
self-energy can be calculated numerically [57]. However, for
the STM tip terminal, �r

tip = − i�
2 I4N , where � = 2πρt2

d is the
coupling strength between the STM tip and the TSC island, I4N

is the 4N × 4N unit matrix in the BdG representation, and N

is the number of sites coupled with the STM tip. In Eq. (A1),
T̃nm(E) (n 	= m) is the normal tunneling coefficient from
terminal n to terminal m, and T̃ A

nm(E) is the Andreev reflection
coefficient. For n 	= m, T̃ A

nm is the CAR coefficient, while for
n = m it is the LAR coefficient. Because there is only one edge
mode in the QAHI terminal, the normal reflection coefficient
for the QAHI terminal is R̃nn = 1 − ∑

m(m	=n)
T̃nm − ∑

m

T̃ A
nm.

After these transmission coefficients are obtained, the cur-
rent in terminal n at the small-bias limit can be calculated using
the multiprobe Landauer-Büttiker formula [25],

In =(e2/h)

⎡
⎣(Vn − Vs)T̃sn(0) +

∑
m(m	=n)

(Vn − Vm)T̃mn(0)

+ 2VnT̃
A
nn(0) +

∑
m(m	=n)

(Vn + Vm)T̃ A
mn(0)

⎤
⎦, (A2)

where Vn is the voltage of terminal n. Here the voltage Vs of the
superconductor lead is set to zero. When the incident energy
E = 0, which is inside the superconductor gap, the tunneling
coefficient T̃sn between terminal n and the superconductor lead
is zero, so the first term in Eq. (A2) vanishes. For the voltage
terminals [e.g., the STM tip and terminals 2, 3, 5, and 6 in
Fig. 6(a)], the currents are zero, and their voltage can be solved
with Eq. (A2).

We take the system in Fig. 1(a) as an example. Setting the
voltages VL and VR for the left and right QAHI terminals and
Itip = 0 in the STM tip, the currents IL and IR and voltage
Vtip can easily be solved using Eq. (A2), and they are linearly
dependent on VL and VR . For example, the current in the
right terminal can be written as IR = (e2/h)(aRVR + aLVL) =
(e2/h)[ aR+aL

2 (VR + VL) + aR−aL

2 (VR − VL)]. Here the coeffi-
cients aR−aL

2 ( aR+aL

2 ) of VR − VL (VR + VL) represent the
probability of the outgoing electron (hole), which is the total
normal tunneling coefficient T (total CAR coefficient T CAR),
including the direct tunneling from L to R, the indirect process
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from L passing the STM tip to R, and so on. In addition,
the LAR coefficient T LAR = T̃ A

RR , and the normal reflection
R = 1 − T − T CAR − T LAR. Both of them are zero because
of the absence of touching between the TSC island and the
upper edge of the QAHI ribbon [see Fig. 1(a)].

APPENDIX B: VOLTAGE AND CONDUCTANCE
OF THE STM TIP

Let us study both the voltage Vtip of the STM tip while its
current is zero and the conductance dItip/dV at the zero voltage
Vtip = 0. Here the setup shown in Fig. 1(a) is considered. The
voltage of the left QAHI terminal sets V , and the voltages of the
TSC island and the right QAHI terminal are zero. For the STM
tip terminal, two boundary conditions are considered: (1) The
current of the STM tip is set to zero (i.e., the open-circuit con-
dition), and the voltage Vtip of the STM tip is studied. (2) The
voltage Vtip is zero (i.e., ground), and the conductance dItip/dV

is investigated.
Figure 7 shows the voltage Vtip and the conductance

dItip/dV as a function of the chemical potential μs . Here
the parameters are the same as in Fig. 1(c). The voltage Vtip

and the conductance dItip/dV are zero for both T = 1 and
T CAR = 1 phases. But nonzero Vtip and dItip/dV appear at
the transitions between T = 1 and T CAR = 1. These results
are very consistent with the physical picture of the one-
dimensional CMEMs shown in Fig. 1(a). From the one-
dimensional CMEMs in Fig. 1(a), we can see that only the
Majorana fermion γ2 [γ2 = 1

2i
(ηL − η

†
L)] can tunnel into the

STM tip. So the normal tunneling and Andreev reflection
coefficients are T̃L,tip = T̃ A

L,tip =|c|2/4 and T̃R,tip = T̃ A
R,tip =0,

FIG. 7. The voltage of the STM tip Vtip and the conductance
dItip/dV as a function of μs . The voltage Vtip is calculated under
the open-circuit condition with the STM tip current Itip = 0. The
conductance dItip/dV is calculated at Vtip = 0. The voltage VL = V ,
and VR = Vs = 0. The parameters are the same as in Fig. 1(c).

where c is the tunneling amplitude from γ2 to the STM tip. c

is positive for the T = 1 phase and negative for the T CAR = 1
phase. Then from multiprobe Landauer-Büttiker formula, we
have

Itip = (e2/h)
[
(Vtip − VL)T̃L,tip + 2VtipT̃

A
tip,tip

+ (Vtip + VL)T̃ A
L,tip

]

= 2(e2/h)Vtip

(
T̃ A

tip,tip + |c|2/4
)
. (B1)

So the tip voltage Vtip is zero under the open-circuit condition
with the current Itip = 0, and the current Itip = 0 (i.e., the
conductance dItip/dV = 0) when the tip is grounded with
Vtip = 0.
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