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Near-perfect conversion of a propagating plane wave into a surface wave using metasurfaces
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In this paper theoretical and numerical studies of perfect/nearly perfect conversion of a plane wave into a
surface wave are presented. The problem of determining the electromagnetic properties of an inhomogeneous
lossless boundary which would fully transform an incident plane wave into a surface wave propagating along
the boundary is considered. An approximate field solution which produces a slowly growing surface wave and
satisfies the energy conservation law is discussed and numerically demonstrated. The results of the study are of
great importance for the future development of such devices as perfect leaky-wave antennas and can potentially
lead to many novel applications.
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I. INTRODUCTION

Traditional leaky-wave antennas [1] at microwave fre-
quencies are devices that convert between space and guided
wave propagation modes. By introducing either periodic or
continuous perturbation to a waveguide or transmission-line
structure, a portion of the guided power is designed to leak
in a desired radiation direction. For a standard leaky-wave
structure, the complex propagation constant describes the rate
of exponential amplitude decay and the phase velocity along
the guided wave direction. The characteristics of the radiated
wave can be obtained from the field distribution over the
radiating aperture. A comprehensive review on leaky-wave
theory and techniques is available in [2].

Since the aperture field distribution of a standard leaky-
wave structure is different from a uniform-amplitude and
linear-phase one, the conversion between the space and guided
waves is not perfect. In the transmitting case, this translates to
radiation into unwanted directions; in the receiving case, it
means that the incoming plane wave from the scan direction
is partially reflected and scattered, rather than completely
transformed into the guided-mode wave. Recently, synthesis of
a desired leaky-wave radiation characteristic associated with a
custom aperture field distribution is receiving increased interest
using spatially varying perturbation structures—the waveguide
width and the metallic post interval in a substrate-integrated
waveguide [3], tensor sheet admittances in stacked metasur-
faces on a ground plane [4], and the shape, size, and periodicity
of a locally anisotropic unit cell in the form of printed conductor
patches on a grounded dielectric substrate [5,6].

The problem of conversion of a propagating plane
wave into a surface wave appears to be similar to that of
anomalous reflection or refraction in underlying physics,
where a propagating plane wave is converted into another
propagating plane wave. Recently, it was recognized that
manipulation of propagating waves using such devices as
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conventional reflectarrays and transmitarrays is accompanied
by fundamental imperfections, associated with inevitable
power scattered into undesired directions. Studies of nonlocal
metasurfaces have demonstrated the possibility to create
devices which can perfectly transform a plane wave incident
along one direction into a plane wave propagating into another
direction [7,8]. Now, both theoretical designs employing
penetrable and impenetrable metasurfaces [9,10] and a
practical realization based on the leaky-wave principle on a
supercell level [11] are available. However, in sharp contrast to
anomalous reflection, perfect conversion between space waves
and guided waves is still elusive. No designs are available for
the canonical transformation problem between a plane wave
and a surface wave that promise perfect conversion devoid of
spurious scattering in the limit of lossless constituents.

In [12], the authors reported a periodic metasurface with
linear reflection phase approximation based on the generalized
law of reflection [13] (similarly to conventional gratings), in
which a power conversion efficiency of nearly a 100% was
claimed. However, the reported structure cannot operate with-
out introducing losses for an infinitely long structure, because
otherwise a momentum mismatch between a propagating wave
and a surface wave appears, not being able to excite a surface
wave (full reflection of the propagating wave back into the
free space). Furthermore, such a structure does not support
a surface wave to propagate along the surface as the surface
wave is not an eigensolution of the metasurface. As a result, the
reported gradient metasurface, as an infinitely long converter,
operates as a good absorber at steady state. For finite-length
converters, the power conversion efficiency between a plane
wave and a surface wave was theoretically and numerically
studied in [14]. For periodic supercell-based gradient meta-
surface implementations, the decoupling effect taking place at
the interface between supercells has a significant impact on
efficiency. For a converter comprising two supercells, a high
conversion efficiency of 78% was predicted.

Furthermore, the authors also developed a surface plasmon
polaritons (SPP) approach [15] based on the generalized law
of reflection [13]. The model consists of a metacoupler, which
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is impedance matched to the free space and plasmonic metal
sheet located below. Such a system allows creation of an SPP
wave without decoupling effect. The authors claim to have
a numerically predicted conversion efficiency of 94%. The
design consists of two surfaces with an approximately half-
wavelength separation between them. A single, low-profile
design would have been more desirable. Furthermore, an SPP
generated by a metacoupler upon plane wave illumination will
go through additional refraction by the same metacoupler with
the wave number along the surface shifted further into the invis-
ible region. This effect of higher-order spatial harmonics gen-
eration deep in the invisible region has not been investigated.

In [8], transformation of a propagating wave into a surface
wave using metasurface was described, which is designed as
a passive and lossy periodic structure. However, the reported
conversion efficiency of such a metasurface is quite low (≈7%).
A transparent metasurface for transforming a beam wave into
a surface wave and back into a beam wave was reported in
[16,17]. Contrary to the claims, the propagating beam launched
by the metasurface appears to be generated by active (i.e.,
source) metasurface constituents rather than being converted
from the surface wave propagating along the metasurface.

In this paper we theoretically and numerically investigate
conversion of propagating plane waves to surface waves. In
particular, we explain that it is not possible to create a point-
wise lossless metasurface which would perfectly convert an
incident plane wave into a single surface wave mode carrying
linearly growing power along the propagation direction (as
required by the energy conservation). On the other hand, we
present an approximate solution for the surface impedance
of a metasurface which performs such a conversion with a
high (predicted to be nearly 100%) efficiency. As an exam-
ple, near-perfect conversion of a plane wave into a surface
wave with a slow exponential growth is numerically tested.
Such a solution is a special case of separable solutions to
the Helmholtz equation, which consist of a single spatial
harmonic. Although in this case the power growth law is
different from the ideal linear dependence, we show that a very
accurate approximate solution can be found if the exponential
growth of a surface-bound eigenwave is slow enough. The
appropriate surface impedance that realizes the envisioned
conversion is found from the boundary condition using the
total field distribution. Example designs are numerically tested
to demonstrate near-perfect propagating wave-to-surface wave
conversion performance. Furthermore, we show that nonlocal
metasurfaces can emulate the active-lossy behavior necessary
for ideal conversion, without the need to use any active or
dissipating components.

In the microwave regime, the plane wave-to-surface wave
converting surface in this study may be realized as a thin
metasurface on an impenetrable surface, e.g., as an array
of subwavelength resonators printed on a grounded dielec-
tric substrate. Such a single-surface design overcomes the
SPP-to-space wave decoupling issue associated with existing
metacoupler designs while maintaining a low profile.

II. PROBLEM STATEMENT

Figure 1 illustrates the problem under considera-
tion, perfect conversion (no dissipation or scattering
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FIG. 1. Boundary problem of plane wave to surface wave
conversion.

losses) of a TE-polarized incident plane wave into a
TM-polarized surface wave bound to an impenetrable meta-
surface in the xz plane, characterized by the matrix surface

impedance Zs. Polarization transformation is applied here to
avoid field and power interference of propagating and surface
waves with each other [7]. Both fields are invariant with respect

to z. The design objective is to find Zs that enables this
transformation. The most desirable solution is a point-wise
lossless metasurface, such that the normal component of the
total Poynting vector is zero at all points of the surface. In this

case, the impedance matrix is skew Hermitian: Z
†
s = −Zs. In

the special case of reciprocal surfaces, all components of the
surface impedance matrix of lossless boundaries are purely
imaginary [18].

Both the incident fields and the scattered surface wave
fields must satisfy Maxwell’s equations in the upper half-space,
which is assumed to be free space. To fully understand the
concept of energy transfer and its further flow along the surface,
a point-wise lossless discretized surface should be considered
(Fig. 2). The uniform amount of power carried by the incident
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FIG. 2. Illustration of a linear power growth required by the
energy conservation law.
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wave (denoted as Pi in Fig. 2) is added at each consecutive
small interval. Therefore, the power carried by the surface wave
should grow linearly along the surface, to satisfy the energy
conservation.

In search of a surface wave solution that satisfies the
necessary spatial power dependence, both separable and non-
separable solutions to the Helmholtz equation have been
considered. Conventional separable solutions are plane waves
which exponentially grow along the surface. Using an ejωt

time convention assumed and suppressed for time-harmonic
analysis at an angular frequency ω, the nonseparable solutions
in Cartesian coordinates [19,20] allow the z component of the
magnetic field in TM polarization of the form

Hz = H0(kyx − kxy)e−j (kxx+kyy), (1)

where H0 is a constant. The wave numbers in the x and y

directions kx and ky satisfy the free-space dispersion relation:

k2
x + k2

y = k2
0, (2)

where k0 is the free-space wave number. An evanescent wave
in the y direction is associated with the condition kx > k0.
It is found that the time-average power carried in the x

direction increases quadratically with x. Hence, both separable
and the nonseparable (1) eigenwave field solutions cannot
represent the surface wave converted from the incident plane
wave. In other words, Maxwell’s equations in homogeneous
media do not allow ideal conversion of uniform propagating
plane waves into one surface wave with the use of point-wise
lossless metasurfaces. Therefore, we introduce approximate
nearly perfect solutions and explore possibilities offered by
active/lossy and strongly nonlocal metasurfaces.

III. SEPARABLE FIELD SOLUTIONS

Let us consider a separable solution for the surface wave,
whose magnetic field is expressed as

Hsw = ẑH sw
z (x,y) = ẑX(x)Y (y), (3)

where X(x) and Y (y) are functions of x and y only, respec-
tively. The surface wave field component satisfies the ho-
mogeneous wave equation (∇2 + k2

0)H sw
z = 0. Following the

standard separation-of-variables technique [21], one obtains a
solution of the form

H sw
z = H sw

0 e−j (k′
xx+k′

yy), (4)

with an arbitrary complex amplitude H sw
0 . The wave numbers

k′
x , k′

y satisfy (2). The prime symbol denotes spectral variables.
Let us write the wave numbers in terms of real-valued

propagation (β’s) and attenuation (α’s) constants as k′
x =

β ′
x − jα′

x , k′
y = β ′

y − jα′
y . Because perfect transformation into

a single surface mode using point-wise lossless surfaces is not
possible, we consider the general solution for H sw

z in y � 0 as
a superposition of (4) over the entire complex-kx plane, written
as a two-dimensional (2D) inverse Fourier transform

H sw
z = 1

4π2

∫∫ ∞

−∞
H̃ sw

z (k′
x,k

′
y)e−j (k′

xx+k′
yy)dα′

xdβ ′
x, (5)

where H̃ sw
z (k′

x,k
′
y) is the 2D spectrum of H sw

z (x,y). In (5),
the complex propagation constant k′

y is found from the free-
space dispersion relation (2). The branch of the square root

for α′
y is determined such that β ′

y � 0, i.e., all scattered
wave components propagate away from the y = 0 boundary.
Equation (5) represents superposition of homogeneous and
inhomogeneous plane waves. For (5) to represent a surface
wave bound to the xz plane, H̃ sw

z (k′
x,k

′
y) can be nonzero only

in the range α′
y > 0. If we desire that the converted surface

wave propagates in the +x-axis direction along the surface,
the valid region of nonzero H̃ sw

z (k′
x,k

′
y) in the complex-kx plane

corresponds to β ′
x > k0.

Using Maxwell’s equations, expressions for the E-field
components of the surface wave Esw = x̂Esw

x + ŷEsw
y are

found to be

Esw
x = − 1

4π2

∫∫ ∞

−∞

η0k
′
y

k0
H̃ sw

z e−j (k′
xx+k′

yy)dα′
xdβ ′

x, (6)

Esw
y = 1

4π2

∫∫ ∞

−∞

η0k
′
x

k0
H̃ sw

z e−j (k′
xx+k′

yy)dα′
xdβ ′

x, (7)

where η0 ≈ 377� is the free-space intrinsic impedance. With
the general expression of the surface wave fields in (5)–
(7), the surface wave design reduces to finding H̃ sw

z that
performs the following functions: (1) elimination of a reflected
plane wave from the surface and (2) linear growth of the surface
wave power with respect to x that is consistent with perfect
conversion from the incident plane wave.

IV. APPROXIMATE DESIGN EMPLOYING A SINGLE
SURFACE WAVE OF SLOW EXPONENTIAL GROWTH

It is expected that there are many possibilities for the
spectrum H̃ sw

z (k′
x,k

′
y) that satisfy the design requirements. In

order to reduce the design complexity, let us consider the
special case of a single spatial harmonic, such that the surface
wave spectrum is represented as

H̃ sw
z (k′

x,k
′
y) = 4π2H sw

0 δ(k′
x − kx)δ(k′

y − ky), (8)

where H sw
0 is a complex amplitude and kx = βx − jαx , ky =

βy − jαy are complex propagation constants of choice in the
x- and y-axis directions, respectively. The associated surface
wave field expressions are given by

Hsw = ẑH sw
0 e−(αx+jβx )xe−(αy+jβy )y, (9)

Esw = [−x̂(βy − jαy) + ŷ(βx − jαx)]
η0H

sw
0

k0

×e−(αx+jβx )xe−(αy+jβy )y. (10)

Obviously the power carried by this simple single-mode
surface wave grows exponentially along x, while the ideal
conversion of an incident propagating plane wave into this
surface wave implies linear power increase. However, solutions
with a slow exponential growth can approximate the required
linear law.

For complex propagation constants kx and ky , the free-space
dispersion relation (2) gives two separate equations for real-
valued parameters αx , βx , αy , and βy defined by

β2
x + β2

y − α2
x − α2

y = k2
0, (11)

αxβx + αyβy = 0. (12)

Any combination of real values for the four parameters that
satisfy (11) and (12) produce fields that satisfy Maxwell’s
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equations in the range y > 0 in Fig. 1. Here we choose αx

to be a small negative quantity and βx > k0. This results in
αy > 0, 0 < βy < k0. Such a wave represents a propagating
wave of slow exponential growth in the +x-axis direction.
Yet, the wave does not reach y → +∞, bound to the xz plane,
owing to αy > 0.

For realization of the wave converter as a point-wise lossless
nontransparent metasurface, the resulting total fields, given
as a superposition of the incident plane wave and the slowly
growing surface wave, must have zero net power across the
xz plane everywhere [10]. This condition is analogous to the
local power conservation requirement for passive, lossless
realization of �-bianisotropic metasurfaces for wave trans-
formation [9]. The total power density along the normal to
the surface may be dependent on the vertical coordinate and
be inhomogeneous, but we require it to be equal zero on the
lossless metasurface boundary (y = 0). This assures that all
the illuminating power of the incident wave is “accepted” by
the surface and consequently used for surface wave creation.
For simplicity, let us consider a normally incident plane wave
in Fig. 1 with the fields given by

Ei = ẑEi
0e

jk0y, Hi = −x̂
Ei

0

η0
ejk0y. (13)

On the surface (y = 0) the zero net power penetration condition
reads

Sy(x,y = 0) = S i
y + Ssw

y

= −|E0|2
2η0

+ η0βy

2k0

∣∣H sw
0

∣∣2
e−2αxx = 0, (14)

where S i
y and Ssw

y are the normal components of the time-
average Poynting vector associated with the incident plane
wave and the surface wave, respectively. The normal com-
ponent of the Poynting vector for the total fields Sy is an
algebraic sum because the two sets of fields are of orthogonal
polarizations. Hence, for the surface wave fields (9) and (10) to
cancel the incident power density on the surface, the magnetic
field magnitude of the surface wave must satisfy

∣∣H sw
0

∣∣ = |E0|
η0

√
k0

βy

eαxx. (15)

The phase of H sw
0 relative to E0 can be arbitrary. However,

if H sw
0 satisfies (15), the surface wave amplitude does not

grow along the surface, and, moreover, the complex amplitude
should be a constant to satisfy Maxwell’s equation. Therefore,
it is concluded that (14) cannot be satisfied for all x. In fact,
(14) can be exactly satisfied only at one location in x because
αx �= 0 [22].

Since an exponential function either diverges or approaches
zero as x → ±∞, we can only consider approximate satisfac-
tion of (15) over a finite interval. Consider an interval of length
L centered at x = 0, as shown in Fig. 3. We can select the value
of αx such that eαxx can be considered approximately equal
to unity over −L/2 < x < L/2. In other words, attenuating
constant αx and length L should be balanced to satisfy the
condition |αxL| � 1. Picking the middle point of the x range
at x = 0 for exact enforcement of (15) and setting the phase

FIG. 3. Illustration of the finite interval of the impenetrable
surface with length L.

of H sw
0 equal to that of E0, we assign

∣∣H sw
0

∣∣ = E0

η0

√
k0

βy

. (16)

The x component of the time-average Poynting vector of
the surface wave is equal to

Sx = 1

2
Re

{
Esw

y × H sw∗
z

} = η0βx

2k0

∣∣H sw
0

∣∣2
e−2(αxx+αyy). (17)

Integrating Sx(x,y) over 0 < y < ∞, we find that the power
propagating in the +x direction per unit length in z to be

Px = η0βx

4k0αy

∣∣H sw
0

∣∣2
e−2αxx ≈ η0βx

4k0αy

∣∣H sw
0

∣∣2
(1 − 2αxx). (18)

Equation (18) shows that the power carried by the surface wave
increases approximately linearly with x, as desired. In addition,
the rate of power increase with respect to x (dPx/dx) is equal
to the power density of the incident plane wave.

A surface of finite length L is expected to convert the power
of the illuminating plane wave falling on the given range
−L/2 < x < L/2, into a growing surface wave propagating
in the +x-axis direction. We note that the surface wave field
values at the starting point of the surface (x = −L/2) is not
zero. This means that the wave-converting surface needs an
input power at x = −L/2 in an eigenmode characterized by
a damped oscillatory function in y to perform the desired
wave conversion, but there is no input power if the considered
section of length L has no continuation at x < −L/2. For
this reason, for numerical validation of the designed surfaces
in Sec. VI, performance of the wave converting surfaces is
evaluated without an input surface wave as well.

V. SURFACE IMPEDANCE CHARACTERIZATION
OF THE COUPLER

To ascertain which type of a surface is needed for the
transformation described in the previous section, we consider
the boundary condition at y = 0 in the form of a surface
impedance. Using superposition, the total tangential fields on
the surface are found from (9), (10), and (13) to be

Et = ẑEtz + x̂Etx = ẑE0 − x̂H sw
0

kyη0

k0
e−jkxx, (19)

Ht = ẑHtz + x̂Htx = ẑH sw
0 e−jkxx − x̂

E0

η0
, (20)

where Etz and Etx are the tangential electric field components
derived from the incident and reflected (quasisurface) waves.
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The magnetic field components Htx and Htz are denoted
similarly. Now, the y = 0 surface can be characterized with a

surface impedance tensor Zs, which relates Et and the induced
surface current Js = ŷ × Ht via

Et = Zs · Js =
[
Zxx Zxz

Zzx Zzz

]
Js, (21)

where Zxx , Zxz, Zzx , and Zzz are terms of the anisotropic 2 × 2

matrix Zs. The two complex-valued equations in terms of field
quantities are

Etx = ZxxHtz − ZxzHtx,
(22)

Etz = ZzxHtz − ZzzHtx.

Each of the four matrix elements can be represented as a
complex number, i.e.,

Zs =
[
Rxx + jXxx Rxz + jXxz

Rzx + jXzx Rzz + jXzz

]
, (23)

where the R and X quantities are real valued and represent
the resistance and reactance parts of the associated impedance
values. Since there are two complex-valued equations in (22)
for four complex-valued impedance elements, the solution is
not unique and thus there is a freedom that can be exploited for
setting their values. Equating the real and imaginary parts on
the two sides of (22), we obtain four real-valued equations.
They can be expressed as a matrix equation in a compact
form as[

Rxx Rxz

Rzx Rzz

][
Re{Htz} Im{Htz}

−Re{Htx} −Im{Htx}
]

+
[
Xxx Xxz

Xzx Xzz

]

×
[−Im{Htz} Re{Htz}

Im{Htx} −Re{Htx}
]

=
[

Re{Etx} Im{Etx}
Re{Etz} Im{Etz}

]
.

(24)

Depending on requirements on loss and reciprocity of the
system, different constraints can be placed on the values of
the resistance and reactance parts of the tensor elements and
the associated impedance/admittance matrices can be found
from (24). A reciprocal system is characterized by a symmetric

matrix, i.e., Z
T

s = Zs. As to losses in the system, a point-
wise lossless system is characterized by a skew-Hermitian

matrix, i.e., Z
†
s = −Zs. In the following, we discuss solutions

for Zs for reciprocal/nonreciprocal and lossless/active-lossy
combinations.

A. Reciprocal and point-wise lossless

Let us first describe the most desirable case from the
practical point of view, when the system is reciprocal and
lossless at every point. All the elements of the impedance
matrix are purely imaginary and the matrix is skew Hermitian:
Zxx = jXxx , Zxz = Zzx = jXxz, and Zzz = jXzz. There are
three real-valued parameters (Xxx , Xxz, and Xzz), while there
are four linear equations in (24).
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FIG. 4. Susceptance elements of the surface admittance Ys for
the reciprocal and lossless periodic approximation (26) with αx =
−0.0083k0, αy = 0.3524k0, βx = 1.06k0, and βy = 0.025k0.

1. Periodic approximation

One can solve all four equations exactly in the case of
magnetic field magnitude described by (15). The solutions
for the impedance matrix as well as the associated admittance
matrix are found to be

Zs = j

⎡
⎢⎢⎢⎢⎣

η0

k0
(αy − βy cot βxx)

η0

sin βxx

√
βy

k0

η0

sin βxx

√
βy

k0
−η0 cot βxx

⎤
⎥⎥⎥⎥⎦, (25)

Y s = j

D

⎡
⎢⎢⎢⎢⎣

−η0 cot βxx − η0

sin βxx

√
βy

k0

− η0

sin βxx

√
βy

k0

η0

k0
(αy − βy cot βxx)

⎤
⎥⎥⎥⎥⎦, (26)

where D is the determinant of Zs and is equal to D =
η2

0(αy cot βxx + βy)/k0. This solution describes a completely
lossless structure, but the fields satisfy Maxwell’s equations
exactly only when eαxx approaches unity. For an example
set of complex propagation constants (their values are shown

in the caption), Fig. 4 plots the susceptance elements of Y s

(26). The propagation constants are chosen for a surface of
length L = 20λ0. Along the +x-axis direction, a moderately
slow exponential growth was chosen with |αxL| � 1 and a
propagation constant just outside the visible (propagating)
region was selected as βx = 1.06k0. The associated values of
αy , βy are found from (11) and (12). The admittance tensor
parameters are found to be periodic functions with period
2π/βx . Furthermore, all four parameters diverge when D = 0,
or at x = (1/βx)[− cot−1(βy/αy) + nπ ](n = 0,±1,±2, . . .).

2. Least squares approximation

To find an approximation for the surface
impedance/admittance of a lossless and reciprocal surface,
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FIG. 5. Susceptance elements of the surface admittance Ys for
the reciprocal and lossless least squares approximation with αx =
−0.0083k0, αy = 0.3524k0, βx = 1.06k0, and βy = 0.025k0.

which creates the fields that satisfy Maxwell’s equations, the
least squares approximation [23] can be used. The amplitude
of the magnetic field of the surface wave in this case is defined
as (16). In terms of the vector with three reactance elements
to be determined, X = [Xxx Xxz Xzz]

T , the four linear
equations (24) can be rewritten as

¯̄HtX = Et , (27)

where

¯̄Ht =

⎡
⎢⎣

−Im{Htz} Im{Htx} 0
Re{Htz} −Re{Htx} 0

0 −Im{Htz} Im{Htx}
0 Re{Htz} −Re{Htx}

⎤
⎥⎦, (28)

Et = [Re{Etx} Im{Etx} Re{Etz} Im{Etz}]T . (29)

This overdetermined system cannot be exactly satisfied, other
than the case in Sec. V A 1. The least squares solution solves
for X such that the error defined by

error = ‖Et − ¯̄HtX‖2 (30)

is minimized. The solution is given by [23]

X = ( ¯̄HT
t

¯̄Ht
)−1 ¯̄HT

t Et . (31)

The resulting admittance profile in this case is generally

aperiodic, and the susceptance elements of Y s are shown
in Fig. 5. The behavior of the admittance curves in both
approximations, periodic and least squares, are similar, but
differences become pronounced at locations far from x = 0.

An alternative approximate solution which introduces non-
reciprocity while the system remains lossless at all points can
be found in a similar way, but it does not offer any advantages
in possible realizations.
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FIG. 6. Surface admittance Ys for the reciprocal and active/lossy
case with αx = −0.0083k0, αy = 0.3524k0, βx = 1.06k0, and βy =
0.025k0. All the components of the admittance are complex numbers.

B. Reciprocal and active/lossy

A possible way to find an exact solution which satisfies
Maxwell’s equations is to mitigate the condition for absence
of losses or gain everywhere at the metasurface plane. In other
words, strong nonlocal response in metasurface is allowed.
One of the reciprocal and active/lossy solutions which satisfy
(16) identically at all points of the metasurface is described
by the impedance matrix with imaginary diagonal elements
elements and complex off-diagonal elements. The impedance
matrix and the associated admittance matrix are found to be

Zs =
[

jXxx Rxz + jXxz

Rxz + jXxz jXzz

]
, (32)

Y s = 1

D

[
jXzz −(Rxz + jXxz)

−(Rxz + jXxz) jXxx

]
, (33)

where

Xxx = η0

k0
(αy − βy cot βxx) + η0βy(1 − e2αxx)

2k0 cos βxx sin βxx
, (34)

Rxz = η0

2 cos βxx

√
βy

k0
(eαxx − e−αxx), (35)

Xxz = η0

2 sin βxx

√
βy

k0
(eαxx + e−αxx), (36)

Xzz = η0

2

(
tan βxx − cot βxx − e−2αxx

cos βxx sin βxx

)
, (37)

and D = −XxxXzz − (Rxz + jXxz)2 is the determinant of Zs.

Figure 6 plots the elements of Y s for the same example
set of complex propagation constants considered in previous
subsections. All the admittance terms are complex contrary to
the impedance terms due to the fact that the determinant D is a
complex number. The admittance tensor parameters are found
to be aperiodic functions.

115447-6



NEAR-PERFECT CONVERSION OF A PROPAGATING PLANE WAVE … PHYSICAL REVIEW B 97, 115447 (2018)

This revealed the possibility to find an exact solution in
the form of only one incident propagating plane wave and
one surface mode [with the amplitude given by (16)] using
active/lossy metasurfaces reminds us of the analogous property
of perfect anomalous reflectors which transform one incident
plane wave into only one reflected plane wave propagating
in the desired direction [7–9,11]. We expect that also in the
case of considered transformation into a single surface mode,
realizations can be found in form of nonlocal metasurfaces,
where “active” regions work as receiving leaky-wave antennas
while the “lossy” regions as transmitting antennas, in analogy
with the approach presented in [11]. In contrast to transform-
ers of propagating waves which are periodically modulated
surfaces, in this case the receiving surface is divided into two
regions, the first of which is receiving power (effective loss)
and the second one is radiating power (effective gain), as is
seen from formula (14) with a constant value of |H sw

0 |. The
parameters of the metasurface can be chosen so that these two
powers are equal, so that overall the structure is lossless.

It is stressed that realizations of such nonlocal metasurfaces
which emulate active/lossy response do not require active
elements. Basically, the nonlocal metasurface does not act
as a boundary at every point: In the lossy region part of the
input power is accepted by auxiliary waves which exist inside
the metasurface device, and this power is used to enhance the
generated plane wave in the active region. Actually, any reac-
tive impedance boundary (except perfect electric conductor)
models some fields behind the surface, only in the point-wise
lossless case all the power which is accepted at a given point is
reflected back at the same point, without any power transport
along the metasurface plane. In the nonlocal scenario, some
power also moves inside the metasurface in the direction of
power growth of the generated plane wave.

C. Nonreciprocal and locally active/lossy

By introducing nonreciprocity in addition to effective loss
and gain, one can find more elegant exact solutions which
satisfy Maxwell’s equations, corresponding to creation of a
single surface wave with the amplitude (16). It can be described
by a non-Hermitian impedance matrix with all the elements
being purely imaginary: Zxx = jXxx , Zxz = jXxz, Zzx =
jXzx , Zzz = jXzz. The solution for the impedance matrix as
well as the associated admittance matrix are found to be

Zs = j

⎡
⎢⎢⎢⎢⎣

η0

k0
(αy − βy cot βxx)

η0

sin βxx

√
βy

k0
e−αxx

η0

sin βxx

√
βy

k0
eαxx −η0 cot βxx

⎤
⎥⎥⎥⎥⎦,

(38)

Y s = j

D

⎡
⎢⎢⎢⎢⎣

−η0 cot βxx − η0

sin βxx

√
βy

k0
e−αxx

− η0

sin βxx

√
βy

k0
eαxx

η0

k0
(αy − βy cot βxx)

⎤
⎥⎥⎥⎥⎦,

(39)
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FIG. 7. Surface admittance Ys for the nonreciprocal and ac-
tive/lossy case with αx = −0.0083k0, αy = 0.3524k0, βx = 1.06k0,
and βy = 0.025k0. All the components are purely imaginary.

where D is the determinant of Zs and is equal to D =
η2

0(αy cot βxx + βy)/k0.
Figure 7 plots the elements of the susceptance elements of

Y s for the same example set of complex propagation constants
considered in Sec. V A. The admittance tensor parameters are
found to be aperiodic functions and all four parameters diverge
when D = 0, or at x = (1/βx)[− cot−1(βy/αy) + nπ ](n =
0,±1,±2, . . .). It is observed that the off-diagonal terms are the
same at x = 0 and they slowly diverge from each other away
from x = 0. Therefore, realization of such surface is expected
to be a difficult and probably nonprofitable task, compared
to reciprocal structures. However, they remain close to each
other in the x range considered, signifying that the degree of
nonreciprocity and active/lossy property is not significant. Also
as expected, the parameters in Fig. 7 are close to those of the
reciprocal and lossless case shown in Fig. 4.

By using the aforementioned surface impedance profiles,
one can simulate and, further, realize the necessary surface
to convert a propagating plane wave into a quasisurface wave
with high efficiency.

VI. NUMERICAL RESULTS

Using full-wave simulations with COMSOL Multiphysics
[24], the conversion characteristics of the surfaces in Sec. V
can be evaluated. The model is a rectangular cross section
in the xy plane with a length L = 20λ0 and a height H =
5λ0. Impedance boundary conditions are impenetrable and
applied to the surface by impressing an electric surface current
specified in terms of the tangential electric field and the surface
admittance matrix (in our case Jx = YxxEtx + YxzEtz and
Jz = YzxEtx + YzzEtz). In this work we consider two cases:
imitation of an infinitely long surface with an input surface
wave using two surface wave ports and a model of the initial
portion of the wave-converting surface with no input surface
wave port (i.e., one surface wave port for the converted output
power). The used frequency is f = 10 GHz, but the results are
scalable to any frequency.

115447-7



TCVETKOVA, KWON, DÍAZ-RUBIO, AND TRETYAKOV PHYSICAL REVIEW B 97, 115447 (2018)

(a)( )

(b)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3
10-3

(c)

FIG. 8. (a) Field distribution of the tangential component of the
total field Ez in the lossless and reciprocal design (least squares
solution). The length of the surface is L = 20λ0, wave parameters are
αx = −0.0016k0, αy = 0.2041k0, βx = 1.0206k0, and βy = 0.008k0.
(b) Simulated Hz field distribution in the lossless and reciprocal design
(least squares solution). Conversion efficiency is nearly 100%. (c)
The tangential power growth along the surface for the least squares
(efficiency is 99.8%), approximate periodic (efficiency is 99.6%),
theoretical exponential and theoretical linear approximate solutions.

A. Model with an input surface wave

To model an L-long section of the infinite structure, port
conditions on both sides of the box were defined. In COMSOL,
the mode fields are specified to be TM polarized and have a
y dependence of e−(αy+jβy )y on the port surfaces. Port 1 on

the left side is a negative resistor and it pumps energy to
the system to mimic the surface wave that comes from the
“hidden” part of the infinite surface. This is implemented by
setting the propagation constant normal to the port surface to
−(βx − jαx). Port 2 on the right side is completely passive
and receives all the energy carried by a quasisurface wave.
The conversion efficiency in the case with an input power is
the fraction of power carried by the surface wave that exits
x = L/2 less the surface wave power that enters x = −L/2,
divided by the incident power that falls on −L/2 < x < L/2.

Figure 8 demonstrates the result for a lossless and reciprocal
system (specifically, the least squares solution), where the
surface wave parameters are αx = −0.0016k0, αy = 0.2041k0,
βx = 1.0206k0, and βy = 0.008k0. A snapshot of the z compo-
nent of the total E-field Ez is plotted in Fig. 8(a). No reflected
propagating wave is visible and the total field is virtually
equal to the incident field. Figure 8(b) plots a snapshot of
Hz, showing a slowly growing surface wave that is bound to
the xz plane. Here αx is a small negative quantity, therefore
the linear approximation of an exponential function is highly
accurate and the linear growth of the tangential component of
the power is smooth. In order to evaluate the wave conversion
performance quantitatively, the total +x-directed power per
unit length in z [i.e., Px in (18)] that penetrates an x = constant
plane is shown in Fig. 8(c) with respect to x between theory
and simulation. The simulated power profiles agree well with
the linear approximation of a slow exponential growth. The
efficiency of such conversion is calculated to be 99.8% (least
squares solution), which is practically perfect.

Figure 9 demonstrates the result for a lossless and recip-
rocal system (the least squares solution) when the surface
wave parameters are αx = −0.0083k0, αy = 0.3524k0, βx =
1.06k0, and βy = 0.025k0. A faster exponential growth was
chosen compared with the previous case to investigate the
characteristics. In case of αx being a negative quantity farther
away from zero, the linear approximation is not as accurate,
but the efficiency is still found to be high at 98.4%, reduced
only slightly from the previous case in Fig. 8. This slight drop
can be understood as a consequence of a poorer approximation
of a faster exponential growth to a linear growth. Reflection of
the incident plane wave is minor, so that Ez is only slightly
modified from the incident field [Fig. 9(a)]. We also observe
that the input power (normalized to the power density of the
plane wave) at x = −L/2 is significantly lower than in the
small |αx | case in Fig. 8.

Owing to the construction of a growing surface wave
solution at a low exponential rate, a surface wave input is
required for perfect conversion. Although this is an appropriate
approach to the analysis of the performance of a middle
section of a large receiving surface, requiring an input wave is
not desirable if we consider edges of a finite-length surface.
However, if the required input surface power is low as in
the case shown in Fig. 9, it may still be possible to achieve
a high efficiency without an input wave. This possibility is
investigated next.

B. Model without an input surface wave

From one side we define the “starting point” of the surface
by eliminating the input surface wave port in previous config-
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FIG. 9. (a) Field distribution of the tangential component of the
total field Ez in the lossless and reciprocal design (least squares
solution). The length of the surface is L = 20λ0, wave parameters are
αx = −0.0083k0, αy = 0.3524k0, βx = 1.06k0, and βy = 0.025k0.
(b) Simulated Hz field distribution in the lossless and reciprocal
design (least squares solution). The conversion efficiency is 98.4%.
(c) The tangential power growth along the surface for the least squares
(efficiency is 98.4%), approximate periodic (efficiency is 81.7%),
theoretical exponential and theoretical linear approximate solutions.

urations and applying a perfectly matched layer from the left
side (the same way we can apply passive port condition, their
impact here is no different). To the right side we connect a
port, which receives all the energy carried by the quasisurface
wave. The conversion efficiency in the case of an absence of
the input power is the fraction of power carried by the surface
wave that exits x = L/2 relative to the incident power that

(a)

(b)

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2

0

2

4

6

8

10

12
10-4

(c)

FIG. 10. (a) Field distribution of the tangential component of
the total field Ez in the lossless and reciprocal design (least squares
solution). The length of the surface is L = 20λ0, wave parameters are
αx = −0.0083k0, αy = 0.3524k0, βx = 1.06k0, and βy = 0.025k0.
(b) Simulated Hz field distribution in the lossless and reciprocal
design (least squares solution). The conversion efficiency is 90.5%.
(c) The tangential power growth along the surface for the least squares
(efficiency is 90.5%), approximate periodic (efficiency is 80.2%),
theoretical exponential and theoretical linear approximate solutions.

falls on −L/2 < x < L/2. It is important to note that the
plane-to-surface waves conversion efficiency in the case of
no input surface wave is equal to the conversion efficiency
of the corresponding leaky-wave antenna [25] in a reciprocal
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operation as a radiator. The aperture efficiency equals 100%
by design, and the radiation efficiency approaches 100% for
lossless surfaces.

With the same set of surface wave parameters as in Fig. 9,
snapshots of the z component of the total E-field Ez and the
surface wave magnetic field distribution for the lossless and
reciprocal surface design (least squares solution) are shown in
Figs. 10(a) and 10(b), respectively. The power Px is plotted
in Fig. 10(c) for the analytical and numerical results. We note
that in numerical simulations the perfectly matched layer on
the left side unfortunately distorts the incident plane wave, not
quite adequately modeling the plane wave. Moreover, slightly
negative values for the simulated power at x = −L/2 are due to
the diffracted waves contributing to power propagating along
the −x direction. However, after a short transition, a steadily
growing surface wave behavior is established. Conversion
efficiencies for the least squares and approximate periodic
solutions are numerically found to be 90.5% and 80.2%, re-
spectively. These efficiencies are further reduced from the case
in Fig. 9 due to the omission of the input surface wave required
by the theory. This result means that the designed metasurface
does not suffer from significant efficiency losses even if used
without an input power. In addition, it is noted that the growing
surface wave parameters shown in Fig. 10 represent one of
many design possibilities. There may be other choices ofαx and
βx that lead to higher efficiency values. Preliminary numerical
tests show that efficiency values as high as 95% are possible
for the 20λ-long surface considered in this study.

VII. CONCLUSIONS

In this paper the conversion of a propagating plane wave
into a surface wave has been examined theoretically and nu-
merically. In the theoretical discussion the limitations resulting
from the required linear growth of the power carried by the
surface wave along the direction of propagation are revealed.
We have proved that for this spatial power dependence, both
separable and nonseparable eigenwave field solutions to the
Helmholtz equations are unable to represent the surface wave
converted from incident propagating plane waves, for any

point-wise lossless receiving surface. Next we have shown
that a properly constructed approximate separable solution
with a slow exponential growth of the fields can serve as
an accurate approximation of the ideally converted surface
wave. Moreover, we have proposed several alternative design
scenarios, leading to specific surface impedance profiles of
nearly ideal wave-converting metasurfaces.

Furthermore, we have shown that dropping the requirement
of local (at every point) passivity of the receiving surface
potentially opens up possibilities for creation of perfect prop-
agating/surface mode converters using nonlocal metasurfaces.
In this new scenario, the surface first acts as a receiving leaky-
wave antenna, emulating an absorbing surface. The received
power is then transported along the surface and radiated into
space, emulating an active surface. We expect that such locally
active/lossy but overall lossless converters can be realized as
carefully designed nonuniform patch arrays, generalizing the
approach used in [11] for anomalous reflectors.

Out of the metasurface designs, the tensor surface
impedance based on the least squares solution of the bound-
ary condition and nonlocal metasurfaces emulating the ac-
tive/lossy surface impedance allow realization using low-
loss, reciprocal constituents. Arrays of printed subwavelength
resonators on a grounded dielectric substrate [26–28] are prime
candidates for realizing the required surface reactance tensor.
In the case of nonlocal metasurfaces, the required active/lossy
profile is realized at some electrically small distance from the
patch arrays, where the auxiliary reactive fields effectively
decay [11]. The position-dependent shape, size, and rotation
angle of an anisotropic printed resonator are determined
based on the eigenvalues and eigenvectors of the reactance
tensor. Realizing a nonreciprocal surface characteristic will
require constituents such as ferromagnetic components [18] or
magnetless nonreciprocal devices [29].
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