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From Kondo to local singlet state in graphene nanoribbons with magnetic impurities
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A detailed analysis of the Kondo effect of a magnetic impurity in a zigzag graphene nanoribbon is addressed.
An adatom is coupled to the graphene nanoribbon via a hybridization amplitude �imp in a hollow- or top-site
configuration. In addition, the adatom is also weakly coupled to a metallic scanning tunnel microscope (STM)
tip by a hybridization function �tip that provides a Kondo screening of its magnetic moment. The entire system
is described by an Anderson-like Hamiltonian whose low-temperature physics is accessed by employing the
numerical renormalization-group approach, which allows us to obtain the thermodynamic properties used to
compute the Kondo temperature of the system. We find two screening regimes when the adatom is close to the
edge of the zigzag graphene nanoribbon: (1) a weak-coupling regime (�imp � �tip), in which the edge states
produce an enhancement of the Kondo temperature TK , and (2) a strong-coupling regime (�imp � �tip), in which
a local singlet is formed, to the detriment of the Kondo screening by the STM tip. These two regimes can be clearly
distinguished by the dependence of their characteristic temperature T ∗ on the coupling between the adatom and
the carbon sites of the graphene nanoribbon Vimp. We observe that in the weak-coupling regime T ∗ increases
exponentially with V 2

imp. Differently, in the strong-coupling regime, T ∗ increases linearly with V 2
imp.
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I. INTRODUCTION

Magnetic impurities embedded in a metallic environment
exhibit the paradigmatic many-body phenomenon, the so-
called Kondo effect (KE) [1]. Since its explanation in a seminal
work by Kondo [2], this effect has been studied in a variety
of different physical systems in all dimensionalities (three-,
two-, and one-dimensional systems) [3–7]. The capability of
manipulating atoms and molecules on metallic surfaces with
the aid of a scanning tunnel microscope (STM) tip has renewed
the interest in the KE in reduced dimensions, as we have
witnessed in the last 20 years [8]. In fact, the advent of the STM
has paved the way to a variety of possibilities for investigating
the KE in a controllable way in many different systems [9–11].
The great number of theoretical and experimental studies
has proved that the observable physical signature of the KE
depends drastically on the bare local density of states of the
host system.

To understand the dependence of the Kondo physics on
the density of states of the free electrons surrounding the
magnetic impurities, recall that the physical mechanism un-
derlying the KE is the dynamical screening of the local-
ized magnetic moments of the impurities by the conduction
electrons of the host material. This screening is led by an
effective antiferromagnetic exchange coupling J between the
impurity and the surrounding electrons that allows for spin-flip
scattering processes involving energies below kBTK , where
kB is the Boltzmann constant and TK is the characteristic
Kondo temperature. Since these are spin-flip scattering events
occurring at low temperatures, they depend strongly on the
low-energy density of states (DOS) of the electrons near the
localized magnetic moments. This is why metallic systems
with a nearly constant density of states around the Fermi level

EF [ρ(E) = ρF ] exhibits a typical Kondo temperature TK ∝
exp(−1/ρF J ) but can deviate drastically from this expression
if ρ presents important features for E close to EF . Within
the single-impurity Anderson model for spin-1/2 magnetic
impurity problems [12], the important quantity entering the
expression for TK is the ratio U/�(EF ), where �(E) ∝ ρ(E)
is the effective hybridization function and U is the Coulomb
repulsion energy at the impurity site. Again, we see that ρ(E)
can greatly affect TK . It is crucially important to explain why
TK is enhanced in peaked effective hybridization functions
and vanishing for pseudogapped ones, as discussed for a
double-quantum-dot structure [13].

A natural two-dimensional system exhibiting an interesting
density of states near the Fermi level is graphene [14–17]. The
Dirac cones of the band structure lead to a zero-gap density
of states ρ(E) ∝ |E|, resulting in a rich phase diagram with
interesting quantum phase transitions [18,19]. There have been
great efforts devoted to the Kondo physics in graphene with
an impurity coupled to [18–28] or a vacancy (defect) in the
graphene lattice [29–33] in recent years. Surprisingly, much
less attention has been paid to the KE on graphene nanoribbons
[34]. A graphene nanoribbon (GNR) is formed by breaking the
translational symmetry of a graphene sheet in one particular
direction. There are two common directions for cutting the
graphene with well-defined edge shapes: zigzag (ZGNR) and
armchair (AGNR). ZGNRs are particularly interesting because
around k = π they exhibit simultaneously dispersive bulk and
bound edge states [35,36]. These bound edge states render a
strongly peaked local density of states, as depicted in Fig. 1(c).

Because of the sharp peak in the local density of states, if
we place a magnetic impurity near one edge of the ZGNR,
we can expect an important modification of the Kondo physics
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FIG. 1. (a) Schematic representation of Nz-ZGNR with an impu-
rity located at the hollow-site position hn or at the top-site position
tn. The drawing on the right represents a STM tip on the top of the
impurity adatom with a coupling strength �tip. (b) Electronic structure
of a pristine 26-ZGNR highlighting the edge states (blue line). (c)
DOS as a function of E for pure graphene. (d) Hybridization function
�(E) for different values of impurity coupling strength Vimp at the h0

position. Inset: zoom close to E = 0 that shows the evolution of the
�(E = 0) peak as Vimp is enhanced. (e) �(E = 0) for two different
impurity locations, h0 and h1, as a function of Vimp. Inset: �(E = 0)
vs different adatom positions hn for Vimp = 0.031t .

of the system. In particular, in view of the discussion above,
we can expect this peak to enhance the Kondo temperature of
the system. Recent theoretical density functional theory (DFT)
calculations predict that adatoms are possible generators of
localized magnetic moments in graphene and GNR at hollow-
and top-site positions [34,37–44]. Motivated by these findings,
in this work we are interested in investigating the KE of a
magnetic impurity placed at two distinct positions in a ZGNR:
a hollow site and a top site [45–47]. We employ a numerical
renormalization-group (NRG) approach [48,49] to address this
problem. More precisely, using the NRG approach we calculate
the entropy and magnetic susceptibility (from which we can
extract the Kondo temperature with the aid of Wilson’s criteria)
of the system for an impurity placed at the hollow site for
distinct locations along the transversal direction. We find a
strong enhancement of TK when the impurity approaches the
edge of the ZGNR. More interestingly, in the strong-coupling
regime between the impurity and the nearby carbon atoms, our
calculations suggest that the impurity magnetic moment forms
a local singlet state with the edge state of the ZGNR.

This paper is structured as follows: in Sec. II we present the
theoretical model describing the hybridization function and

the numerical renormalization-group approach. In Sec. III the
numerical results are discussed. Finally, in Sec. IV we present
our conclusions.

II. THEORETICAL MODEL AND METHOD

The system is schematically illustrated in Fig. 1(a) for a
NZ-ZGNR, with the index NZ standing for the number of
zigzag chains in the transversal direction. To model the single
magnetic impurity hosted in the GNR (at the hollow site
or at the top-site position), we have used the Anderson-like
Hamiltonian [12]

H =HGNR + Himp + Htip + HGNR−imp + Himp−tip, (1)

where the first term describes the GNR that is modeled by a
nearest-neighbor (NN) tight-binding Hamiltonian

HGNR =
∑
iσ

(ε0 − μ)c†iσ ciσ − t
∑

〈i,j〉,σ
c
†
iσ cjσ , (2)

in which the operator c
†
iσ (ciσ ) creates (annihilates) an electron

with energy ε0 and spin σ in the ith carbon site of the GNR
and μ is the chemical potential that can be externally tuned by
a back gate. The matrix element t allows the electron to hop
between nearest-neighbor carbon sites [16]. The second term
in Eq. (1) describes the single-level Anderson impurity that
is modeled by the interacting Hamiltonian Himp = εdndσ +
Und↑nd↓, where d†

σ (dσ ) creates (annihilates) an electron with
energy εd and spin σ at the impurity site, U is the on-site
Coulomb interaction, and nd = nd↑ + nd↓ (with ndσ ≡ d†

σ dσ )
is the total number operator for the impurity electrons. The
third term in Eq. (1) describes the STM tip modeled by
the Hamiltonian Htip = ∑

k εkc
†
kσ ckσ , where c

†
kσ (ckσ ) creates

(annihilates) an electron with momentum k and spin σ in the
STM tip. Finally, the last two terms of Eq. (1) couple the
impurity to the GNR and to the STM tip, respectively. They
are, respectively, given by

HGNR−imp =
∑
j,σ

Vj c
†
jσ dσ (3)

and

Himp−tip =
∑
kσ

(Vkc
†
kσ dσ + H.c.). (4)

In Eq. (3) Vj represents the impurity coupling amplitude of
the neighboring carbon atoms (later, we set Vj ≡ Vimp). For
the impurity located at the hollow-site position hn, the sum in
j runs over the six carbon atoms closest to the impurity, while
for the top-site position tn, it corresponds only to the single
carbon atom to which the impurity is coupled.

A. Hybridization function

The implementation of the NRG to determine the Kondo
temperature of the system requires first the determination of
the hybridization function �(E) of the impurity. We do it by
using the Green’s function method in the noninteracting case
(U = 0). As the impurity is coupled to both the GNR and
the STM tip, we write �(E) = �tip(E) + �GNR(E). To obtain
�tip(E) we model the STM tip with a constant density of
states ρtip and assume a coupling, Vk = Vtip (independent
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of k), so that we can write �tip(E) = πV 2
tipρtip ≡ �tip. To

obtain �GNR(E) we have implemented the standard surface
Green’s function approach [50,51]. The GNR is then di-
vided into three regions: left lead, central region (where the
impurity adatom is located), and right lead. The retarded
Green’s function matrix of the central region is GC(E) =
(E + iη − HC − 	L − 	R)−1 (omitting the spin indices),
with E being the energy of the injected electron (the Fermi
energy at a given doping) and η → 0. Here, HC represents
the Hamiltonian describing the central region, and 	L/R are
the self-energies that describe the influence of the left/right
leads. Explicitly, 	l = H

†
lCglHlC , where gl is the Green’s

function for the l = L,R semi-infinite lead obtained through an
iterative procedure of the tight-binding Hamiltonian [50] and
HlC couples each lead to the central region. With the Green’s
function, we can obtain the self-energy of the impurity site
�GNR(E) = Im[G−1

C (E)]NN , where N represents the impurity
site inside the central region.

Different from the graphene case, in which for the impurity
located at the top site �(E) is a linear function of |E| (or of
|E|3 for the hollow site) [19,52], in the ZGNR �(E) displays
a much more complex dependence on E. In the ZGNR, for
instance, the presence of the edge state dramatically alters the
hybridization function �(E). To illustrate this, in Fig. 1(b)
we show the electronic structure of a 26-ZGNR (where 26
indicates the number of zigzag chains along the transverse
direction). The blue curve corresponds to the edge states. Note
that it exhibits a flat zero-energy plateau around k = π . This
plateau gives rise to a sharp zero-energy peak in the DOS
of the pristine 26-ZGNR (in the absence of the impurity),
ρ

(0)
GNR(E) = Im Tr[G(0)

c (E)], as shown in Fig. 1(c).
Since the sharp contribution to ρ

(0)
GNR(E) is located at the

edges of the ZGNR, for the impurity coupled to the carbon
atoms close to the edges a strong enhanced hybridization is
observed at E = 0, as shown in Fig. 1(d). Also, we can notice
that several satellite peaks appear as a consequence of the
Van Hove singularities in the DOS of the ZGNR [35,36].
Interestingly, note that while ρ

(0)
GNR(E) [Fig. 1(c)] is particle-

hole symmetric, �(E) [Fig. 1(d)] is not. This is because while
the former is calculated in the absence of the impurity, the
latter is defined with the impurity coupled to the GNR, which
for the hollow site breaks the particle-hole symmetry of the
system, a known behavior of nonbipartite lattices [53,54]. By
increasing the impurity coupling Vimp, the zero-energy peak of
�(E = 0) also increases. This is better appreciated in the inset
of Fig. 1(d). In Fig. 1(e) we show �(E) vs Vimp for the impurity
placed at h0 (red squares) and h1 (blue circles). We first note
that �(E = 0) is much larger for the impurity at position h0

than in position h1 [see the inset of Fig. 1(e)] for Vimp = 0.031t ,
which is consistent with the expected decay of the edge-state
wave function across the ribbon width [55]. Moreover, we can
observe that �(0) ∝ V 2

imp, similar to the case of an impurity
coupled to a metallic surface [12].

For the sake of completeness, we have also analyzed a
metallic AGNR with an adatom at the hollow site, with a
width similar to that of the 26-ZGNR. For this purpose, we
choose the 47-AGNR, which means 47 NA (dimers line)
along the transversal direction [35]. However, we find no
significant change in the local DOS close to the Fermi level

or, consequently, for the hybridization function around E = 0
for different adatom impurity positions along the transversal
direction. This is a consequence of the almost flat density of
states around E = 0 and the absence of edge states in the
AGNR [35]. For metallic AGNR close to the Fermi level, we
expect the Kondo physics to mimic the case of a magnetic
impurity hosted in a normal metal, where a nearly constant
density of states is expected.

B. Numerical renormalization-group approach

To provide the Kondo physics description of the GNR with
an impurity adatom, we use Wilson’s NRG approach [48,49].
For this purpose, we set Wilson’s discretization parameter as

 = 2.0, retaining 2000 many-body states after each iteration
and using the z averaging in the interval 0.2 � z � 1.0 in
steps of 0.2 [56]. The entropy is obtained within the canonical
ensemble as S(T ) = β〈H 〉 + ln Z, where Z corresponds to
the number of occupied states and β = 1/kBT . Similarly,
the magnetic moment is given by Z−1	n[〈�n|S2

z |�n〉 −
〈�n|Sz|�n〉]e−βEn . It is important to mention that we seek
the entropy Simp and magnetic moment χimp which correspond
(approximately) to the contribution of impurity to the entropy
and to the magnetic moment and are defined as the difference
of the thermodynamical quantities computed for the total
Hamiltonian H (with the impurity) and with H0 (without the
impurity). Further technical details can be found, for instance,
in Ref. [49] and references therein.

III. NUMERICAL RESULTS

The following results are for the NZ-ZGNR. To obtain
our numerical results, we choose the hopping t such that
the half bandwidth is unity, i.e., D = 1, and can be used
as our energy unity. With this in mind, we use U/t = 1
and �tip = 0.031t for all calculations. With this choice, for
Vimp = 0, the hybridization of the impurity with the STM
tip will render a very small Kondo temperature (which de-
pends essentially on the ratio U/�tip ≈ 32.3) that can be
estimated by [57] kBTK ≈ √

�tipUe−πU/8�tip ≈ 5.5 × 10−7t

for δ = 0, where δ = εd + U/2. Numerically, TK is obtained
from the magnetic moment, following Wilson’s criteria [48],
kBTKχ (TK )/(gμ2

B) = 0.0707, where g is the Landé g factor
and μB is the Bohr magneton. With this prescription we
find (for Vimp = 0) kBTK ≈ 9.6 × 10−8t ≡ kBT

(0)
K (this will

be used later to rescale our characteristic temperatures).

A. Hollow-site adatom

To study the effect of the edge state on the Kondo physics
screening of the system we first focus on the hollow-site
position. In Fig. 2 we show the entropy (top) and the magnetic
moment (bottom) as a function of temperature for different
NZ-ZGNR for Vimp = 0.0155t , δ/U = 0, and the impurity
located at h0 (left) and h1 (right). Overall, the features observed
for Simp(T ) and kBT χimp(T ) are similar to those known for the
traditional single Anderson impurity problem. As shown in
Fig. 2(a), we see two drops in Simp(T ) as T decreases. The
first corresponds to the crossover from the free orbital to the
local-moment regime, while the second one corresponds to
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FIG. 2. (a) and (b) Entropy and (c) and (d) magnetic moment vs T

for the impurity located at h0 (left) and h1 (right) for different widths
of the ZGNR. For all panels, δ/U = 0, U/t = 1, and Vimp = 0.0155t .
The insets of (c) and (d) show the characteristic Kondo temperature
T ∗ vs NZ for the corresponding adatom position.

the quench of the local magnetic moment by the conduction
electrons, which characterizes the onset of the KE. Similarly,
the magnetic moment follows the same feature observed in
the single Anderson impurity embedded in a metal. What is
interesting here is that, for a given position of the impurity
h0 (left) or h1 (right), as NZ increases, Simp and kBT χimp

drop to zero at higher temperatures. This suggests that the
sharpening of the edge state for increasing NZ enhances the
Kondo temperature of the system. The insets of Figs. 2(c) and
2(d) show the characteristic temperature T ∗ vs NZ for positions
h0 and h1, respectively. According to our previous discussion,
note that for a given position of the impurity, h0 or h1, T ∗ with
NZ increases and saturates to a given value. Observe also that
consistent with the exponential decay of the wave function as
it penetrates across the ZGNR width [35], T ∗ is much larger
for the impurity placed at h0 [Fig. 2(c)] than for the situation
in which it is placed at h1 [Fig. 2(d)]. For the results shown
so far we fixed Vimp at a small value (0.0155t). This ensures
that even the strongest influence of the edge state of the ZGNR
occurring for the position h0 does not change the picture of the
Kondo screening.

We address the question of whether this picture remains
valid for a magnetic impurity in a tighter connection to the
ZGNR. To do so, let us turn our attention to the dependence
of the magnetic moment suppression as we increase Vimp for a
given impurity position. Here, we focus on the 26-ZGNR with
the adatom at the hollow-site position, for which T ∗ is almost
converged [especially for an impurity adatom located at the
edge; see the insets of Figs. 2(c) and 2(d)]. Since the drop in
kBT χimp corresponds to a drop in Simp, it suffices to discuss
only one of them. Therefore, from now on we will discuss only
kBT χimp. In Figs. 3(a) and 3(b) we show the impurity magnetic
susceptibility kBT χimp vs T for different values of Vimp for an
impurity placed at h0 and h1, respectively. First, by comparing
the curves of Fig. 3(a) with those of Fig. 3(b) we observe that
the quenching of the magnetic moments is much more strongly

FIG. 3. Magnetic moment vs temperature for the impurity located
at (a) h0 and (b) h1 and for various values of Vimp. (c) Magnetic
moment vs temperature for different positions of the adatom hn with
a fixed value of Vimp = 0.031t . (d) Kondo temperature T ∗ vs position
hn (n = 0,1, . . . ,6), with Vimp = 0.031t . Notice that in this panel we
have set the vertical axis on a log scale.

dependent on Vimp for h0 than for the h1 position. Again, this
is because the closer the impurity is to the ZGNR edge, the
stronger the hybridization of the impurity orbital with the edge
state is. This also can be seen in Fig. 3(c), which shows kBχimp

vs T for different positions of the impurity on the 26-GNR.
Note that the quench of the magnetic moment occurs at a much
higher temperature for position h0 than for the other positions.
As the impurity is moved far away from the edge, the curves
of kBT χimp rapidly collapse onto each other, approaching the
one for Vimp = 0. This is because far away from the edge
the KE is essentially due to the STM tip. Using the same
Wilson’s criteria, from the results of Fig. 3(c) we extract
the characteristic temperature T ∗ below which the magnetic
moment is quenched. The results are shown in Fig. 3(d) as T ∗
vs hn for fixed Vimp = 0.031t . We can observe that T ∗ drops
about three orders of magnitude as the impurity moves from
h0 to h3. Remarkably, the results for the impurity position h0

[black curve in Fig. 3(c)] differ significantly from the others,
exhibiting a dramatic magnetic moment suppression. The
natural question to raise is whether this suppression happening
for h0 and large Vimp is of the Kondo type. To answer this
question, we show in Fig. 4 T ∗/T

(0)
K vs V 2

imp for two different
adatom locations, at the hollow-site position h0 in Fig. 4(a) and
at h1 in Fig. 4(b), for different values of δ/U . From Fig. 4(a)
we can clearly distinguish two different regimes: for large Vimp

we note a linear behavior of T ∗ with V 2
imp, but for small Vimp

the dependence seems to be exponential. This is better seen
in the inset of Fig. 4(a). To understand this, let us remember
that when the impurity is coupled to both the tip and the
ZGNR, the effective hybridization is given by � = �tip + �imp.
Here, �imp = aV 2

imp, where a is a constant that depends on the
position of the impurity and the local density of states of the
ZGNR. In the small-Vimp regime we can use the expression for
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FIG. 4. T ∗/T
(0)
K as a function of (Vimp/t)2 for (a) h0 and (b) h1

for different δ/U ratios. The inset of (a) shows a zoom of the region
of small values of (Vimp/t)2. The parameters used are in the legend of
(a) and T

(0)
K = 9.6 × 10−8t .

TK for T ∗. Therefore,

T ∗ ∼ e−πU/8�. (5)

For �imp � �tip we can write

1

�
≈ 1

�tip

(
1 − �imp

�tip

)
. (6)

Thus, we obtain

T ∗ ∼ e−πU/8�tipe(πU/8�2
tip)�imp ∼ T

(0)
K ebV 2

imp , (7)

where T
(0)
K is the Kondo temperature for Vimp = 0 and b =

πUa/8�2
tip. Note that expression (7) is consistent with the

exponential behavior of T ∗ shown in the inset of Fig. 4(a). This
shows indeed that in the regime of small Vimp the quenching of
the magnetic moment is actually of the Kondo type; therefore,
we call it the Kondo singlet (KS) regime, so T ∗ can be identified
as TK .

In contrast, in the opposite regime the behavior of T ∗ can
no longer be understood within the picture described above.
In this case, the strong coupling between the impurity and the
bound edge state (for position h0) induces the formation of
a local singlet (LS). Within this picture, the impurity and the
edge state can now be thought of as two hybridized electronic
levels with Coulomb repulsion U in one of them. The energy
gain to form a LS state in this simple system is known to be
ES = −4V 2

imp/U . This explain why in the strong impurity-
ZGNR coupling regime T ∗ ∝ V 2

imp. In this case, we prefer not
to identify T ∗ as TK since here the singlet does not involve
the Fermi sea as in the traditional KE. This is actually akin to
what was discussed by one of us in Ref. [58]. If we now look at
Fig. 4(b), this linear behavior of T ∗ with V 2

imp is not observed (at
least for the range of Vimp shown). This is because at position h1

the influence of the edge state on the impurity remains a small
perturbation. Interestingly, as we observe similar behavior of
the different curves in Fig. 5, the two regimes discussed above
remain clearly distinguishable for δ �= 0.

As we have seen above, the behavior of T ∗ ∼ V 2
imp can be

nicely understood in terms of the local singlet formed by the
impurity and the states bound to the edge of the ZGNR. We
can argue that if we tune the chemical potential close to a
Van Hove singularity, this behavior would no longer be seen.
This is because the Van Hove singularities are not directly
associated with states bound to the edges. To confirm this, we
now consider the chemical potential μ at two different Van

FIG. 5. (a) T ∗/T
(0)
K vs (Vimp/t)2 for μ=−2.17t (black) and

−2.28t (red) and h0 (solid lines) and h1 (dashed lines) and (b) T ∗

vs adatom position hn (n = 0, . . . ,6), with (Vimp/t)2 = 9.61 × 10−4.
The other parameters are δ=0 and U = t . Here, T

(0)
K =9.6 × 10−8t .

Hove singularities with a relative peak similar to the edge
state and calculate T ∗. In Fig. 5(a) we show T ∗ vs V 2

imp for
μ = −2.17t (black) andμ = −2.28t (red) for the two impurity
positions, h0 (solid lines) and h1 (dashed lines). Notice that for
all cases T ∗ increases exponentially with V 2

imp, very similar
to the results shown in Fig. 4(b) and in the inset of Fig. 4(a).
Confirming our prediction, this shows that in this case, the
coupling to the ZGNR no longer favors a LS but leads to a
KS state with an enhanced TK . In Fig. 5(b) we show T ∗ as
a function of the impurity position hn for the two different
chemical potentials used in Fig. 5(a). As we see, T ∗ still
decreases quite substantially for μ = −2.17t (blue squares),
but for μ = −2.28t (magenta circles) it is almost as if the
impurity moves far away from the edge. This can be understood
based on the fact the electronic states that contribute more to
the higher-energy Van Hove singularities are more extended
across the ZGNR.

B. Top-site adatom

We now investigate whether the two screening regimes
discussed above also occur for the adatom placed in a top-
site position. The results obtained in this case are shown in
Fig. 6. Figure 6(a) shows kBT χimp vs temperature for different
positions tn and for a fixed value of Vimp = 0.031t [as in
Fig. 3(c)]. Like for the hollow-site positions, we note that the
characteristic temperature T ∗ (where kBT χimp drops to zero)
increases as the impurity adatom approaches the edge of the
ZGNR. Also, like in the hollow-site case, a dramatic change in
the shape of the kBT χimp curve occurs for t0 compared to the
others. This change in regime is accompanied by a dramatic
drop in T ∗, as shown in Fig. 6(b), which shows T ∗ vs tn.
Interestingly, we note that T ∗ exhibits a damping oscillation as
the adatom moves away from the ZGNR edge. This behavior
was not observed for the hollow-site positions. This difference
can be understood as follows: in the hollow-site case, the
adatom couples equally to all six carbon atoms of the hexagon.
Hence, the contribution from these neighboring atoms to the
corresponding hybridization function is somehow averaged
over the different connected carbon atoms (of the A and B
sublattices). On the other hand, in top-site positions, the total
contribution to the hybridization function comes solely from
a single carbon atom (of the A or B sublattice). Therefore, the
systematic oscillation with an exponential decay in the local
DOS as observed across the ZGNR [35,36] directly influences
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FIG. 6. (a) Magnetic moment vs T for the impurity located at
different top-site positions tn. (b) Characteristic temperature T ∗ vs tn
for Vimp = 0.031t [the same as in Fig. 3(d)]. T ∗ vs (Vimp/t)2 for the
impurity at (a) position t0 and (b) positions t1 and t2.

the hybridization function �(E). In Fig. 6(c) we show T ∗ vs
V 2

imp for position t0, and in Fig. 6(d) we show the same for
positions t1 and t2. We clearly note a linear behavior of T ∗ for
large Vimp for both t0 and t2. Also, for the t0 adatom position
(and the subsequent t2∗n) we see an exponential behavior of
T ∗ for small Vimp. This is better appreciated in the inset of
Fig. 6(c), which shows a zoom of the region of small Vimp for
t0. For the t1 position T ∗ is practically insensitive to changes
in V 2

imp. These results show that the two LS and KS screening
regimes indeed occur for both hollow- and top-site positions
whenever the adatom is placed close to the edge of the ZGNR.

C. Effect of the next-nearest-neighbor coupling

In this section we show that our results remain robust when
we include next-nearest-neighbor (NNN) hopping in our tight-
binding model [16,59]. To this end, following Refs. [60,61],
we include the NNN in the model [62]. This coupling can be
quite important for the armchair GNRs, where a drastic change
is expected for the electronic structure close to the Fermi level
with the development of a band gap with the appearance of a
metallic-insulator transition, as observed in DFT calculations
[63]. For the case of ZGNR, small corrections are predicted,
but the characteristic edge states are preserved in the NNN
approach [64,65]. Therefore, the simplest NN approximation
in the previous sections can safely be used [66,67], predict-
ing qualitatively valid results. For completeness, in Fig. 7
we compare the two cases by calculating the hybridization
function �(E) and the characteristic temperature T ∗ for the
hollow site configuration. Figure 7(a) shows the hybridization
function �(E)/t for the NN (black line) and NNN (red line)
approximations. Because of the presence of the impurity in
the hollow-site configuration, even for the NN approximation
the system is particle-hole asymmetric. However, the central
peak remains at E = 0 (and approximately symmetric). On
the other hand, for the NNN approximation not only is �(E)
asymmetric, but also the zero-energy edge state shifts towards

FIG. 7. (a) Hybridization function �(E)/t for different tight-
binding approximations with Vimp/t = 0.031. (b) Characteristic tem-
perature T ∗ vs (Vimp/t)2 for the impurity at position h0. The inset
shows a zoom of the region of low Vimp. In (a) and (b) we have set a
chemical potential of μ = 0.13t for the NNN.

the valence band [64,68]. Notice that for the NNN we have set
μ = 0.13t , so the peak appears at E = 0. The particular value
of μ depends on the model parameters, with an approximate
value of 0.4 eV [16,59,64,69]. The stronger particle-hole
asymmetry of the NNN compared to the NN case is because
in the NNN approximation the ZGNR bands are themselves
particle-hole asymmetric, regardless of the presence of the
impurity. Figure 7(b) shows T ∗ vs (Vimp/t)2 for the NNN
case. We see that the results are qualitatively equivalent to
the NN approximation shown in Fig. 4(a). As expected, only
quantitative changes are noted. For the NNN case, the transition
from KS to LS occurs at a larger Vimp, a direct consequence of
the height reduction of the central peak in the �(E) function.

IV. CONCLUSION

We have studied the screening effect of a magnetic impurity
(adatom) on a ZGNR. The system was described by an
Anderson-like Hamiltonian in which the adatom is coupled
to the ZGNR as well as to a metallic STM tip. To access the
low-temperature physics of the system we have employed a
numerical renormalization-group approach that allows us to
calculate the relevant physical quantities. In particular, we
have calculated the magnetic susceptibility of the system and
extracted the characteristic temperature T ∗, below which the
adatom magnetic moment is screened. We have analyzed both
the hollow- and top-site adatom configurations. We have found
two screening regimes of the adatom magnetic moment: (1)
a local singlet (LS) when the adatom is strongly coupled to
the bound edge state of the ZGNR and (2) a Kondo singlet
(KS) in the weak-coupling case. The system crosses over the
LS to the usual KS either as the impurity is moved away
from the edge of the ZGNR or when its coupling Vimp to
the ZGNR is small. These two screening regimes are well
defined by the behavior of the characteristic temperature T ∗
with Vimp. In the LS regime, T ∗ increases linearly with V 2

imp,
whereas in the KS it increases exponentially with V 2

imp. We
have shown that in the LS regime, the linear dependence of T ∗
on V 2

imp is consistent with a singlet state formed between the
magnetic moment of the impurity and that of an electron in
the bound edge state. Interestingly, the KS can be understood
in terms of an enhancement of the Kondo temperature as Vimp

increases. In this sense, in the LS regime the ZGNR state that
is bound to the edge competes with the Kondo screening of
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the adatom magnetic moment by the conduction electrons of
the STM tip, whereas in the KS case, the ribbon extended state
cooperates with the Kondo screening by the STM tip. Finally,
we have shown that these conclusions remain valid when we
considered a more realistic model by adding second-nearest-
neighbor hopping in our tight-binding Hamiltonian. Our results
are important to the comprehension of the Kondo physics in
graphene nanoribbons, and given the relative simplicity of the
physical system studied here, we believe that our results can

be experimentally accessed via transport properties in STM
measurements [70,71].
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