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Dynamics of edge currents in a linearly quenched Haldane model
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In a finite-time quantum quench of the Haldane model, the Chern number determining the topology of the
bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute,
the edge current, displays interesting dynamics. For the case of sudden and adiabatic quenches the postquench
edge current is solely determined by the initial and the final Hamiltonians, respectively. However for a finite-time
(τ ) linear quench in a Haldane nanoribbon, we show that the evolution of the edge current from the sudden to
the adiabatic limit is not monotonic in τ and has a turning point at a characteristic time scale τ = τ0. For small
τ , the excited states lead to a huge unidirectional surge in the edge current of both edges. On the other hand, in
the limit of large τ , the edge current saturates to its expected equilibrium ground-state value. This competition
between the two limits lead to the observed nonmonotonic behavior. Interestingly, τ0 seems to depend only on the
Semenoff mass and the Haldane flux. A similar dynamics for the edge current is also expected in other systems
with topological phases.
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I. INTRODUCTION

Subtle topological phenomena such as the imaging of edge
states in cold-atomic quantum Hall systems [1] and the direct
measurement of the Berry curvature [2] and the Zak phase
[3] have been demonstrated in cold-atomic topological bands.
Beyond these static situations, the dynamical topological
properties of systems following a quantum quench have also
been experimentally probed [4–6]. A quantum quench forces
the initial state prepared in the quantum many-body ground
state of the initial Hamiltonian to undergo dynamical evolution
far from equilibrium [7]. Thus quantum quenches offer the
promise of engineering distinct many-body nonequilibrium
states which have no equilibrium counterpart [8–13]. This has
motivated a plethora of studies of the nonequilibrium dynamics
of both closed and open topological quantum systems under the
application of quantum quenches [14–33] and periodic drives
[34–47].

More recently there has been significant interest in the
dynamics of the edge current following a quantum quench in
a system, taking it either from a topological phase to a trivial
insulator phase or vice versa. The possibility of measuring the
static topological index through a dynamical quench has also
been explored [48,49]. Studying the Haldane model [50], Caio
et al. [51] showed that the Chern number of the initial phase in
the translationally invariant Haldane model remains preserved
throughout the postquench unitary evolution of the system,
irrespective of the topology of the final Hamiltonian (see also
[52]). The invariance of the Chern number under any unitary
dynamics has also been rigorously established by Alessio et al.
[53]. The invariance of the Chern number has also been shown
for the quantum quench in the Haldane model with higher order
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hoppings [54,55]. The preservation of the winding number
of the many-body state was also mentioned [56,57] in the
context of quenches in interacting topological BCS superfluids.
However, the dynamics of the edge current following quench
in these systems and the fate of the corresponding ‘bulk-
boundary correspondence’ still remains an interesting open
question following general forms of quench. Motivated by
this, in this article we study the dynamics of the edge current
in a finite-time linear quench across the topological phase
transition point, by varying the Semenoff mass in a Haldane
nanoribbon.

Earlier studies on the Haldane model [51], and the Haldane
model with higher hopping [54], showed that following a
global sudden quench from a topological to a nontopological
phase, the edge current relaxes from a finite value to a
postquench value close to 0—which is the value corresponding
to the ground state of the final Hamiltonian. In this article
we focus on the role of the finite rate of the quench on
the dynamics of the edge current, by considering a linear
finite-time quenching of the Semenoff mass [58] in the Haldane
nanoribbon [50], taking it from a trivial to a topological
phase. Interestingly, we show that in quenching from the
nontopological phase to the topological phase, the edge current
evolves in a nonmonotonic way as a function of the quenching
rate (τ ) and has a turning point when τ is increased from the
sudden (τ = 0) to the adiabatic (τ → ∞) limit.

The paper is organized as follows: The equilibrium Haldane
model is introduced in Sec. II, which also discusses the equi-
librium edge current for the model in a nanoribbon geometry,
periodically wrappped in the x direction and open in the y

direction. This is followed by a discussion of the impact of
a sudden and adiabatic quench, driving the system from the
nontopological phase to the topological phase, on the edge
current in Sec. III. The role of a finite-time linear quench in the
dynamics of the edge current is described in Sec. IV. Finally,
we summarize our findings in Sec. V.
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FIG. 1. (a) Three plaquettes of the hexagonal lattice with lattice vectors a1 and a2. Blue and red circles represent the two sublattices A
and B. (b) The Haldane lattice, with locally broken time-reversal symmetry. Regions labeled “a” and “b” enclose flux in opposite directions,
and arrows on the next-nearest bonds (dashed lines) denote the direction of positive phase hopping due to the locally broken time-reversal
invariance. (c) Brillouin zone of a hexagonal lattice with reciprocal lattice vectors b1 and b2, with K and K′ representing the two inequivalent
Dirac points; the color corresponds to sublattices A and B. (d) Chern phase diagram of the Haldane model in the on-site energy, M (also called
the Semenoff mass), and the staggered phase, φ, plane. The white region is the topologically trivial phase (ν = 0), while the colored region is
the topologically nontrivial Chern phase (ν = ±1). The arrow indicates a quenching scheme of varying M , which takes the model from point
P (φ = π/3, M/t2 = 6) in the nontopological phase to point Q (φ = π/3, M/t2 = 0) in the topological phase.

II. THE HALDANE MODEL

Our starting point is the Haldane model with broken
spatial inversion and locally broken time-reversal symmetry,
describing the nearest and next-nearest hopping of spinless
electrons on a hexagonal lattice. The two-dimensional (2D)
hexagonal graphenelike lattice composed of the two triangular
sublattices A and B is shown in Fig. 1(a). The Hamiltonian of
this model is explicitly given by

H =
∑
〈i,j〉

t1(c†iAcjB + H.c.) + M
∑
i∈A

n̂i − M
∑
i∈B

n̂i

+
∑
〈〈i,j〉〉

t2e
iφij (c†iAcjA + c

†
iBcjB + H.c.), (1)

where c
†
i (ci) is the fermionic creation (annihilation) operator

at site i satisfying the anticommutation relation {c†i ,cj } = δij .
In Eq. (1), n̂i = c

†
i ci and A and B denote the two sublattices.

The phase factor, φij = ±φ, is positive for counterclockwise
hopping and negative for clockwise hopping. It mimics a

staggered magnetic field, introduced to break the local time-
reversal symmetry. Note that the total net magnetic flux through
each hexagonal plaquette is 0, conserving the global time-
reversal symmetry. This staggered magnetic field, breaking
the local time-reversal symmetry is what renders the model
topologically nontrivial. On the other hand, the different
Semenoff mass terms M (−M) for the two sublattices, A (B),
break the spatial inversion symmetry of the model.

The real-space tight-binding Hamiltonian of Eq. (1) with
periodic boundary conditions in both directions can also
be expressed in the crystal-momentum space via a Fourier
transform and is given by

H =
(
c
†
kA c

†
kB

)
h(k)

(
ckA

ckB

)
, where h(k) =

3∑
i=0

hi(k)σi.

(2)
Here σi (for i = 1,2,3) are the three Pauli spin matrices, and
σ0 is the 2 × 2 identity matrix. The components hi(k) are

h0(k) = 2t1 cos φ[k cos(k.a1) + cos(k.a2)

+ cos(k.(a1 − a2))],
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h1(k) = t1[1 + cos(k.a1) + cos(k.a2)],

h2(k) = t1[sin(k.a1) + sin(k.a2)],

h3(k) = M + MH,

MH (k) = 2t2 sin φ[sin(k.a2) − sin(k.a2)

+ sin(k.(a1 − a2))]. (3)

Here MH (k) is the staggered field and crystal-momentum-
dependent Haldane mass and a1 = a

2 (
√

3,3), a2 = a
2 (−√

3,3)
as shown in Fig. 1(a). For M = 0 and φ = 0 the Hamiltonian in
Eq. (1) reduces to the second nearest-neighbor tight-binding
Hamiltonian of graphene, which has a Dirac-like dispersion
at six points in the hexagonal Brillouin zone, with only two
of them being inequivalent. These two inequivalent points
are time-reversed partners of each other [see Fig. 1(c)]. The
other Dirac points are related to these two via reciprocal lattice
vectors.

Qualitatively, when the local time-reversal symmetry-
breaking term (φ) dominates over the inversion symmetry-
breaking term (M) in the translationally invariant Haldane
model, it is topologically characterized by a bulk Chern number
which takes the value ν = ±1 and 0 otherwise. The Chern
phase diagram of the Haldane model is shown in Fig. 1(d).
When the Chern number of the bulk system is ±1, the boundary
of the finite-sized open system hosts charge-conducting edge
modes, consistent with the bulk-boundary correspondence.

Edge current

To explore the dynamical evolution of the edge current
following a quench, we consider the edge states of the Haldane
model, which is periodic (and thus translationally invariant) in
the x direction and has finite width N along the y direction
with an armchair edge. The schematic for the same is depicted
in Fig. 2. Using the conserved crystal momentum along the
periodic x direction, while retaining the real-space description
in the y direction, we obtain the Hamiltonian

H =
∑
kx

L∑
m,n=1

n+1∑
m′,n′=n−1

∑
s=A,B

eikxxmns c
†
kxns

×{δm,m′δn,n′Msckxnse
−ikxxmns + t1ckxn′ s̄ e

−ikxxm′n′ s̄

+ t2e
iφmm′nn′ ckxn′se

−ikxxm′n′s }, (4)

where s̄ 	= s, and Ms = +M (−M) for s = A (s = B).
The energy spectrum of this semiopen model for both the

topological and the trivial phase is shown in Fig. 3. To clearly
exhibit a correspondence between the bulk Chern number (in
a periodically wrapped system along both directions) and the
number of midgap band crossings in the semiopen system, we
choose two sets of parameter values corresponding to the two
phases in the phase diagram in Fig. 1(d) with ν = 0 and −1.
In the nontopological phase, i.e., for ν = 0, there are no band
crossings in the spectrum [see Fig. 3(a)], indicating the absence
of conducting edge states. On the other hand, when we are in
the topologically nontrivial phase with Chern number ν = −1,
the spectrum in Fig. 3(b) clearly shows a midgap band crossing
between the valance band and the conduction band at kx = 0.

1

n-1
n
n+1

N

m

A B

FIG. 2. Haldane model on a nanoribbon, which is periodic along
the armchair edge (x direction) and finite along the zigzag direction (y
direction). The nanoribbon is N cells wide and each unit cell is labeled
with two indices, m and n, and has two lattice sites (A or B). The
phase of the complex hopping t2 is negative (positive) for hopping in a
clockwise (counterclockwise) sense between next-nearest neighbors.

The local current operator at any site i is given by

Ĵi = − i

2

∑
j


δij (tij c
†
i cj − H.c.), (5)

where tij and 
δij are the hopping amplitude and vector displace-
ment between site i and site j , respectively. The sum involving
index j is over the nearest and next-nearest-neighbor sites to i

only. Each site of this ribbon is labeled {m,n,s}, where {m,n}
denotes the position of the site in the 2D lattice and s is the
sublattice index (A or B) of that site. The total current flowing
along the strip in the x direction for a particular value of n

(where n labels each horizontal row along the y direction; see
Fig. 2) is obtained from the relation

J x
n = 〈Ĵ x

n 〉 =
∑
kx ,s

〈
Ĵ x

n,kx ,s

〉
,

where the expectation is taken over the ground state of
the Hamiltonian under equilibrium conditions and over the
dynamically evolved ground state of the system in the case of
a quenched system [55].

Figure 4 shows the average equilibrium current in the x

direction plotted versus n = 1, . . . ,N when the system is in the
ν = 1 phase (M = 0 and φ = π/3). As expected, there are two
counter-propagating channels of current near the system edges
(at n = 1 and N ), while the current in the bulk is 0 throughout.
Moreover, the equilibrium current for the topologically trivial
gapped phase withν = 0 is identically 0 throughout the system.

III. EDGE CURRENT DYNAMICS FOLLOWING SUDDEN
AND ADIABATIC QUANTUM QUENCH

In order to investigate the nonequilibrium dynamics of the
edge current of the Haldane model, we consider quantum
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FIG. 3. Energy spectrum of the Haldane nanoribbon described by
the Hamiltonian in Eq. (4) in (a) the topologically trivial phase with
M = 6 and Chern number ν = 0 and (b) the topological phase with
M = 0 and ν = −1. Blue and red lines represent the conduction and
the valance bands, respectively. Note that unlike the topologically
trivial phase, the topological phase has a single band crossing at kx =
0. We have chosen other parameters to be t1 = 1, t2 = 1/3, φ = π/3,
and N = 20.

quenches between different points (M,φ) of the phase diagram
shown in Fig. 1(d). The values of the hopping amplitude t1 and
t2 are kept fixed, and we look at the edge current at the N th row
of the sample. A relevant question to ask here is whether we
should look at only the edge row or at a few rows subsequent
to the end rows, as the edge states at the end rows have a
localization length that falls off inwards from the boundary of
the sample. We note that Fig. 4 shows a special scenario used in
our work, to enable easy comparison with the sudden quench
scenario as performed by Caio et al. But as such, tweaking the
second-nearest-neighbor interactions by tuning t2 and φ, we
can easily observe that the current at the first and the last rows of
the lattice are maximum and they fall off exponentially moving
away from the edge. This is a common scenario encountered by
varying t2 and φ across most of the phase diagram. Thus, in this
scenario even if we consider other sites within the localization
length of the edge states other than just the last row at the

1 5 10 15 20
Site number

1.0

0.5

0.0

0.5

1.0

FIG. 4. Average equilibrium current in the x direction along each
row, n = 1, . . . ,20, of the Haldane nanoribbon (see Fig. 2) in the
topological phase. Two counter-propagating current-carrying states
appear at the two edges. On the other hand, the current remains 0 in
the bulk. Here we have chosen t1 = 1, t2 = 1/3, M = 0, φ = π/3,
and N = 20. (See also Fig. 4(a) of Caio et al. [51].)

boundary, our conclusions about the dynamics of the edge
current would remain the same. Therefore, we calculate the
current at the end strips only to cover all such situations in
general. To start with, at time t = 0, the system is initially in its
ground state with parameter (Mi,φi). At half-filling the initial
state of the system occupies the valence band completely. The
system is now driven to a different phase by either changing a
parameter abruptly or through a linear time-dependent sweep
from (Mi,φi) to a new set of values (Mf ,φf ). The system
then unitarily evolves under the action of the new Hamiltonian,
H (Mf ,φf ).

Earlier studies [51,53] established that the Chern number of
the initial ground state of the translationally invariant Haldane
model remains preserved throughout the postquench unitary
evolution for all possible quenching protocols. However, the
preservation of the bulk topological invariant (Chern number)
is not reflected in the dynamics of the boundary (edge) current.
Following a sudden quench, the edge current was shown
to attain a new equilibrium value close to the ground-state
expectation value of the edge current evaluated for the final
Hamiltonian.

Motivated by this, we investigate the time evolution of the
edge current for a Haldane model on a nanoribbon geometry
subjected to a slow quench, a linear time-dependent sweep,
from one phase to the other. To this end, we start with the system
in the ground state of the initial Hamiltonian with parameter
(Mi,φi). Now the Semenoff mass M(t) is changed linearly
with time over a given interval, keeping φ fixed, such that
the final state is specified by point (Mf ,φf = φi) in the phase
diagram in Fig. 1(d). Explicitly, the quench protocol is given
by M(t) = Mi + (Mf − Mi)t/τ for times 0 � t � τ , where
1/τ specifies the rate of the ramp.

We note that the problem is analytically intractable for the
following complications: for a nanoribbonlike geometry the
system can be viewed as a finite-time multilevel Landau-Zener
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problem with 2N number of levels. For infinite time duration
[59,60], this problem can only be solved by using independent
level (IL) approximation as illustrated by Shytov et al. [61].
However, the finite-duration dynamics considered in this work
is immensely complicated even for the two-level Landau-Zener
problem [62,63]. Additionally, the IL approximation has the
following shortcomings: (i) the IL approximation does not
necessarily hold true, and (ii) the IL approximation results
in loss of phase coherence, which needs to be retained to
probe the topology, as done in this paper. We therefore resort
to numerical methods to calculate the final edge current by
taking the expectation value of the current operator in Eq. (5)
along the x direction. The expectation value is calculated with
respect to the time-evolved initial state of the system obtained
after solving the 2N coupled linear time-dependent equations
for every value of kx keeping Mi,Mf , and φ fixed throughout
(see the Appendix for further details). The time evolution of
the edge current, when we sweep our system (L = 20) from
nontopological (M = 6, φ = π/3) to topological (M = 0, φ =
π/3) phase followed by a unitary evolution, is shown in Fig. 5.
Here the edge current is shown for the n = 20 edge, and the
current at the opposite edge (n = 1) is of the same magnitude
but flows in the opposite direction. For the particular case
τ → 0, we are in the sudden quench regime, and for τ → ∞,
the quench is adiabatic.

A. Sudden quench limit

In Figs. 5(a) and 5(b), initially the system is in a nontopo-
logical phase, and consequently the edge current always starts
from its equilibrium value of 0. For the case of sudden quench,
τ = 0, the system remains ‘frozen’ in the initial state, i.e.,
the ground state of the system in the nontopological phase,
and thus the current following a sudden quench is 0 when
measured immediately after the quench. However, the edge
current has a nontrivial dynamics if the system is allowed to
evolve with the final Hamiltonian [51]. Nonetheless, Fig. 5(a)
shows a small but finite value of the postquench current. In the
case of small τ , the system gets excited to higher energy states
as well, all of which eventually do a free evolution with the final
Hamiltonian. Thus the edge current is primarily governed by
the overlap between the initial ground state and the eigenstates
of the final Hamiltonian [see Fig. 5(a)]. The oscillations in the
edge current are shown in Fig. 5(a).

B. Adiabatic quench

The opposite limit of the adiabatic quench can be un-
derstood by employing the Landau-Zener argument for two
midgap states. For no diabatic transitions (mixing of energy
levels) we have τ � 1/�2, where � is the equilibrium gap
in the spectrum for the first excited state. Now since the
energy gap in our system scales inversely with L, we have
τ > L2 for an adiabatic evolution of the system—in which
the system state follows the instantaneous ground state of the
time-evolved Hamiltonian at all times. Thus for a system size of
L = 20, the adiabatic limit is achieved for a value of τ > 400.
Consequently, in Fig. 5(b), we see that the current reaches a
finite value infinitesimally close to the equilibrium current of
the final Hamiltonian with M = Mf and φ = φf , as expected.
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FIG. 5. Dynamics of the edge current from the nontopological
phase (M = 6, φ = π/3) to the topological phase (M = 0, φ = π/3)
following two quenching protocols. (a) A sudden quench, when the
rate of quenching is so low that the system should ideally remain in
the ground state of the initial Hamiltonian and should have no current.
However, the finiteness of τ leads to some excited states, which give a
finite contribution to the current (represented by the dashed horizontal
line). (b) A linear slow quench (i.e., τ large) from the trivial phase
to the topological. The system maintains the instantaneous ground
state of the time-evolved Hamiltonian, at each instant of time, and
postquench it reaches the actual ground-state current of the final
Hamiltonian (represented by the dashed horizontal line). (See also
the sudden quench case of Caio et al. [51,52].)

IV. EDGE CURRENT DYNAMICS FOLLOWING A
FINITE-TIME LINEAR QUENCH PROTOCOL

Following the brief discussion of the sudden and the
adiabatic quench cases, we now turn our attention to the
more interesting case of the dynamics during the intermediate
times between the extreme sudden and the slow limits. To
be specific, we drive the system from the nontopological
(M = 6) to the topological (M = 0) phase keeping φ = π/3
fixed, with different τ values (varying from 0.0001 to 500)
and calculate the current at the N th edge for tf = τ , just as
the quenching stops. Naively we can expect the ramp-up of the
edge current from 0 for τ → 0 to the final equilibrium value for
τ � L2 to be monotonic. However, it turns out that this is not
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FIG. 6. (a) Variation of the postquench current for a linear sweep
from a nontopological to a topological phase at different quenching
rates τ . Here φ = π/3, t1 = 1, and t2 = 1/3 are held fixed, while the
Semenoff mass M is varied concerning the time to quench to different
phases. The curve (represented by the solid line with filled circles)
shows a generation of excess current for smaller values of τ which
reaches a minimum at τ0 = 2.2 (represented by the dashed vertical
line), following which it increases again to reach the equilibrium
current value of the final Hamiltonian (represented by the dotted
horizontal line) for large τ . (b) Zoomed-in version of the τ ∈ (0,20)
region of (a), with the intraband (solid line with diamonds) and
interband (solid line with triangles) contributions [see Eq. (6)] shown
separately. Clearly the excited states play a significant role, since the
current is dominated by the interband contribution.

the case. Interestingly, the current is in the opposite direction
than is usually expected.

The variation of the postquench current as a function of
τ is shown in Fig. 6(a). To start with in the topologically
trivial phase, for τ = 0 the current is 0 as expected. On the
other hand, for τ = 400(≈ L2, with L = 20), i.e., in the slow
quench regime, the system always follows the instantaneous
ground state of the time-evolved Hamiltonian and eventually
reaches the ground state of the topological phase with M = 0
and φ = π/3. Thus the edge current (calculated at t = τ ) also
reaches its equilibrium value in the topological phase, for large

τ ∼ L2. Interestingly, the evolution of the edge current with
τ is not monotonic. Starting from zero edge current in the
sudden quench regime, the edge current first decreases until
a crossover value of τ = τ0 and then increases again with
increasing τ , to finally reach its adiabatic limit equilibrium
value. For the particular linear quench protocol with Mi = 6,
Mf = 0, φ = π/3 shown in Figs. 6(a) and 6(b), we find that
τ0 = 2.2. Remarkably, the absolute value of the current at
τ = τ0 is significantly larger than the absolute value of the
edge current as τ → ∞.

The current operator can also be written as the sum of
two parts, the interband and intraband currents, in terms of
the eigenstates of the initial Hamiltonian. We have 〈J x

n 〉 =∑
r〈J x

n 〉r , where r simply denotes the index of the occupied
bands, and

〈
Ĵn

x 〉
r

=
∑
kx

〈
ψkx

r (0)
∣∣U †

kx
(t)Ĵ x

n,kx
Ukx

(t)
∣∣ψkx

r (0)
〉

=
∑

p

∑
kx

〈
ψkx

r (t)
∣∣ekx

p

〉〈
ekx

p

∣∣Ĵ x
n,kx

|ekx

p

〉〈
ekx

p

∣∣ψkx

r (t)
〉

+
∑

p,q 	=p

∑
kx

〈
ψkx

r (t)
∣∣ekx

p

〉〈
ekx

p

∣∣Ĵ x
n,kx

∣∣ekx

q

〉〈
ekx

q

∣∣ψkx

r (t)
〉

=
∑
p=q

∑
kx

∣∣〈ψkx

r (t)
∣∣ekx

p

〉∣∣2〈
Ĵ x

n,kx

〉intra
p

+
∑

p,q 	=p

∑
kx

〈
ψkx

r (t)
∣∣ekx

p

〉〈
ekx

q

∣∣ψkx

r (t)
〉〈
Ĵ x

n,kx

〉inter
pq

(6)

Here, |ep〉 and |eq〉 are the eigenstates of the initial Hamilto-
nian, p and q are the band indices, and two parts of Eq. (6)
represent the intraband and interband contributions to the total
current, respectively. As shown in Fig. 6(b), the dominant
contribution to the edge current comes from the interband
contribution, with the intraband contribution being relatively
small.

Edge current reversal

To understand the reversal in the direction of the edge
current, as opposed to a monotonic rise from 0 with increasing
τ , let us focus on the small-time behavior of the time evolution
operator: i∂tU (t) = H (t)U (t). For an infinitesimal increment
of δt/2 in time, we have

U

(
δt

2

)
= U (0) − iH (0)U (0)

δt

2
. (7)

Propagating to another increment of δt/2 interval,

U (δt) = U

(
δt

2

)
− iH

(
δt

2

)
U

(
δt

2

)
δt

2
. (8)

Since we are looking at the small-τ limit in the vicinity of the
sudden quench, we set τ = δt—the point at which the final
current has to be calculated. Thus we have

H

(
δt

2

)
= H (0) + V

(
δt

2

)
, (9)
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FIG. 7. Spatial n (see Fig. 2) and kx-resolved current in (a) the
topological phase and (b) the nontopological phase. The size of the
circle represents the amount of current at that point and the color
denotes the sign of the current (blue-violet, negative; black, positive).
The existence of a finite edge current in the topological phase (a) and
no current in the nontopological phase (b) is evident.

with H (0) = H (Mi), and

V

(
δt

2

)
= (Mi − Mf )

τ

δt

2
�z, (10)

where we have defined

�z =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 · · ·
0 −1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 −1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠. (11)

Using Eq. (7) and Eq. (9) in Eq. (8) and restricting up to linear
order in δt (neglecting higher order terms, which may render
it nonunitary), a simplified form of the unitary operator can be
obtained, and it is given by

U (δt) = 1 − i

[
H (Mi) − Mi − Mf

4
�z

]
δt. (12)

Now, the time-evolved state under this unitary operator is given
by

|ψp,k(δt)〉 = U (δt)|ψp,k(0)〉, (13)

where p denotes the band index and k = kx . Finally, the
expectation value of the edge current, to lowest order in δt ,
is given by

J x(δt) =
∑
p,k

〈ψp,k(δt)|Ĵ x
k |ψp,k(δt)〉

=
∑
p,k

〈ψp,k(0)|Ĵ x
k |ψp,k(0)〉 + i

(
Mi − Mf

4

)
δt

×
∑
p,k

〈ψp,k(0)|[Ĵ x
k ,�z

]|ψp,k(0)〉. (14)

Here the first term is simply the initial equilibrium current,
which is 0 for a starting point in the nontopological phase.
In Eq. (14), the second term brings in the effect of the time
evolution for small δt = τ .

To understand the small-time limit better, we show the
spatially resolved current in the final topological phase, and
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FIG. 8. (a) Spatial n and kx-resolved contribution to the edge
current of the dynamical part [arising from the second term in Eq. (14)]
for small τ values. (b) The unidirectional negative contribution in both
edges leads to the huge initial dip in current at both edges. The size of
the circle in (a) is proportional to the magnitude of the current. Here
all the parameters are identical to those in Fig. 6. (b) Variation of the
postquench current (calculated at t = τ ) at different quenching rates
τ at the two edges of the system (represented by the dashed line with
diamonds and the solid line with circles). Starting from the τ = 0
scenario of zero current, the current eventually goes to the respective
equilibrium value (represented by dotted horizontal lines) for both
edges at large τ , though for small τ both edges show a large dip in
current and have different values of the turning point τ0 (highlighted
in the inset). The dot-dashed vertical line indicates the value of τ after
which the current at the two edges propagates in opposite directions.

the initial trivial phase in Figs. 7(a) and 7(b), respectively.
Evidently in Fig. 7(a), there is only an edge current propagating
in opposite directions on the two edges in the topological
phase, while there is absolutely no current to start with in
the no-topological phase. The impact of the second term in
Eq. (14), is shown in Fig. 8(a). Clearly the second term
in Eq. (14) forces a large unidirectional negative current in both
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FIG. 9. Dependence of τ0 (for a given edge) on various system parameters. (a) τ0 is independent of the width of the Haldane nanoribbon.
However, τ0 seems to depend on the parameters which determine the topological phase of the system, i.e., on (b) the Semenoff mass M and (c)
the Haldane flux φ. The positions of τ0 for different parameters are represented by vertical lines.

edges of the Haldane nanoribbon at very small τ . This leads to
nonmonotonic behavior of the τ -dependent current, since the
large negative current in both edges of the Haldane nanoribbon
generated for very small small τ has to eventually relax to the
respective equilibrium values (equal in magnitude and opposite
in direction) for both edges at large τ , as shown in Fig. 8(b).
τ0, however, is not the same for the two edges in general [see
Fig. 8(b), inset]. It depends on both the Semenoff mass terms
Mi/Mf and the value of φ. Thus, its location on the τ axis
completely depends on such nonuniversal features, and hence,
the different τ0’s for the two boundaries can even be separately
tuned to coincide. The behavior of the edge currents at the two
edges in the nonequilibrium scenario can only be analytically
ascertained for the limits of τ → 0 and τ → ∞; the value of
τ0 at which the edge current dips to assume a minimum value
is an early τ behavior which, being nonuniversal, can only
be determined numerically. It should also be understood that
these are not finite-size effects, as τ0 is independent of the linear
dimensions of the system under consideration as illustrated in
Fig. 9(a).

One of the most interesting facts is that there is a finite value
of τ = τa [approximately τa � 42 in Fig. 8(b)] such that for
τ < τa the current in both edges is in the same direction, and
precisely at τ = τa , the current in one of the edges (that carries
a positive current in the equilibrium situation) vanishes. This
may imply a “dynamical localization” of the current generated
for t < τa during the ramping. We call this a dynamical
localization because the vanishing of the edge current at a
certain τ is an artifact of dynamics which has no equilibrium
counterpart. This is in complete contrast with the conventional
single-particle Anderson localization observed in real space in
the presence of disorder. Note that for a given set of initial
Semenoff masses in the nontopological phase and the final
Semenoff masses in the topological phase, we always find a
set of τ ’s for which the edge current vanishes for one edge of
our model given our choice of driving protocol. Even though
the topological edges cannot be localized in a conventional
sense, the vanishing of edge current observed in these situations
points to an emergent dynamical localization. On the contrary,
when τ exceeds τa , the edge current reverses sign for one of the
edges, implying that the adiabatic effect starts dominating at
τ > τa . While the origin of the nonmonotonic behavior of the
edge current in the Haldane nanoribbon is now clear, the nature
of τ0 and its dependence on various system parameters are still

unknown. It turns out that τ0 does not depend on the system
size at all [see Fig. 9(a)] and is sensitive only to changes in
the parameters deciding the topology of the phase, i.e., M [see
Fig. 9(b)] and φ [see Fig. 9(c)]. We would like to mention that
the parameter t2 is defined with respect to t1 which is in turn set
to unity throughout our work. The topological phase diagram
of the Haldane model is usually plotted in the (M/t2)-φ plane
as shown in Fig. 1(d). Hence, we believe that analyzing the
variation of τ0 with the ratioM/t2 (with t2 = 1/3) and the
parameter φ would be sufficient. Although we observed that
the value of τ0 at large Mi is larger than its value at small Mi

(with Mf fixed), deciphering its behavior is quite complicated
and nontrivial. Furthermore, the behavior of τ0 with φ is
definitely nonlinear and nonmonotonic and is immensely
difficult to investigate under the current scope of this work.

We also note that there are fine structures in the form of
kinks in the plots for the postquench current as a function of
τ [see Fig. 9(b), for example]. These kinks or oscillations in
the transients in current are early time effects (i.e., small τ )
and are present for each k mode. When the contributions for
each mode are summed up, there are coherent superpositions
that result in such a structure. Such coherent superpositions
die off with increasing τ . These kinks are nonuniversal in the
sense that they depend on the quenching parameters involved.
The early time transients can be understood to originate from
Rabi oscillations between the levels of the N -level system, and
thereby they qualitatively depend on the band gaps between
levels and the driving frequencies and amplitude involved.

V. CONCLUSION

To summarize, we have investigated the nonequilibrium
dynamics of the edge current of the semiopen Haldane model,
subjected to a time-dependent linear quench from the nontopo-
logical phase to the topological phase. In the sudden quench
limit, the system retains its original ground state even for a
quench across the phase boundary, and consequently the edge
current just retains its initial value dictated by the starting
phase. When the starting point is in the nontopological phase,
the edge current remains 0 at all times for a sudden quench.
In the opposite limit of slow quench (adiabatic limit), at each
moment the system relaxes to the instantaneous ground state
of the time-dependent Hamiltonian throughout the quenching
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path, yielding a final edge current dictated only by the ground-
state current of the final Hamiltonian.

Interestingly, we find that with increasing τ , the change in
the current from the initial phase current for τ → 0 to the final
phase current for τ → ∞ is not monotonic. In the small-τ
limit, there is a large unidirectional current generated on both
edges of the Haldane nanoribbon. This causes the initial current
to change drastically, and then with increasing τ the currents
at both edges relax to their final equilibrium values, which are
equal in magnitude but opposite in direction. This leads to a
nonmonotonic behavior of the edge current with τ . We find
that the turning point for the nonmonotonic edge current, τ0, is
different for the two edges, does not depend on the system size,
and is sensitive only to the Semenoff mass M and the Haldane
flux φ. Furthermore, we also establish the existence of another
time scale τa such that, for τ > τa , the adiabatic effect starts
to dominate.

Finally, we note that in this work, the finite geometry of the
Haldane model has been realized on a graphene lattice with
armchair edges. Indeed there is also a possibility of realizing
the same for the other case, namely, the zigzag boundary. A
detailed study on topological edge states for the two different
edges of the Haldane model has been carried out by Hao et al.
[64]. It is apparent from their work that the phase diagram of
this system, which is determined by the bulk Chern number,
predicts the existence of edge states in a semiopen system,
for both the armchair and the zigzag boundaries. Since both
armchair and zigzag edges have similar edge properties, we
expect the zigzag boundary to exhibit the same dynamics of
the edge current as well. While most of our discussion is
specifically for the Haldane model on a nanoribbon, we expect
similar physics to play out in other systems with topological
phases and the associated edge state.
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APPENDIX: NUMERICAL METHODS

In this Appendix, we briefly discuss the numerical tech-
niques involved in calculating the edge currents at the two
boundaries of the sample with armchair edges. The system
under study, being periodically wrapped along the x direction,
yields the quasimomentum kx as a good quantum number. This
allows us to choose a finitely large unit cell along they direction
as shown in Fig. 2 which includes sites (y) labeled with the
site numbers from 1 to N and sublattice indices s = A,B.
Thus, in the basis of |y,s〉 = |y〉⊙ |s〉, in accordance with
Eq. (4), we can write the Hamiltonian as a 2N × 2N matrix
parametrized by each conserved quasimomentum mode kx .
Since the diagonal elements of this Hamiltonian contain the
Semenoff mass term, M(t) = Mi + (Mf − Mi)t/τ (defined
within 0 � t � τ ), which are globally time dependent, one
now needs to solve the time-dependent Schrodinger equation:

i
∂ψ2N×1(t)

∂t
= H2N×2N (t)ψ2N×1(t). (A1)

Here, |ψ(t)〉 = ∑N
y=1,s=A,B cy,s(t)|y,s〉 gives the column vec-

tor,

ψ2N×1(t) = (c1,A c1,B . . . cy,A cy,B . . . cN,A cN,B )T ,

(A2)

and H2N×2N (t) is a time-dependent matrix. Now using the
initial ground state ψ2N×1(0) of H2N×2N (t = 0) as the bound-
ary condition, we solve these 2N sets of coupled linear
differential equations, from initial time ti = 0 to final time
tf = τ , numerically. We use the ODEINT package in Python
to obtain the time-dependent state vector ψ2N×1(t = tf = τ )
of the system, using a suitable time step to ensure numerical
accuracy. Finally, the expressions of the edge currents at any
edge of the system y = 1 or N can be obtained by utilizing
Eq. (5) and writing it in the form of an extremely sparse
2N × 2N matrix in the same basis (|y,s〉) as the Hamiltonian
matrix and taking its expectation value with respect to the
ψ2N×1(τ ) of the system evaluated above.
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