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Bounds on quantum confinement effects in metal nanoparticles
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Quantum size effects on the permittivity of metal nanoparticles are investigated using the quantum box model.
Explicit upper and lower bounds are derived for the permittivity and relaxation rates due to quantum confinement
effects. These bounds are verified numerically, and the size dependence and frequency dependence of the empirical
Drude size parameter is extracted from the model. Results suggest that the common practice of empirically
modifying the dielectric function can lead to inaccurate predictions for highly uniform distributions of finite-sized
particles.
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I. INTRODUCTION

Metallic nanostructures and their associated surface plas-
mon resonances (SPRs) enable incident light to be intensified
by several orders of magnitude. This plasmonic enhancement
plays a paramount role in a broad range of emerging opti-
cal technologies, including electromagnetic cloaks and meta-
materials [1–4], superlenses [5–7], ultrafast optoelectronics
[8–10], cancer treatments [11,12], and sensitive chemical
sensors [13–15]. The mechanism of plasmonic enhancement
has been well studied within the context of classical elec-
trodynamics. However, as the feature size of nanomaterials
approaches atomic scale, quantum-mechanical effects emerge,
which in some cases can further enhance their plasmonic
properties. In this paper, we demonstrate that bounds can be
placed on the additional effects due to quantum confinement.

The optical behavior of large metal nanoscale objects
(dimensions �10 nm) are described using bulk permittivity
functions and classical electrodynamics methods such as Mie
theory [16] or the discrete-dipole approximation [17–19]. Bulk
permittivity functions of metals ε(ω) = εb(ω) + εD(ω) can be
formally separated into the bound electron contribution εb(ω)
and the conduction electron (Drude) contribution εD(ω) with
the Drude component given by [20,21]

εD(ω) = ε′
D(ω) + iε′′

D(ω)

= 1 − ω2
p

ω2 + γ 2
+ i

ω2
pγ

ω(ω2 + γ 2)
, (1)

where ωp = (nee
2/ε0me)1/2 is the plasma frequency, which

depends on the conduction electron density ne, the elec-
tron charge e, and the effective electron mass me; γ is a
phenomenological damping constant (relaxation rate), which
equals the SPR bandwidth � for a free electron gas in the
limit ω � γ [22]. For the majority of this paper, we will focus
on the conduction band contribution since it is dominant in
the infrared and visible frequencies for many metals. We will
revisit the bound electron component in the section dedicated

*dgenov@latech.edu

to experimental comparison since it plays an important role in
noble metals like silver, copper, and gold at frequencies close
to the surface plasmon resonance frequency [23].

Although Eq. (1) accurately describes the conduction elec-
tron behavior in bulk metals and large metal particles, the bulk
Drude response is inadequate for tiny metal particles with radii
less than 10 nm. At this size range, the particle surface starts to
play an important role in the optical response, and the optical
functions become size dependent [22,24]. In contrast to Drude
theory, which predicts constant damping rates, optical mea-
surements have established that damping rates are inversely
proportional to the particle radius when R < 10 nm [22,25,26].
Thus there has been great success in reproducing experimental
measurements by replacing the relaxation rate in Eq. (1) with
the size dependent term [22,24,27–29]

γ (R) = γ0 + AvF

R
, (2)

where vF is the Fermi velocity, γ0 is the bulk value of the
damping constant, and A is an empirical size parameter of the
order of 1.

The 1/R contribution in Eq. (2) has been derived within
the context of several different theoretical frameworks, each
with their own interpretation of the size-dependent damping
rates. The classical free path effect [24] considers it a result of
increased surface scattering in finite-size particles, which leads
to a modified mean free path of the electrons. Semiclassical
and nonlocal models interpret the modified damping rates to
be a consequence of electron-hole pair formation (Landau
damping) and surface screening in hydrodynamic models
[30–35]. The canonical particle-in-a-box model pioneered
by Kawabata and Kubo [36] and improved subsequently by
numerous others [37–49] has shown that the size-dependent
damping rates can also be considered a quantum size effect.

Although many theoretical approaches have derived Eq. (2),
the value of the size parameter has been debated in the
literature, with values for A ranging from 0.1 to 2 depending
on the details of the calculation performed [22,27,50]. Further
complicating matters, experiments have reported an even wider
range of values [51–53], showing that the proportionality
constant is sensitive to a multitude of microscopic effects such
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as particle geometry, surface roughness, and chemical interface
damping, all of which become significant when the particle
radius is less than 10 nm [22,54].

In principle, many detailed effects could be considered
by first-principle investigations. However, theoretical descrip-
tions of metal particles based on ab initio techniques and
time-dependent (TD) density functional theory (DFT) [55,56]
are usually restricted to particles consisting of less than 120
atoms because of their computational demand [57–60]. More
optimized techniques include less physical details, but even
these methods are limited to particles smaller than R ≈ 2.5 nm
[61–63]. Because of practical limitations, these theories have
limited usefulness for modeling general plasmonic systems; to
model larger particles, simpler quantum-mechanical methods
are required. These include the jellium model [64–69] and
quantum box models (QBMs).

The primary advantage of the particle-in-a-box technique,
referred to as the QBM, is that it uniquely allows for analytical
solutions and closed-form expressions, which provide more
physical insight than purely numerical schemes. We use the
framework of the QBM to evaluate the limits to which quantum
confinement of the conduction electrons can further enhance
the optical properties of metal nanoparticles. The results also
help establish the limitations of using Eq. (2) to empirically
modify the Drude function. We focus primarily on damping
effects since line-shape broadening is the most pronounced
size-dependent effect for SPRs of metal particles in the R =
1–10 nm range.

In Sec. II, we introduce the spherical QBM and summarize
numerical calculations for finite-sized systems. The results are
consistent with previous finite-size calculations [45,49,67,70]
showing that the permittivity ε and the relaxation rate γ are
characterized by a range of values that fluctuate sensitively
with respect to frequency and particle size. We demonstrate
that the Drude size parameter A is similarly characterized by
fluctuating values since it is directly linked to γ . Hence, in
Sec. III, we derive analytical bounds on the fluctuations in these
three related quantities, and we verify the analytical bounds
using numerical calculations. Finally, in Sec. IV, we compare
experimental measurements of the size parameter with numer-
ical QBM calculations for nonuniform size distributions. Re-
sults point toward a different approach for treating the optical
response of nano-sized metallic systems. Specifically, we argue
in Sec. V that for highly uniform size distributions, either (i) a
quantum-mechanical permittivity calculation should be used,
(ii) a frequency- and size-dependent function A(ω,R) must
be introduced, or (iii) the proper bounds should be used to
calculate the range of expected optical properties.

II. QUANTUM BOX MODEL (QBM)

In the QBM, N conduction electrons are confined within
an infinite potential well whose dimensions are designed to
represent a particle of the same size. The electrons are assumed
to be noninteracting, with each electron belonging to its own
single-electron eigenstate. In a spherical well of radius R, the
wave functions have the form ψnlm = Anljl(anlr/R)Ym

l (θ,φ)
where Anl = (2/R3)1/2/jl+1(anl) is the normalization constant,
Ym

l denotes the spherical harmonics (−l � m � l), and anl

represents the nth zero of the spherical Bessel function jl

∞
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FIG. 1. Energy levels of an infinite spherical well with varying
radius, representing silver nanospheres with a constant electron
density ne = 5.86 × 1028 m−3. The occupancy of each energy level
is filled according to its degeneracy factor 2(2l + 1). Dark (red) lines
indicate occupied states at temperature T = 0 K, and light (gray) lines
are unoccupied.

with order l � 0. These states have the energy levels Enl =
h̄2a2

nl/2meR
2 with degeneracy g(Enl) = 2l + 1 and are pre-

sented in Fig. 1. The electromagnetic response of the conduc-
tion electrons is given by the standard quantum-mechanical
susceptibility tensor for linear materials [71]:

χij (ω,R) = 1

ε0h̄V

∑
s

∑
s ′

(ws − ws ′ )μi
ss ′μ

j

s ′s

ωss ′ − ω − iγss ′/2
, (3)

where ws and ws ′ are the occupation numbers of the states
|s〉 and |s ′〉, ωss ′ = (Es ′ − Es)/h̄ is the transition frequency,
V is the volume of the particle, and γss ′ is the transition
relaxation rate. The electric dipole transition moments are
given by μ

j

ss ′ = 〈s|erj |s ′〉, where rj is the displacement in the
direction of the polarization unit vector êj . Note that Eq. (3)
does not account for additional effects due to inhomogeneity
of the electron density near the particle surface (nonlocality),
which is expected to play a role in very small particles with
dimensions comparable to 1/kF , where kF is the Fermi wave
vector [43]. These effects are best described by more detailed
approaches like TD-DFT. For this reason, we restrict our
analysis to particles with R > 1 nm.

The temperature dependence of the occupation numbers is
given by Fermi statistics

ws = 2

e(Es−εF )/kBT + 1
, (4)

where kB is Boltzmann’s constant, εF is the Fermi energy, and
the factor of two accounts for spin degeneracy of the electron.
The Fermi energy can be considered a constant value for bulk
material (ε∞

F ), but it should be treated as a size-dependent
parameter for small particles when quantization of energy
levels becomes important. We calculate the size-dependent
Fermi energy εF (R) using an electron-counting process as
follows. The occupancy of each energy state is determined by
its degeneracy factor 2(2l + 1), which includes both angular
and spin degeneracy. The energy levels are then filled from
the ground state upward until we have accounted for each
of the nanoparticle’s N = neV conduction electrons. At this
point, the size-dependent Fermi energy has been reached. A
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visualization of this process can be seen in Fig. 1, where εF (R)
approaches the bulk value as the particle size increases.

Wood and Ashcroft [43] demonstrated that high-symmetry
systems have an effective energy gap that scales with the
number of electrons according to δE ∼ εF /N1/3. According
to the Wood and Ashcroft scaling, typical energy gaps in the
size range we consider (R � 10 nm) are δE � 0.09 eV. This
was also confirmed numerically by looking at the distribution
of dipole transition frequencies for particles in the R=1–10 nm
size range (see Fig. 1). Thus, within this size range, temperature
effects play a minimal role since thermal energy fluctuations
at ambient temperatures are of the order of kBT ≈ 0.02 eV.
Therefore, we take T = 0 K as a good approximation to the
low temperature limit (δE � kBT ). In this case, all states below
the Fermi energy (E � εF ) are occupied with ws = 2, and all
states with E > εF are unoccupied with ws = 0. Therefore, at
zero temperature, the permittivity ε(ω) = 1 + χ (ω) becomes
a sum over occupied (o) and unoccupied (u) states

εij (ω,R) = 1 + ω2
p

o∑
s

u∑
s ′

S
ij

ss ′

ω2
ss ′ − ω2 − iωγss ′

, (5)

where we have introduced the oscillator strengths S
ij

ss ′ =
4meωss ′μi

ss ′μ
j

s ′s/h̄N , which satisfy the sum rule
∑

ss ′ S
ii
ss ′ = 1.

As verification of the low-temperature approximation, cal-
culations have also been performed at 300 K (not shown
here), which reveal negligible differences to the calculations
performed at absolute zero.

Because all directions are equivalent for spherical par-
ticles, we can choose the z direction to coincide with
the direction of polarization. The oscillator strengths Szz

ss ′ ≡
4meωss ′ |〈s|z|s ′〉|2/h̄N are then evaluated between the initial
state |s〉 = |ψnlm〉 and final state |s ′〉 = |ψn′l′m′ 〉. This leads to
the selection rules �m = m′ − m = 0 and �l = l′ − l = ±1.
Finally, the oscillator strengths for the allowed transitions are
given by

Szz
ss ′ = δ�m,0

(
Cm

l+1δ�l,1 + Cm
l δ�l,−1

) 16(anlan′l′)2

N
(
a2

nl − a2
n′l′

)3 , (6)

where Cm
l = (l2 − m2)/(4l2 − 1). Since the energy levels do

not depend on the quantum number m, it essentially represents
a degeneracy factor that can be incorporated into the strength
factors. Thus it is convenient to define new oscillator strengths

Szz
n,l,n′,l′ = ∑l

m=−l S
zz
ss ′ that are independent of m. Evaluating

the sum over m, we find

Szz
n,l,n′,l′ = (δ�l,1 + δ�l,−1)

16(anlan′l′)2(l + l′ + 1)

3N
(
a2

n′l′ − a2
nl

)3 . (7)

Equations (5) and (7) can then be used to write the permittivity
as a sum over the quantum numbers n and l:

ε(ω,R) = 1 + 16ω2
p

3N

o∑
nl

u∑
n′l′

(anlan′l′)2(
a2

n′l′ − a2
nl

)3

× (δ�l,1 + δ�l,−1)(l + l′ + 1)

ω2
R

(
a2

n′l′ − a2
nl

)2 − ω2 − iωγ0

, (8)

where we have defined the size-dependent frequency ωR =
h̄/2meR

2. In Eq. (8), we have suppressed the superscript z

since the direction is unimportant, and we have fixed the
transition relaxation rates to that of the bulkγss ′ = γ0. In reality,
γss ′ represents the natural decay rate of the transitions, but no
direct measurement has been made of this quantity, and so
we have followed the common practice of relating it to the
conductivity relaxation rate [22,44,72].

The sum in Eq. (8) is then evaluated numerically over
all possible transitions from occupied states to unoccupied
states until a reasonably high accuracy is achieved [49]. To
monitor convergence, we enforced the sum rule with a very
small tolerance 1 − ∑

Sss ′ < 10−4, which was achieved by
including as many as 1.65 million transitions for the largest
particle size considered in this study (R = 20 nm). Fewer
transitions are required to achieve the same convergence for
smaller particles.

Figures 2(a) and 2(b) show the results for several sizes of sil-
ver nanoparticles. Both the real and imaginary parts approach
bulk Drude behavior for large particles, but discrete resonances
are prominent for smaller sizes. Quantum effects are easily
seen in the infrared region of ε′ where the QBM predicts that
metal (silver) colloids/composites containing particles with
radii less than 2 nm should have dielectric behavior (ε′ > 0)
for electromagnetic radiation with wavelengths larger than 2
microns (0.6 eV). Size effects are also noticeable in the visible
frequency range where a decrease in particle size leads to a
rapid increase of ε′′ and the appearance of strong resonances.

FIG. 2. The (a) real part and (b) imaginary part of the permittivity of silver nanospheres calculated using the QBM. Convergence to the bulk
Drude function can be seen as particle size increases. (c) The frequency dependence of A(ω,R) extracted from the QBM permittivity using
Eq. (9). For comparison, the analytical result from Ref. [30] (BY) is shown in (c). Values used for silver were ωp = 9.1 eV, γ0 = 0.021 eV, and
ne = 5.86 × 1028 m−3 (constants obtained from Ref. [23] data).
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We now consider the relaxation phenomena as predicted
by the QBM. Although Eq. (2) is sometimes studied only at
the surface plasmon frequency, we consider the more general
case by defining A to be the finite-size correction to the
Drude permittivity at all frequencies. In the optical frequency
range, we can assume ω � γ , in which case we can define an
effective relaxation frequency in terms of the imaginary part of
the permittivity γ (ω,R) = ω3ε′′(ω,R)/ω2

p. The effective size
parameter then follows from Eq. (2) and is given by

A(ω,R) = γ (ω,R) − γ0

vF /R
. (9)

The frequency dependence of A(ω,R) for fixed particle sizes
is presented in Fig. 2(c), showing that the QBM predicts values
for the size parameter that fluctuate above and below the
smooth asymptotic result due to Barma and Subrahmanyam
(later improved by Yannouleas and Broglia) [30,45]. The
common practice of extending the Drude model to be size-
dependent [i.e. εD(ω,R)] by combining Eqs. (1) and (2) is only
reasonable for high frequencies and large particle sizes where
these deviations subside or when significant inhomogeneous
broadening effects are present.

Considering that experimentally generated metal nanoparti-
cle colloids and composite materials often consist of particles
with sizes in the range of 1–10 nm, it is clear that quantum
confinement effects are expected to play an important role
for infrared and visible frequencies. In stark contrast to the
semiclassical model, Fig. 2 demonstrates that a small change
in particle size or frequency can drastically change the value
of the optical functions and size parameter. This exemplifies
the importance of gaining a better understanding of finite-size
effects in nanoscopic systems. Accordingly, the following
section is dedicated to deriving bounds on the fluctuations
predicted by the QBM.

III. ANALYTICAL BOUNDS ON THE PERMITTIVITY
AND RELAXATION RATE

Previous authors have evaluated Eq. (8) or its equivalents
by replacing summations with integrals [36,37,45], which in
effect smooths the resonances and averages the values of Fig. 2.
These smoothing techniques approximate highly disperse ex-
perimental samples, but they conceal the full potential of what
might be detected experimentally. Hence we take a different
approach by seeking explicit bounds on the resonance behavior
so that a range of expected values can be estimated when
calculating optical properties.

We begin by obtaining broad bounds on the particle permit-
tivity given by Eq. (5) by minimizing and maximizing the sum-
mand with respect to ωss ′ . The real part ε′(ω) has a minimum at
ωss ′ = √

ω(ω − γ0) and maximum at ωss ′ = √
ω(ω + γ0). The

imaginary part ε′′(ω) has a maximum at ωss ′ = ω. Evaluating
Eq. (5) under these conditions and applying the oscillator
strength sum rule, we readily obtain the following bounds for
the permittivity

− ω2
p

2ωγ0
� ε′(ω) − 1 �

ω2
p

2ωγ0
, 0 � ε′′(ω) �

ω2
p

ωγ0
. (10)

Although these bounds hold for all frequencies and particle
sizes, they are not tight for high frequencies since they scale

as 1/ω, which does not match the behavior of the Drude
model for large ω (ε′

D ∼ 1/ω2 and ε′′
D ∼ 1/ω3). Furthermore,

it is of practical value to find size-dependent bounds that
capture quantum size effects. In the remainder of this section,
we seek size-dependent bounds with Drude-like behavior
so that we can better characterize the effects of quantum
confinement.

Following a procedure similar to Kraus and Schatz [44],
we approximate the spherical Bessel zeros using anl ≈ π (n +
1 + l/2), which can be recognized as the leading term of
McMahon’s asymptotic formula [73] modified for spherical
Bessel zeros with n � 0. This is the simplest method that, as
shown below, allows for obtaining tighter analytical bounds.
McMahon’s formula is exact for l = 0, so we define nF as
the value of the quantum number n on the Fermi surface
when l = 0. With this definition, the Fermi energy is εF =
h̄ωRπ2(nF + 1)2, and the Fermi surface is defined by the line
l = 2(nF − n). Occupied states lie below this surface where
0 � n � nF , 0 � l � 2(nF − n), and −l � m � l. Summing
the occupied states and keeping only the leading term for
large nF , we find the relation between nF and the number of
states, Ns = (4/3)n3

F . Taking the states to be doubly occupied
(Ns = N/2) and inserting the approximate anl , the oscillator
strengths follow from Eq. (7):

Sss ′ = Sn,l,�n,�l ≡ (δ�l,1 + δ�l,−1)
8(2n + l + 2)2

9n3
F π2(2�n + �l)3

× (2l + �l + 1)(2n + �n + l + �l + 2)2

(4n + 2�n + 2l + �l + 4)3
. (11)

Using the approximate energies Enl = h̄2π2(n + 1 +
l/2)2/2meR

2, the transition frequencies are

ωn,l,�n,�l ≡ π2ωR

4
(2�n + �l)(2�n + �l + 4 + 2l + 4n).

(12)

Therefore, the permittivity under the McMahon approximation
is

ε(ω,R) = 1 + ω2
p

∑
n,l

�n,�l

Sn,l,�n,�l

ω2
n,l,�n,�l − ω2 − iωγ0

. (13)

In writing Eqs. (11)–(13), we have used the transition notations
�l = l′ − l and �n = n′ − n. With this convention, the sum
over states in Eq. (5) has become a sum over values of
�n and �l = ±1 for which the occupied states transition to
an unoccupied state. This leads to the additional summation
constraints

�n � 1 − 1 − �l

2
, (14a)

0 � n � nF − 1 − �l

2
, (14b)

l � max

[
0,2

(
nF − n − �n + 1 − �l

2

)]
, (14c)

l � 2(nF − n). (14d)

At this point, the limits in Eq. (14) can be used to evaluate
Eq. (13) for finite systems. However, the McMahon approxima-
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tion is only valid when nF � 1 (see Appendix A), so we only
consider the limiting case of large nF , which is also satisfied
by our restriction R > 1 nm. When nF is large, resonances
with the same value of �n begin to cluster together. As nF

increases, these individual resonances merge into collective
resonances located at each group’s average frequency ω�n,
found by summing over quantum numbers other than �n:

ω�n ≡ 1

S�n

∑
n,l,�l

Sn,l,�n,�lωn,l,�n,�l = ω0(2�n + 1), (15)

where ω0 = (π/2)vF /R. The group strength is found in a
similar manner:

S�n ≡
∑
n,l,�l

Sn,l,�n,�l = 8

π2(2�n + 1)2
. (16)

Note that the group oscillator strengths S�n satisfy the sum
rule

∑∞
�n=0 S�n = 1, as they must. The specific details on

the derivation of the group frequencies Eq. (15) and group
oscillator strengths Eq. (16) are shown in Appendix A. For
nF � 1, the permittivity thus acquires the form of a single
sum over Lorentzian resonances:

ε∞(ω,R) = 1 + ω2
p

∞∑
�n=0

S�n

ω2
�n − ω2 − iωγ0

. (17)

The permittivity given by Eq. (17) has a closed-form solution
ε∞(ω,R) = εD(ω) + εs(ω,R), where εD is the Drude permit-
tivity [Eq. (1)], and εs is a finite-size contribution given by

εs(ω,R) = 2ω2
pω0

πω̃3
tan

(
πω̃

2ω0

)
, (18)

where ω̃ ≡ √
ω(ω + iγ0). This result contains a continuum of

resonances that broaden the line shape of the optical response
in a complex way. This exemplifies how applying the free
path correction [Eq. (2)] to the bulk Drude function does not
capture all of the relevant physics for very small particles. For
larger objects, the finite-size contribution to the permittivity
diminishes as εs ∼ 1/R, and the permittivity is dominated by
Drude behavior.

Although the result ε∞(ω,R) is an approximate solution to
Eq. (8) for large particles, it can serve as the basis for estimating
bounds on the permittivity due to finite-size effects since it

was constructed by clustering each �n transition group into a
single Lorentzian. Thus we assert that the minima and maxima
of ε∞(ω,R) serve as true bounds on the original, unclustered
band profile. This can be easily checked by a parametric
sweep.

Bounds for the real part of the permittivity can be found by
minimizing and maximizing the real part of Eq. (18). Written
in terms of the Drude susceptibility χ ′

D(ω) = ε′
D(ω) − 1, we

find

χ ′
D(ω)

(
1 + 2ω0

πω
csch

(
πγ0

2ω0

))
� ε′(ω,R) − 1

� χ ′
D(ω)

(
1 −

√
1 + ω2

0

γ 2
0

(
1 + π2γ 2

0

12ω0

))
. (19)

A lower bound for the imaginary part of the permittivity can
be obtained by considering the �n = 0 term in Eq. (17), and
the upper bound for the imaginary part is found by maximizing
the imaginary part of Eq. (18),

8ωγ0ω
2
p/π2(

ω2
0 + ω2

)2 + (ωγ0)2
� ε′′(ω,R)

� ε′′
D(ω)

(
1 + 2ω0

πγ0
coth

(
πγ0

4ω0

))
. (20)

The detailed derivation of the bounds in Eqs. (19) and (20) are
provided in Appendix B. Figure 3 shows that the numerical
calculation of ε(ω,R) contains resonances that fluctuate several
orders of magnitude, but the resonances remain within the
bounds given above. This has also been verified numerically
with a complete parametric sweep from 0 to 10 eV for 1 nm �
R � 20 nm.

To better compare with free-path-effect calculations, we
also consider bounding behavior for high frequencies (ω �
γ0). In this case, we can write both upper and lower bounds
with Drude-like behavior (see Appendix B, Section 4):

1 + 2ω0

πγ0
tanh

(
πγ0

4ω0

)
� ε′′(ω,R)

ε′′
D(ω)

� 1 + 2ω0

πγ0
coth

(
πγ0

4ω0

)
.

Because the imaginary part of the Drude permittivity can be
written ε′′

D ≈ ω2
pγ /ω3 for ω � γ0, we can write the high-

frequency bounds as ω2
pγ̄L/ω3 � ε′′(ω,R) � ω2

pγ̄U/ω3, where

FIG. 3. Bounds on (a) the real part of the QBM permittivity, (b) the imaginary part of the QBM permittivity, and (c) the size parameter
extracted from the QBM permittivity using Eq. (9). The shaded regions in (a) represent the bounds given by Eq. (19), and the shaded regions in
(b) represent the bounds in Eq. (20), ranging from R = 2 nm (lightest) to R = 20 nm (darkest). The shaded region in (c) is given by Eq. (23).
All quantities were evaluated for silver particles.
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we have introduced the upper and lower bounds of the effective
relaxation frequency

γ̄L = γ0 + vF

R
tanh

(
γ0R

2vF

)
, (21)

γ̄U = γ0 + vF

R
coth

(
γ0R

2vF

)
. (22)

Comparing with Eq. (2), we can also write Eqs. (21) and (22)
as bounds on the size parameter

tanh

(
γ0R

2vF

)
� A(R) � coth

(
γ0R

2vF

)
. (23)

These analytical bounds are compared with the exact QBM
calculation in Fig. 3(c), where effective values of A have been
extracted from ε′′(ω,R) using Eq. (9) at three different frequen-
cies. The values fall within the shaded area, which represent
the high-frequency bounds given by Eq. (23). The tightest
possible bounds for A(R) are the minimum and maximum
values of A(ω,R) for the frequency range [ω1(R),ωM ], where
the lower limit ω1(R) indicates the first transition frequency
for a given particle radius, and the upper limit ωM = 10 eV
is chosen to be sufficiently large such that ωM � ω1(R) for
R > 1 nm. Clearly, the true value of A is frequency dependent
and fluctuates between the minimum and maximum values
indicated by the dotted lines in Fig. 3(c). The range of values
for A(R) becomes significantly wide even for R ≈ 5 nm and
continues to widen for smaller particle sizes, demonstrating
that the semiclassical model is highly inaccurate for metal
nanoparticles with diameters less than 10 nm. For particles
in this size range, a quantum-mechanical result like Eq. (8) is
more appropriate.

The fluctuations visible in Figs. 2 and 3 are similar to the
oscillatory behavior reported by others [49,66–68,70,74]. In
experiments with inhomogeneous broadening effects such as
size dispersion or surface roughness, these fluctuations may be
smoothed out sufficiently that it is suitable to use average values
of the optical functions. But for measurements performed on
highly uniform particle samples or on individual nano-objects,
this highly oscillatory behavior will remain. In these situations,
bounds like the ones shown in Fig. 3 can be used to estimate a
range of possible values.

IV. COMPARISON WITH EXPERIMENT

From the previous two sections, it is clear that quantum con-
finement can lead to large fluctuations in the permittivity and
relaxation rates of finite-sized metal nanoparticles. Such large
fluctuations frequently go undetected experimentally due to
the presence of additional inhomogeneous broadening effects
in existing experimental techniques. In this section, we study
how a nonuniform size distribution of particles can suppress
these fluctuations and how differences in sample dispersity
may explain discrepancies between different experiments.

In what follows, we use published experimental data for sil-
ver nanoparticles embedded in glass [26,75]. The experiments
consider the broadening of the surface plasmon resonance in
the absorption spectra and extract the effective permittivity
of the particles. Because the experimental samples are not
uniform in size, we must perform averaging over a proper size

TABLE I. Values used for interband corrections, taken from
experimental measurements on bulk silver at the resonance frequency
for silver in glass (ωsp = 3.12 eV).

Ref. ε′
b ε′′

b

Johnson and Christy [23] 4.19 0.15
Kreibig et al. [26] 4.38 0.24
Hilger [75] 4.20 0.90

distribution function f (r,R,σ ) with mean particle radius R

and standard deviation σ . The effective particle permittivity
ε̄p is then obtained through the averaged polarizability using
the Maxwell-Garnett theory

ε̄p(ω,R,σ ) − εm

ε̄p(ω,R,σ ) + 2εm

=
∫ ∞

0
f (r,R,σ )

εp(ω,R) − εm

εp(ω,R) + 2εm

dr,

(24)

where εp(ω,R) is the permittivity of a particle with fixed radius
R, and εm is the permittivity of the embedding medium. Since
the experimental data provides the values of the bound electron
contribution to the permittivity εb, we can use Eq. (24) to ex-
tract the effective conduction electron permittivity εD(ω,R) =
εp(ω,R) − εb and hence the relaxation rate and size parameter
according to Eq. (9). The values of the bound electron permit-
tivity according to each experiment are shown in Table I.

Fig. 4 shows the experimental data compared with
calculations of normally distributed particle samples us-
ing f (r,R,σ ) = exp (−(r − R)2/(2σ 2))/

√
2πσ 2. The values

were calculated at the surface plasmon frequency of silver
nanoparticles in glass in correspondence with the experimental
conditions (ωsp = 3.12 eV). The calculations predict signif-
icant fluctuations in the size parameter for small particles
(R < 5 nm), whereas the size parameter quickly collapses to
a constant value for larger particle sizes. The size-dependent
fluctuations disappear almost entirely even for a relatively
narrow size distribution with σ = 0.4 nm. The experimental
values fall within the range of values predicted by the QBM.

FIG. 4. The size parameter of silver nanoparticles embedded in
glass (εm = 2.3). Theoretical values (lines) were calculated for normal
size distributions using the QBM with effective medium theory [see
Eq. (24)]. Values obtained from experimental data is also shown from
Ref. [26] (Expt. 1) and Ref. [75] (Expt. 2). All values were calculated
at the resonance frequency of silver particles in glass (ωsp = 3.12 eV).
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Varying the dispersity (σ ) of the sample can also explain the
variation in the data points.

The usage of the finite-size correction in Eq. (2) is
widespread. Figure 4 provides insight into its applicability for
many realistic samples of metal particles since most current
experimental techniques are limited to measurements on a
sample with varying size, shape, and orientation. The necessity
of quantum corrections to Eq. (2) depends strongly on both
the average size and the dispersity of the sample. Because
nonuniform particle samples suppress almost all quantum
effects, extremely narrow size distributions are required to
reliably test the predictions of the QBM.

V. CONCLUSION

In this paper, we performed a detailed study of size effects
in the permittivity of metal nanoparticles using the QBM. By
deriving strict analytical bounds on the permittivity, relaxation
rates, and semiclassical size parameter A, we investigated the
limits to which quantum confinement effects can enhance their
optical properties. We also argue that caution should be exer-
cised when following the common practice of modeling finite-
sized systems with a modified Drude function and Eq. (2).
Quantum effects should be accounted for in uniform samples
containing particles with R � 10 nm by either (i) using a
quantum-mechanical permittivity like Eq. (8), (ii) studying
proper bounds on the permittivity like Eqs. (19) and (20),
or (iii) introducing a size-dependent and frequency-dependent
function A(ω,R).

Finally, by comparing the theory with experimental data,
we provide an example of how a nonuniform size distribution
can suppress the effects of quantum confinement. This can
also explain the variance in measured values of the Drude
size parameter A, even when the measurements are performed
under similar experimental conditions. Future experiments on
highly uniform particle samples or even single nano-objects
are needed to adequately test the size-dependent oscillatory
behavior predicted by the QBM.
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APPENDIX A: EVALUATION
OF THE MCMAHON SUM RULE

The exact sum rule
∑

ss ′ Sss ′ = 1 is quite generally valid;
however, the asymptotic McMahon approximation anl ≈
π (n + 1 + l/2) is only accurate when n � l, and it is not
obvious that the sum rule is satisfied under this approximation.
Here we demonstrate that the sum rule is indeed satisfied in
the limit of large particle sizes (nF � 1).

We start by noting that the limits in Eqs. (14a)– (14d) are the
same for the two �l = ±1 cases if we apply the transformation
�n → �n + 1 when �l = −1 and assume nF � 1. We can
thus combine both �l terms and use Eq. (11) to define a com-
bined strength factor Tn,l,�n = Sn,l,�n+1,�l=−1 + Sn,l,�n,�l=+1

TABLE II. The subsets used for evaluating the sum rule in
Appendix A.

D1 D2 D3

0 � �n � nF 0 � �n � nF �n > nF

0 � n � nF − �n nF − �n < n � nF 0 � n � nF

0 � l � 2�n 0 � l � 2(nF − n) 0 � l � 2(nF − n)

given by

Tn,l,�n ≡ 16(2nF − l + 2)2

π2n3
F (2�n + 1)3

× (4nF − 2l − 4n + 1)(2�n − l + 2nF + 3)2

(2�n − 2l + 4nF + 5)3
.

In writing Tn,l,�n, we also applied the simplifying transforma-
tion l → −l + 2(nF − n) and used the relation Ns = (4/3)n3

F ,
which is the correct density of states for the McMahon
approximation. Others have pointed out [30,37,45] that the
McMahon density of states does not agree with the bulk density
of states, but we use the McMahon relation so that the model
remains self-consistent.

We define the set D(n,l,�n) = {n,l,�n} as the set of values
n, l, and �n, which satisfy the summation constraints in
Eqs. (14a)–(14d) with the transformations described in the
previous paragraph. With these conditions, we can write the
set D as the union of three subsets, D = D1 ∪ D2 ∪ D3, where
we define the subsets in Table II.

The sum rule can then be written
∑

ss ′ Sss ′ = ∑
D Tn,l,�n =∑

D1
Tn,l,�n + ∑

D2
Tn,l,�n + ∑

D3
Tn,l,�n. From Fig. 5, it’s

clear that the sums over D2 and D3 vanish when nF is large,
so we have

∑
D Tn,l,�n  ∑

D1
Tn,l,�n for large nF . If we write

the upper summation limit for n assuming that nF � �n, then
we find the group oscillator strengths

S�n ≡ lim
nF →∞

2�n∑
l=0

nF∑
n=0

Tn,l,�n =
2�n∑
l=0

8

π2(2�n + 1)3

= 8

π2(2�n + 1)2
, (A1)

where we first performed the straightforward sum over n and
subsequently applied the limit nF → ∞. The final sum over
l can then be evaluated easily. The sum rule

∑∞
�n=0 S�n = 1

is readily verified, confirming that the sum rule is satisfied for
nF � 1.

FIG. 5. Evaluation of the sum rule for the three different domains
defined in Appendix A, Table II.
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The group frequencies are evaluated analogously to the sum
rule. Combining ωn,l,�n,�l for both �l = ±1 terms and again
applying the transformation l → −l + 2(nF − n), we find

�n,l,�n ≡ h̄π2

8MR2
(2�n + 1)(2�n − 2l + 4nF + 5).

For large nF we again only need to consider the sum corre-
sponding to D1, and the group average frequency becomes

ω�n ≡ 1

S�n

2�n∑
l=0

nF∑
n=0

Tn,l,�n�n,l,�n.

Keeping only the leading nF term, we find

ω�n = h̄π2nF

2MR2
(2�n + 1) = ω0(2�n + 1), (A2)

where we have defined the characteristic frequency ω0 ≡
h̄π2nF /2MR2 = (π/2)vF /R.

APPENDIX B: BOUNDS ON THE PERMITTIVITY

We are ultimately interested in bounds for ε∞(ω,R). We first
recast the problem in a more illuminating form by extracting
the Drude term from the sum in Eq. (17). We can then split
the finite-size contribution into its real and imaginary parts by
writing

Re[ε∞(ω)] − 1 = χ ′
D(1 + ξ (ν,τ )), (B1)

Im[ε∞(ω)] = χ ′′
D(1 + η(ν,τ )), (B2)

where we have defined the parameters ν = ω/ω0 and τ =
γ /ω0. In this form, the scaling functions ξ (ν,τ ) and η(ν,τ )
represent corrections to the Drude susceptibility functions χ ′

D

and χ ′′
D . The scaling functions are given by

ξ (ν,τ ) = 8

π2

∞∑
n=0

ν2 − τ 2 − 1 − 4n(n + 1)

((2n + 1)2 − ν2)2 + ν2τ 2
, (B3)

η(ν,τ ) = 8

π2

∞∑
n=0

2ν2 − (2n + 1)2

((2n + 1)2 − ν2)2 + ν2τ 2
. (B4)

The problem is now reduced to finding bounds for the functions
ξ and η. The summations in Eqs. (B3) and (B4) have the
closed-form solutions ξ (ν,τ ) = −Re[f (ν,τ )]/ν and η(ν,τ ) =
Im[f (ν,τ )]/τ , where

f (ν,τ ) = 2 (ν − iτ )3/2 tan
(

π
2

√
ν(ν + iτ )

)
π

√
ν(ν2 + τ 2)

(B5)

is a complex-valued function. To investigate the
bounding behavior of these functions, we write
Eq. (B5) entirely in terms of real-valued func-
tions. Making use of the property tan (x + iy) =
(sin (2x) + i sinh (2y))/(cos (2x) + cosh (2y)), we can write
f (ν,τ ) = −F (ν,τ ) + iG(ν,τ ) where

F (ν,τ )

= 2Y (Y 2 − 3X2) sinh(πνY ) − 2X(X2 − 3Y 2) sin (πνX)

π (X2 + Y 2)(cos (πνX) + cosh (πνY ))
,

(B6)

G(ν,τ )

= 2Y (Y 2 − 3X2) sin (πνX)+2X(X2−3Y 2) sinh(πνY )

π (X2+Y 2)(cos (πνX) + cosh (πνY ))
,

(B7)

with X ≡ (1/
√

2)
√

1 +
√

1 + (τ/ν)2 and Y ≡ (1/
√

2)√
−1 +

√
1 + (τ/ν)2.

The scaling functions are thus ξ (ν,τ ) = F (ν,τ )/ν and
η(ν,τ ) = G(ν,τ )/τ . We now use the results Eqs. (B6) and (B7)
to seek upper and lower bounds on the scaling functions, i.e.
ξ− � ξ � ξ+ and η− � η � η+. The corresponding bounds
on the permittivity are as follows:

χ ′
D(1 + ξ+) � ε′ − 1 � χ ′

D(1 + ξ−), (B8)

ε′′
D(1 + η−) � ε′′ � ε′′

D(1 + η+). (B9)

Where possible, we explore frequency-independent bounds
ξ−(τ ), ξ+(τ ), η−(τ ), and η+(τ ) to preserve the frequency
dependence of the Drude functions in the bounds Eqs. (B8)
and (B9) above.

1. Lower bound for ξ (ν,τ )

It can be readily verified that the global minimum of ξ (ν,τ )
is always located in the range 0 � νmin � 1. However, the
exact value of νmin depends on τ in a nontrivial way. We in-
stead consider the function H (ν,τ ) ≡ (ν2 + τ 2)−1/2ξ (ν,τ ) =
(ν

√
ν2 + τ 2)−1F (ν,τ ) shown in Fig. 6(a). This function is

minimized at ν = 0 for all values of τ , and the minimum value
can be found by taking the limit as ν goes to zero:

lim
ν→0

(ν2 + τ 2)−1/2ξ (ν,τ ) = −
(

1

τ
+ π2τ

12

)
.

Since this is a minimum value, we can use it to write a
frequency-dependent lower bound ξ (ν,τ ) � ξ−(ν,τ ) with

ξ−(ν,τ ) ≡ −(ν2 + τ 2)1/2

(
1

τ
+ π2τ

12

)
. (B10)

The bound ξ−(ν,τ ) holds for all values of ν, so it must also be
true that ξ (ν,τ ) � ξ−(νmin,τ ). Since we always have νmin �
1 for ξ (ν,τ ), we can also establish a frequency-independent
bound by evaluating Eq. (B10) at ν = 1:

ξ−(τ ) ≡ −(1 + τ 2)1/2

(
1

τ
+ π2τ

12

)
. (B11)

2. Upper bound for ξ (ν,τ )

Observe in Fig. 6(b) that the function ν ξ (ν,τ ) = F (ν,τ )
has an infinite set of local maxima and minima, which always
monotonically increase to an asymptotic value. The limiting
value can be found from the asymptotic behavior for ν � τ , in
which case X ≈ 1 and Y ≈ τ/2ν. Dropping terms containing
τ/ν, we obtain

F (ν,τ ) ∼ −2 sin (πν)

π cos (πν) + π cosh (πτ/2)
, (ν � τ ). (B12)

This function has minima and maxima at νmin,max = 2n ±
arccos (− sech (πτ/2)). Evaluating Eq. (B12) at these points,
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FIG. 6. The regularized scaling functions (a) H (ν,τ ) = (ν
√

ν2 + τ 2)−1F (ν,τ ), (b) F (ν,τ ), and (c) G(ν,τ ) as defined in Appendix B.
Horizontal lines indicate limiting values. Global minima for H (ν,τ ) occurring at ν = 0 are shown, and the global maxima of the functions
F (ν,τ ) and G(ν,τ ) as ν → ∞ are shown for different values of τ .

we find that the function asymptotically oscillates between two
limiting values,

lim
ν→∞ F (ν,τ ) =

[
− 2

π
csch

(πτ

2

)
,

2

π
csch

(πτ

2

)]
.

Because the maxima of F (ν,τ ) increase monotonically,
the positive asymptotic value must be an upper bound
for all frequencies. Therefore, we have ξ (ν,τ ) � ξ+ ≡
(2/πν) csch (πτ/2).

3. Lower bound for η(ν,τ )

The function η(ν,τ ) has a global minimum η(0,τ ) = −1.
This establishes the bound ε′′ � χ ′′

D , which simply confirms
that the imaginary part of the finite-size contribution ε′′

s is
always positive. A tighter lower bound for ε′′ can be found
by instead considering the summation in Eq. (17). Since each
imaginary term is always positive, every �n term is a lower
bound. We give the result for the first term (�n = 0) in Eq. (20).

4. Upper and high-frequency bounds for η(ν,τ )

The function G(ν,τ ) has monotonically increasing maxima,
so we again find the high-frequency asymptotic for ν � τ .
Taking X ≈ 1 and Y ≈ τ/2ν, we find

G(ν,τ ) ∼ 2 sinh (πτ/2)

πτ cos (πν) + πτ cosh (πτ/2)
. (B13)

Maximizing/minimizing with respect to ν, we find that min-
ima occur at νmin = 2n and maxima at νmax = 2n + 1. The
corresponding values are

lim
ν→∞ G(ν,τ ) =

[
2

π
tanh

(πτ

4

)
,

2

π
coth

(πτ

4

)]
. (B14)

The lower value is a high frequency bound, but the upper value
holds as a bound for all frequencies. Thus, we can conclude
thatη(ν,τ ) � η− andη(ν,τ ) � η+ for all ν when ν � τ , where
η− ≡ (2/πτ ) tanh (πτ/4) and η+ ≡ (2/πτ ) coth (πτ/4).
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