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Fundamental bounds on the operation of Fano nonlinear isolators
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Nonlinear isolators have attracted significant attention for their ability to break reciprocity and provide isolation
without the need of an external bias. A popular approach for the design of such devices is based on Fano resonators,
which, due to their sharp frequency response, can lead to very large isolation for moderate input intensities. Here,
we show that, independent of their specific implementation, these devices are subject to fundamental bounds on
the transmission coefficient in the forward direction versus their quality factor, input power, and nonreciprocal
intensity range. Our analysis quantifies a general tradeoff between forward transmission and these metrics,
stemming directly from time-reversal symmetry, and that unitary transmission is only possible for vanishing
nonreciprocity. Our results also shed light on the operation of resonant nonlinear isolators, reveal their fundamental
limitations, and provide indications on how it is possible to design nonlinear isolators with optimal performance.
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I. INTRODUCTION

Nonreciprocal devices, such as isolators and circulators,
are crucial components in optics, of great interest for source
protection, and to separate signals propagating in opposite
directions [1,2]. Reciprocity can be broken by either biasing a
linear structure with a quantity that is odd-symmetric under
time reversal or relying on nonlinear effects [3]. The most
common approach consists in applying an external static mag-
netic bias, but other magnetless approaches based on biasing
with electric current or linear or angular momentum have
recently gained attention for their potential to realize integrated
low-noise isolators and circulators [4–17]. Nonlinearities can
also enable magnetless nonreciprocal components, with the
advantage of not requiring an external bias, thus realizing
all-passive nonreciprocity [18–38]. In this context, nonlinear
isolators exhibit a large transmission contrast when excited
from opposite sides with signals of equal intensities. These
devices are self-biased by the signal itself traveling through
the device, and therefore they can provide isolation only when
excited separately from different ports [37], in contrast to linear
isolators that work under any excitation condition, even with
signals incoming simultaneously from both ports. Yet, these
nonlinear devices can be very useful in situations involving
pulsed signals. A relevant scenario of interest is the case of a
nonlinear isolator connected at the output of a pulsed source.
If the pulse duration is short enough, the overlap between the
incident signal from the source and the reflected signal at the
output of the isolator can be avoided, allowing the nonlinear
isolator to transmit the incident signal and block the reflected
one. The most common way to achieve nonlinear isolation
is through the optical Kerr effect, according to which the
permittivity of a material depends on the local intensity of
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the electric field as ε = εlin + χ (3)|E|2, where εlin is the linear
permittivity, χ (3) is the third-order nonlinear susceptibility, and
E is the local electric-field intensity. If a Kerr resonator is
designed to support different field distributions when excited
from opposite directions, the nonlinear permittivity distribu-
tion ensures an asymmetry in response and, by appropriate
design, full isolation can be achieved.

A common approach for the design of Kerr nonlinear isola-
tors is based on two-port nonlinear resonators with asymmetric
coupling coefficients from opposite ports. Fano resonators are
ideal in this context, as they offer a sharp frequency response,
with transmission varying from zero to a peak over a narrow
frequency band around the resonance frequency, which enables
the design of nonlinear isolators with very large isolation for
moderate input intensity [31–36]. In this context, isolation
is defined as the ratio of transmission in opposite directions
for the same input intensity; infinite isolation corresponds to
zero transmission from one direction and nonzero transmission
from the opposite one. Indeed, the vast majority of nonlinear
isolators presented to date in the literature are based on devices
that fall in the broad category of Fano resonators.

In the following, we show that this large class of non-
linear isolators is subject to bounds stemming directly from
time-reversal symmetry and passivity—which fundamentally
limit their forward transmission Tfw versus their nonreciprocal
intensity range (NRIR), defined as the ratio of intensities
from opposite directions for which transmission experiences
a fast transition from low/high to high/low values—the Q

factor, and the input intensity Pin. A large NRIR implies a
large range of intensities offering strong isolation, while a
unitary NRIR corresponds to a structure with the same response
from opposite sides, and therefore no isolation at all. In the
following, we first rigorously prove that in resonant nonlinear
isolators reversing the propagation direction results in a direct
scaling of the intensity that leads to a given transmission value,
by a factor that is exactly equal to the degree of asymmetry

2469-9950/2018/97(11)/115431(10) 115431-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.115431&domain=pdf&date_stamp=2018-03-20
https://doi.org/10.1103/PhysRevB.97.115431


DIMITRIOS L. SOUNAS AND ANDREA ALÙ PHYSICAL REVIEW B 97, 115431 (2018)

(a)

(c)

(b)

(d)

FIG. 1. Nonlinear Fano isolator based on a substrate-backed dielectric grating. (a) Linear response and schematic of the structure for
d = 0.1a, w = 0.8a, t = 0.03a, and εlin = 12. (b) Desired nonlinear response, for which a transmission maximum from port 1 is aligned in
terms of input intensity with a zero from port 2. The vertical dashed line indicates the excitation frequency. (c) Actual nonlinear response for
the same parameters as in panel (a), excitation frequency f = 1.094c/(2a), and third-order nonlinear susceptibility χ (3) = 2.8 × 10−18 m2/V2.
(d) Similar to panel (c) but for t = 0.08a and f = 0.9575c/(2a). The numerical results were derived through full-wave simulation with COMSOL

MULTIPHYSICS.

with which the two ports are coupled to the resonator in
the linear regime, showing that NRIR is identically equal to
the linear asymmetry factor. Combining this property with
a general bound between transmission and the asymmetry
factor that can be derived from time-reversal symmetry, we
show that, independent of the specific design strategy, Tfw

necessarily decreases as NRIR increases, and that Tfw = 1 only
for vanishing nonreciprocity. In other words, it is impossible to
realize Fano nonlinear isolators with unitary transmission. We
also derive tight bounds on Tfw as a function of Q and Pin for the
case of infinite isolation (the case when backward transmission
is zero), showing that an increase in Tfw requires increasing
Q factor and/or input intensity. Our analysis also provides
insights on the general operation of nonlinear isolators, and
a quantitative tool to design optimal devices with the largest
possible forward transmission for given Q factor, bandwidth,
input power, and nonreciprocity intensity range.

II. TRADEOFF BETWEEN TRANSMISSION
AND ISOLATION INTENSITY RANGE

In order to understand the nature of the limitations outlined
above, we start from a particular example of a Fano nonlinear
isolator, based on a substrate-backed dielectric grating, as in
the inset of Fig. 1(a). Such a design is suitable for isolation of

waves propagating in free space. The structure has εlin = 12,
χ (3) = 2.8 × 10−18 m2/V2, realistically modeling Si [39], and
it is excited from the normal direction with a wave polarized
parallel to the grating. Figure 1(a) shows the linear response
of the structure, with a Fano resonant signature stemming
from the superposition of a high-Q resonance in the dielectric
rods and a low-Q background reflection at the air-dielectric
interfaces [40], with transmission rapidly changing from zero
to a peak as the input frequency varies. The grating depth d,
width w, and periodicity a control the resonance frequency,
while the substrate thickness t controls the asymmetry from
opposite sides, necessary to realize isolation in the nonlinear
regime. Increasing the input intensity results in an increase
of permittivity due to Kerr nonlinearity, which in turn shifts
downwards the resonance frequency. Since the resonator is
asymmetric, this shift is different for excitation from opposite
sides, enabling isolation. The isolation becomes infinite when
the input intensity is selected so that the resonant dip for
excitation from one side (left-hand side in Fig. 1) aligns with
the operation frequency. Through appropriate design of the
structure asymmetry, we can also make sure that, for excitation
from the other side (right-hand side in Fig. 1), the resonance
peak arises for the same intensity at the same excitation
frequency, enabling an isolator with zero and maximum trans-
mission for opposite excitations. Figure 1(b) illustrates this
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mechanism, comparing the linear response (gray) with the
nonlinear responses for excitation with same input intensity
from opposite sides. Ideally, we would like to achieve unitary
transmission in the forward direction (Tfw) and large isolation
over a broad intensity range.

Consider now the calculated response of this nonlinear
grating, presented in Fig. 1(c). The figure shows transmission
versus input intensity for the desired excitation frequency.
The substrate thickness t was selected to a finite value to
provide nonzero asymmetry, while the rest of the design
parameters were chosen to maximize Tfw when transmission
in the backward direction is zero. For both directions, as
we increase the input intensity the transmission experiences
a rapid transition from low to high values at a particular
input intensity (from now on, we will call this intensity the
critical intensity), corresponding to the Fano feature crossing
the excitation frequency. Due to the resonator asymmetry, the
transition intensity is different for opposite excitations, leading
to large isolation for input intensities between the critical
intensities for opposite directions. We define the ratio of critical
intensities from opposite directions as the nonreciprocal inten-
sity range, which, as mentioned in the introduction, quantifies
the range of intensities over which large transmission contrast
from opposite directions can be achieved. One natural way
to increase NRIR is to increase the asymmetry parameter t .
In Fig. 1(d), we show the transmission for a substrate with
larger thickness, with the other design parameters optimized
again to maximize Tfw at the intensity of infinite isolation.
Although a larger t indeed increases NRIR, this increase results
in an unwanted decrease in forward transmission, degrading
the overall performance of the device.

This tradeoff between forward transmission and NRIR,
evident in the example of Fig. 1, is not specific to this design,
but it is very general, and it can be understood using coupled-
mode theory (CMT). In the context of CMT, a two-port lossless
Fano resonator is described as [34]

da

dt
= (iω0 − γ )a + k1s

+
1 + k2s

+
2 ,

s−
1 = rBs+

1 + itBs+
2 + k1a, (1)

s−
2 = rBs+

2 + itBs+
1 + k2a,

where a is the resonance amplitude, ω0 is the resonance
frequency, γ is the decay rate, ki is the coupling coefficient
between the resonator and the ith port, s+

i is the signal entering
the resonator from the ith port, s−

i is the signal leaving the
resonator from the ith port, rB is the background reflection
coefficient, and tB is the background transmission coefficient.
rB , tB refer to the response of the system far from the Fano
resonance [41]. Notice that this model encompasses also
Lorentzian resonators, as a particular class of Fano resonators.

The decay rate can be decomposed as γ = γ1 + γ2, where
γ1,γ2 are the decay rates due to radiation to the ports. Equation
(1) needs to be supplemented with the conditions 2γi = |ki |2,
|rB |2 + |tB |2 = 1 and(

rB itB

itB rB

)(
k∗

1

k∗
2

)
= −

(
k1

k2

)
, (2)

derived from power conservation and time-reversal symmetry.
From Eqs. (1) and (2), it is straightforward to find that the

transmission coefficient through the system is given by

T = TB

(x ∓ x0)2

x2 + 1
, (3)

where TB = |tB |2, x = (ω0 − ω)/γ is the detuning factor
of the resonator, ω is the driving frequency, and x0 =√

4γ1γ2/[Tbg(γ1 + γ2)2] − 1 is a characteristic parameter of
the resonator that provides the detuning from the resonance
frequency at which transmission is zero. The minus sign in
Eq. (3) corresponds to the case where the transmission zero is
at lower frequencies than the resonance frequency, as in Fig. 1,
which also implies that the transmission zero is at a lower
frequency than the transmission maximum. The plus sign is
the dual case of a resonator with the transmission zero at a
higher frequency than the resonance frequency.

If we define κ = |k1|2/|k2|2 = γ1/γ2 as the asymmetry
factor from different ports (κ can also be defined as the ratio of
field intensities for excitation from different ports; assuming
operation close to a single resonance, this ratio is the same at
any point in the resonator, as we are assuming a single mode),
Eq. (3) can be rewritten as

T = 4κ

(κ + 1)2

(x ∓ x0)2

(x2 + 1)
(
x2

0 + 1
) . (4)

If the resonator is symmetric, κ = 1 and T = (x∓x0)2

(x2+1)(x2
0 +1)

,
which shows that the effect of asymmetry is to scale transmis-
sion by the factor 4κ

(κ+1)2 , while leaving its line shape unaffected.
Considering that for a symmetric Fano resonator maximum
transmission is unitary, we see that asymmetry imposes the
following bound on the transmission of Fano resonators:

T � 4κ

(κ + 1)2 . (5)

In [42,43], it was shown that this equation actually applies to
any lossless linear structure, regardless of whether it is a Fano
resonator or not, and it is a direct consequence of time-reversal
symmetry. For Fano resonators, Eq. (5) also applies to the lossy
case, which can be intuitively explained by the fact that adding
loss reduces maximum transmission compared to the lossless
case. A rigorous proof of this fact can be developed as in the
lossless case after adding the intrinsic decay rate γloss of the
resonator to γ .

Consider now a quadratic nonlinearity ε = εlin + χ (3)|E|2
in the Fano resonator. The nonlinearity results in a shift of the
resonance frequency of the resonator as

ω0 = ω0,lin

(
1 − |a|2

|a0|2
)

, (6)

where ω0,lin is the resonance frequency in the linear (low-
intensity) regime and |a0|2 is a characteristic quantity of
the resonator with units of energy [41]. In principle, the
nonlinearity may also affect the decay rate γ and the coupling
coefficients ki between the resonator and the ports, however
these effects are usually neglected for perturbations involving
only the real part of the permittivity, since γ and ki are
primarily determined by the mode profile which, compared to
the resonance frequency, is weakly affected by the nonlinearity
[41,44]. This allows applying Eq. (3) to the nonlinear case, if
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we replace ω0 with the expression in Eq. (6), with the rest of
the parameters (γ , Tbg, κ) being calculated in the linear regime.
Then, Eqs. (4) and (5) also hold in the nonlinear case, with the
parameter κ , determining the bound, still being the asymmetry
factor in the linear regime. Consider now that the structure is
excited from the ith port with a monochromatic signal s+

i at
frequency ω. Then, the resonance amplitude is given by

a = ki

i(ω − ω0) + γ
s+
i , (7)

where the only quantity that depends on the input intensity is
ω0, while γ and ki are the same as in the linear regime. Inserting
Eq. (7) into Eq. (6) yields(

1 − ω0

ω0,lin

)[
(ω − ω0)2 + γ 2

] = |ki |2P in
i

|a0|2
, (8)

where P in
i = |s+

i |2. From Eq. (8), we can derive a very
important property for the response of Fano nonlinear isolators.
In particular, the resonance frequency, and consequently the
overall response of the resonator, for excitation from port
2 has exactly the same dependence versus intensity as for
excitation from port 1, if the input intensity is scaled by the
factor κ = |k1|2/|k2|2, again depending exclusively on the
response of the isolator in the linear regime. In other words,
the blue and red curves in Figs. 1(c) and 1(d), and for any
arbitrary Fano nonlinear isolator, can be derived from each
other by simply horizontally scaling by a factor κ , which we
stress again is the linear asymmetry parameter. This property
shows that NRIR, defined earlier as the ratio of transition
intensities from opposite directions, is also the ratio of input
intensities from opposite directions that lead to the same
transmission coefficient for any value of the transmission
coefficient. Furthermore, NRIR is equal to κ or κ−1 depending
on whether κ > 1 or κ < 1, respectively. In a decibel scale,
NRIR is equal to the difference of input powers in decibels that
yield the same transmission from opposite directions. A unitary
NRIR (zero in dB scale) corresponds to a system with identical
response from opposite sides and therefore no isolation. On
the other hand, a large NRIR corresponds to a system which
exhibits large isolation over a large range of input intensities,
as in Figs. 1(c) and 1(d).

The fact that Eq. (5) is valid in the nonlinear case and that
the linear κ involved in these equations gives NRIR results
in a fundamental bound between nonlinear transmission and
NRIR. In particular, plugging κ from NRIR = max{κ,κ−1}
into Eq. (5) yields

T � 4NRIR

(NRIR + 1)2 . (9)

This equation shows that increasing T is only possible by
reducing NRIR, consistent with the examples in Figs. 1(c) and
1(d). The extreme case of unitary transmission is possible only
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FIG. 2. Transmission in the forward direction vs nonreciprocal
intensity range for various nonlinear isolator designs in Fig. 1. The
shaded region corresponds to the bound in Eq. (9).

for κ = 1, which corresponds to NRIR = 1 (0 dB), meaning
that it is impossible to realize a Fano-based nonlinear isolator
with unitary transmission. In order to numerically validate this
result, Fig. 2 shows Tfw at the intensity of infinite isolation
versus NRIR calculated for various design parameters for the
nonlinear metasurface in Fig. 1, fully validating Eq. (9), and
confirming that our derived bound is tight. We would like to
highlight that Eq. (9) is a consequence of the special nonlinear
dynamics of Fano resonators, namely, the applicability of
Eq. (5) in the nonlinear case and the close relation between
NRIR and the linear κ . Since any system with a single resonator
can be accurately mapped to a Fano response (for example, a
Lorentzian resonator is a Fano resonator with zero or unitary
background transmission), it follows that Eq. (9) is also valid
for any isolator based on a single resonator. In turn, this fact
indicates that Eq. (9) may be possibly broken in more complex
systems consisting of multiple resonators [45] or other systems
that do not involve resonators at all [38], although such systems
will still be subject to the dynamic reciprocity limitations
described in Ref. [37]. It is important to note that Eq. (9) is
also valid for lossy resonators, since, as we explained before,
Eq. (5) still holds in the case of loss, and Eq. (8) is unaffected
by the presence of absorption, if γ is the total decay rate of the
resonator that includes intrinsic loss. The same is true even for
the case of two-photon absorption, which becomes important
at high input intensities. Two-photon absorption results in an
intrinsic loss rate that increases as the input intensity increases
as

γloss = γ0,loss

(
1 + |a|2

|a0,TBA|2
)

, (10)

where γ0,loss is the loss rate in the linear regime and |a0,TBA|2
is a characteristic quantity of the system with units of energy.
Inserting Eq. (10) into Eq. (8) yields

(
1 − ω0

ω0,lin

){
(ω − ω0)2 +

[
γ0 + γ0,loss

|a0|2
|a0,TBA|2

(
1 − ω0

ω0,lin

)]2
}

= |ki |2P in
i

|a0|2
. (11)
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FIG. 3. Tfw vs TB and κ for various values of Q, ω0,lin = 1, and ω = 0.95. Each point in the plots corresponds to a design with infinite
isolation (zero backward transmission). The white regions are forbidden based on Eqs. (5) and (6). (a)–(c) Minus sign in Eq. (3). (d)–(f) Plus
sign in Eq. (3). (a), (d) Q = 15. (b), (e) Q = 20. (c), (f) Q = 25.

Equation (11) shows that, even in the presence of two-
photon absorption, the intensities of transmission from oppo-
site sides are scaled by the linear asymmetry factor κ when
we reverse the excitation direction, showing that NRIR is still
equal to κ . From this fact and the fact that Eq. (5) is valid in the
case of loss, we conclude that the bound in Eq. (9) is valid also
in the presence of two-photon absorption, as another common
form of optical nonlinearity.

III. BOUNDS FOR FORWARD TRANSMISSION
IN THE CASE OF INFINITE ISOLATION

In the above discussion, we did not make any assumption
regarding the transmission in the backward direction, therefore
Eq. (9) is valid independent of the isolation level. In the
following, we focus on the case in which the device is designed
to achieve zero transmission in the backward direction, hence
infinite isolation, for a certain input intensity and derive
bounds for forward transmission Tfw versus the Q factor of
the resonator and the input power. The analysis assumes zero
loss, since in the presence of loss, transmission of a Fano
resonator never goes to zero and as a result it is impossible to
obtain infinite isolation. In the lossy case, the results should
be interpreted as an upper bound for forward transmission
at the intensity of maximum isolation (minimum backward
transmission).

From Eq. (4) we see that transmission is zero when x = ±x0

or ω0 = ω ± γ x0. Assuming a resonator with specified γ ,
κ , and TB , we can calculate the input power that leads to
zero transmission in the backward direction and therefore

infinite isolation by substituting this ω0 in Eq. (8) with i = 2.
Solving Eq. (8) with i = 1 and the same input power gives
the nonlinearity-shifted resonance frequency in the forward
direction for the input power that yields zero transmission in
the backward direction. Substituting this resonance frequency
into Eq. (3) provides the value of Tfw. In Figs. 3(a)–3(c),
we plot Tfw calculated as outlined above versus TB (the
background power transmission coefficient) and κ for various
levels of Q and ω = 0.95ω0,lin and assuming a positive sign
in ω0 = ω ± γ x0 [negative sign in Eq. (3)]. Each point in
the plots corresponds to a specific nonlinear isolator design
that supports zero transmission in the backward direction, i.e.,
infinite isolation. It has to be noted that, in general, for each
combination of κ and TB , there might be multiple solutions,
from which we choose the one with the larger transmission.
The white region on the right corresponds to combinations of
TB and κ that are not admitted by TB � 4κ/(κ + 1)2 [Eq. (5)
holds for any frequency, therefore also far from resonance
where T → TB], while the one on the left corresponds to
cases for which ω0 > ω0,lin, which according to Eq. (6) are not
possible. The discontinuities in the plots indicate multistable
regions. This figure shows that, for given Q, there is an
optimum combination of TB and κ (point A) that maximize
Tfw. Since Figs. 3(a)–3(c) have been derived for a positive sign
in ω0 = ω ± γ x0, which corresponds to a resonator with the
transmission zero at a lower frequency than the transmission
maximum, the point of maximum Tfw happens for κ > 1, so
that the transmission maximum from port 1 can be aligned
with the transmission zero from port 2. On the other hand,
selecting the minus sign in ω0 = ω ± γ x0 leads to the contour
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plots in Figs. 3(d)–3(f), where the transmission maximum
happens for κ < 1 (point B), since in this case the transmission
zero is at a higher frequency than the transmission maximum.
Interestingly, even though the operation schemes associated to
points A and B are dual of each other, the forward transmission
is identical, and it can be found to be equal to (Appendix A)

Tfw = 1

9 + 17x2
lin − 12

√
2xlin

√
1 + x2

lin

for xlin � 2
√

2,

Tfw = 1 for xlin � 2
√

2, (12)

where xlin = 2Q(ω0,lin − ω)/ω0,lin is the detuning coefficient
in the linear regime. The input power required to achieve this
transmission is given by (Appendix B)

Pmax = |a0|2
3

γ 2

ω0,lin

(
1 + x2

lin

)(
3
√

2
√

1 + x2
lin − 4xlin

)
, (13)

and the corresponding stored energy in the resonator for the
direction of maximum coupling is given by (Appendix A)

|a|2max = |a0|2 γ

ω0,lin

√
2 + √

3

3

(
1 + x2

lin

)
. (14)

Equation (12) is a powerful and general result, providing,
regardless of the specific design and operation of the isolator,
a tight upper bound for the forward transmission Tfw, and
showing that it depends only on its detuning parameter xlin

in the linear regime, which is proportional to the Q factor and
to the separation between driving frequency and resonance
frequency. This bound grows with xlin. In Figs. 3(a)–3(f), we
slowly increase xlin by increasing Q, and we observe how
indeed Tfw at points A and B consistently increases, following
Eq. (12). As Q and Tfw increase, these two optimal points move
closer and closer to the κ = 1 axis, consistent with the bound
between Tfw and κ given by Eq. (5). If xlin � 2

√
2, interestingly

Tfw = 1, but this arises at κ = 1, consistent with the previous
discussion. At this point, the system corresponds to a bistable
nonlinear resonator exhibiting zero and unitary transmission
for the same input intensity, but it is absolutely symmetric
when excited from different ports, and therefore offers no
nonreciprocity. From a physical point of view, a larger Q factor
is associated with a sharper Fano response (a smaller separation
between its transmission maximum and zero), allowing one
to achieve alignment of the transmission maximum and zero
in the nonlinear case for a smaller asymmetry factor, which
according to Eq. (5) allows achieving larger Tfw. Increasing
the Q factor beyond the value for which xlin = 2

√
2 offers

no advantage, since, although Tfw can be unitary, κ = 1, in
agreement with Eq. (5), leading to a structure with purely
symmetric response from opposite sides and therefore zero
NRIR. Equation (12) is numerically validated in Fig. 4 showing
the calculated value of Tfw for various nonlinear metasurfaces
as in Fig. 1 with different values of xlin.

An increase in xlin, leading to larger Tfw and narrower
NRIR, can be achieved not only with a larger Q factor but also
with a larger detuning ω0,lin − ω. This second alternative may
appear more attractive, due to limitations that usually exist in
realizing large Q factors. Nevertheless, it is possible to show
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FIG. 4. Transmission in the forward direction vs the detuning
factor in the linear regime for various designs of the nonlinear isolator
in Fig. 2. The shaded region corresponds to the bound in Eq. (12).

from Eq. (13) that for xlin > 0.5 an increase in xlin through
an increase in ω0,lin − ω, while γ is kept constant, comes at
the price of a larger required input power to reach maximum
isolation (Appendix B). This is consistent with the fact that a
larger ω0,lin − ω means operation far from linear resonance,
requiring a larger input power in order to bring the resonance
frequency close to the operation frequency, as it is necessary in
order to obtain zero transmission in the backward direction. On
the other hand, increasing xlin by increasing the Q factor leads
to a reduction of the input power required to achieve maximum
isolation (Appendix B). In essence, whatever the specific
design we consider, our theory shows that Fano nonlinear
isolators are characterized by a fundamental tradeoff between
Tfw and Q or Pin, quantitatively described by Eqs. (12) and
(13), which is reflected in a reduction of nonreciprocal intensity
range as we increase Tfw. Furthermore, it is worth noting
that increasing xlin through increasing ω0,lin − ω leads to a
linearwise increase of the stored energy versus xlin, as can
be seen from Eq. (14) with γ constant, making the system
susceptible to two-photon absorption. This effect does not
occur when xlin is increased through increasing the Q factor,
in which case the stored energy slightly decreases as xlin

increases, a fact which can be seen by rewriting Eq. (14) in
the form

|a|2max = |a0|2 ω0,lin − ω

ω0,lin

√
2 + √

3

3

(
1 + 1

x2
lin

)
(15)

and considering that ω0,lin − ω is constant in this case.
The analysis presented above is valid for monochromatic

excitation, while, as mentioned in the Introduction, nonlinear
isolators are more suitable for pulsed-source scenarios, due to
the dynamic reciprocity limitations pointed out in Ref. [37].
In the following, we show the response of optimal isolators
corresponding to points A in Figs. 3(a) and 3(c) for excitation
with Gaussian pulses with center frequency ω = 0.95, as in
Fig. 3, and envelope p(t) = exp(−t2/τ 2) with τ = 1500T ,
where T = 2π/ω. These pulses are similar to ones used in
Ref. [34] to experimentally test the dynamic response of
Fano nonlinear isolators at telecom wavelengths. Results are
presented for three peak intensities, one corresponding to
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FIG. 5. Time-domain response of a nonlinear isolator for excitation from different ports with a Gaussian pulse. (a) Isolator with the
parameters at point A in Fig. 3(a). (b) Isolator with the parameters at point A in Fig. 3(c). Pin is the power at the peak of the pulse. Pmax is the
input power of maximum Tfw given by Eq. (13).

maximum transmission as calculated from Eq. (13) (Pmax), and
the other two below and above this intensity with ratio equal
to κ (NRIR). In all cases, the peak intensity of the output pulse
is in good agreement with the results in Fig. 3 derived for
monochromatic excitation. Furthermore, at the largest input
power the response from port 2 is identical as the response
from port 1 at the lowest input power, validating the fact that
in Fano resonators the intensity axis of their nonlinear response
is scaled by the linear asymmetry factor when we reverse the
propagation direction, as was shown in Sec. II. As expected, the
pulse shape is distorted due to the intensity-dependent response
of the resonator, with the distortion being more severe in the
high-Q case. In particular, in the high-Q case the pulse is
chopped when its intensity reaches the bistability threshold
of the system. This threshold is different for increasing and
decreasing intensities, explaining the asymmetric shape of
the output signals in Fig. 5(b). These results indicate that,
although for monochromatic signals it may be possible to reach
very high forward transmissivities, in practice pulse distortion
may impose an upper bound on xlin, and subsequently on the
forward transmission.

IV. CONCLUSIONS

In this paper we have shown that passive isolators based on
nonlinear resonators are subject to fundamental quantitative
bounds governing the allowed levels of forward transmission
versus the Q factor, input power, and nonreciprocal intensity
range. In particular, we have shown that the forward trans-
mission can increase if the Q factor or the input power in-
creases, and the nonreciprocal intensity range correspondingly
decreases. The bounds are the result of fundamental restrictions
imposed by time-reversal symmetry on the field asymmetry

versus the transmission in any linear structure, and the fact
that the operation of resonant nonlinear isolators is determined
by their asymmetry at low intensities. We have validated our
theory through full-wave simulations for the case of nonlinear
isolators consisting of a dielectric metasurface on top of a
substrate. Although developed for electromagnetic isolators,
our analysis can be readily extended to different physical
domains, such as acoustics and mechanics, in which the design
of nonreciprocal devices has recently gained attention for
applications in full-duplex acoustical systems, sonars, and
ultrasound imaging devices [46]. Beyond clarifying several
fundamental aspects of the operation of nonlinear isolators, our
theory constitutes the basis for the design of such devices with
optimal characteristics, operating at the bounds derived here,
for the next generation of all-passive nanophotonic isolators
not requiring magnetic bias. Furthermore, our analysis indi-
cates that it may be possible to break the bounds described here
in more complex systems consisting of multiple resonators
supporting multistable resonant states, as we have explored
herein.
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APPENDIX A

Here, we will show the bound in Eq. (12). Assume that
the input intensity is such that transmission in the backward
direction (excitation from port 2) is zero. Then, from Eq. (4)
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we find

xbw = ±x0,

ω0,bw = ω ± γ x0, (A1)

where the subscript “bw” indicates that the corresponding
quantity refers to the backward direction. Substituting Eq. (A1)
into Eq. (8) with i = 2 yields

(
1 + x2

bw

)
(xlin − xbw) = ω0,lin|k2|2Pin

γ 3|a0|2
. (A2)

For the same input power, Eq. (8) with i = 1 will give the
detuning factor xfw in the forward direction (excitation from
port 1):

(
1 + x2

fw

)
(xlin − xfw) = ω0,lin|k1|2Pin

γ 3|a0|2
. (A3)

The subscript “fw” indicates that the corresponding quantity
refers to the forward direction. Transmission in the forward
direction can be found by substituting xfw in Eq. (4):

Tfw = 4κ

(κ + 1)2

(xfw − xbw)2(
x2

fw + 1
)(

x2
bw + 1

) , (A4)

where we have also used x0 = ±xbw from Eq. (A1). Dividing
Eqs. (A2) and (A3) yields

κ =
(
1 + x2

fw

)
(xlin − xfw)(

1 + x2
bw

)
(xlin − xbw)

. (A5)

Inserting Eq. (A5) into Eq. (A4) results in

Tfw = 4(xlin − xfw)(xlin − xbw)(xfw − xbw)2[(
x2

fw + 1
)
(xlin − xfw) + (

x2
bw + 1

)
(xlin − xbw)

]2 .

(A6)

Tfw in Eq. (A6) is a function of two variables and through a
simple analysis can be found to have a maximum value

Tfw, max = 1

9 + 17x2
lin − 12

√
2xlin

√
1 + x2

lin

(A7)

for

xfw = xlin −
√

2 − √
3

3

(
1 + x2

lin

)
,

xbw = xlin −
√

2 + √
3

3

(
1 + x2

lin

)
, (A8)

or

xfw = xlin −
√

2 + √
3

3

(
1 + x2

lin

)
,

xbw = xlin −
√

2 − √
3

3

(
1 + x2

lin

)
. (A9)

Substituting Eqs. (A8) and (A9) into Eqs. (A5), we can find
the values of the coordinates of the maximum points in Fig. 3.
Equations (A8) lead to point A in Figs. 3(a)–3(c) and Eqs. (A9)
lead to point B in Figs. 3(d)–3(f). From Eqs. (A8), (A9), and
(6) we can also show that the stored energy at the condition of
maximum forward transmission is given by

|a|2max = |a0|2 γ

ω0,lin

√
2 ± √

3

3

(
1 + x2

lin

)
, (A10)

where the plus/minus signs hold for excitation from the side
of the maximum/minimum coupling coefficient.

APPENDIX B

Here, we calculate the power that is required to achieve the
maximum forward transmission in Fig. 3. From Eq. (8), the
input power required to achieve a certain detuning factor xfw

in the backward direction is given by

Pin = γ 3|a0|2
ω0,lin|k2|2

(
1 + x2

bw

)
(xlin − xbw). (B1)

From 2γ = |k1|2 + |k2|2 and κ = |k1|2/|k2|2 it follows that
|k2|2 = 2γ /(κ + 1) and Eq. (B1) can be rewritten as

Pin = γ 2|a0|2
2ω0,lin

(κ + 1)
(
1 + x2

bw

)
(xlin − xbw). (B2)

Substituting Eq. (A5) into Eq. (B2) yields

Pin = |a0|2
2

γ 2

ω0,lin

× [(
1 + x2

fw

)
(xlin − xfw) + (

1 + x2
bw

)
(xlin − xbw)

]
.

(B3)

Substituting xfw and xbw from either Eq. (A8) or ((A9) into
Eq. (B3) results in

Pin = |a0|2
3

γ 2

ω0,lin

(
1 + x2

lin

)(
3
√

2
√

1 + x2
lin − 4xlin

)
. (B4)

This is the input power required to achieve zero transmission
from port 2 and therefore infinite isolation. Ifxlin is increased by
increasing the Q factor while maintaining ω0,lin − ω constant,
Eq. (B4) can be written as

Pin = |a0|2
3

(ω0,lin − ω)2

ω0,lin

(
1 + x2

lin

)(
3
√

2
√

1 + x2
lin − 4xlin

)
x2

lin

,

(B5)

which, through elementary calculus, can be shown to be mono-
tonically decreasing as xlin increases within the practically
important range xlin � 2

√
2. On the other hand, if the Q

factor and therefore γ are constant, increasing xlin results in an
increase of Pin for xlin > 0.5.
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