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Size constraints on a Majorana beam-splitter interferometer: Majorana coupling
and surface-bulk scattering
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Topological insulator surfaces in proximity to superconductors have been proposed as a way to produce
Majorana fermions in condensed matter physics. One of the simplest proposed experiments with such a system
is Majorana interferometry. Here we consider two possibly conflicting constraints on the size of such an
interferometer. Coupling of a Majorana mode from the edge (the arms) of the interferometer to vortices in
the center of the device sets a lower bound on the size of the device. On the other hand, scattering to the usually
imperfectly insulating bulk sets an upper bound. From estimates of experimental parameters, we find that typical
samples may have no size window in which the Majorana interferometer can operate, implying that a new
generation of more highly insulating samples must be explored.
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I. INTRODUCTION

There has been an ongoing search for Majorana fermions
in condensed matter systems which has been intensified over
several years [1]. Vortices in a spinless p-wave superconductor
have long been known to bind zero energy Majorana modes
[2–5]. With p-wave superconductors being very rare in nature,
no experiment has convincingly observed such Majoranas yet
[6]. More recently it was predicted that Majorana bound states
also exist in vortices in a proximity-induced superconductor
on the surface of a topological insulator (TI) [7]. A number
of recent experiments on TIs in proximity to superconductors
[8–13] and other similar experimental systems [14,15] have
increased the interest in this possibility.

The surfaces of TIs support gapless excitations with the
dispersion of a Dirac cone [16] (in principle, TIs can have any
odd number of Dirac cones in the Brillouin zone but we
consider the simplest case of a single cone). The spectrum
can be gapped either by applying a magnetic field to give the
Dirac fermion either a positive or negative mass, or by placing
a superconductor in proximity to the surface. At interfaces
between different gapped regions, gapless one-dimensional
fermionic channels can develop. For example, an interface
between two magnetically gapped regions with opposite mass
signs will contain a gapless and a chiral one-dimensional Dirac
fermion mode. An interface between a magnetically gapped
region and a superconducting region will contain a gapless
chiral Majorana mode [7,17,18]. It is the physics of these
modes that we are exploring in the current paper.

A very elegant experiment, building an interferometer out
of these gapless chiral modes, was proposed by Fu and Kane
[18] and simultaneously by Akhmerov et al. [17]. The device
is depicted schematically in Fig. 1. Incoming particles or
holes, biased at a low voltage, flow into a Dirac channel
between two oppositely polarized magnetic regions. The Dirac
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fermion is split into two Majorana fermions upon hitting
the superconductor, one flowing in each direction around the
superconducting region (drawn as a disk in Fig. 1). At the other
end of the superconducting region the two Majorana modes are
recombined into a Dirac mode. The differential conductance
of this device was predicted to take the values 0 or 2e2/h

depending on whether the number of �0 = h/(2e) vortices
in the superconductor is even or odd, respectively. With the
exception of quantum Hall systems, this was the first proposed
realistic Majorana interferometry experiment, and it remains a
good candidate for the first experiment to successfully establish
the existence of chiral Majorana modes (although, we note that
promising evidence of chiral Majorana modes was reported
very recently [19]).

The most experimentally explored TI materials are the
bismuth based compounds [16,20,21], including (among many
others) Bi2Se3, Bi2Te3, and Bi2Te2Se. Within this class of
materials, several experiments have successfully formed some
sort of superconducting interfaces [8–13]. In this paper we
mainly have this type of material in mind. However, we note

FIG. 1. The Majorana beam-splitter interferometer proposed by
Fu and Kane, and Akhmerov et al. [17,18]. It consists of a 3D
strong TI in proximity to a superconductor and magnets of opposite
polarization.
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FIG. 2. Top view of the interferometry device with a supercon-
ductor (SC) and magnetic domains (with magnetization M↑/↓) that
probes charge transport from the source (S) to the drain (D) through a
pair of chiral Majorana modes. (a) Single-point coupling of strength
λ at coordinate x = 0. Here ξ1R ≡ ξ1(x = 0+) and ξ1L ≡ ξ1(x = 0−).
(b) The interferometer coupled to a single-mode conducting lead
representing leakage to the bulk of the TI.

that the material SmB6 [22,23], which is possibly a topological
Kondo insulator, will be discussed in the Conclusion.

In this paper we study two effects that restrict the size of
the interferometer device, as summarized in Fig. 2. On the one
hand, we consider coupling of the Majorana edge mode to the
Majorana modes trapped in the core of the vortex in the center
of the interferometer. When this coupling is sufficiently strong,
i.e., when the interferometer is sufficiently small, the con-
ductance signal will be distorted, rendering the interpretation
of the experiment difficult. The coupling is generally strong
on the scale of the coherence length ξ = h̄vF /�0, where vF

is the Fermi velocity and �0 is the proximity gap. This length
scale can be on the order of a micron (we discuss materials
parameters in Secs. III A, IV B, and IV C).

Next, we consider surface-bulk scattering due to the unin-
tentionally doped and poorly insulating bulk of TIs [20,24,25].
We find that when current leaks from the Majorana edge
channel to the ground, the signal obtained at the end of the
interferometer drops exponentially with a length scale set by
the surface-to-bulk scattering length from disorder. For typical
samples this length scale can be shorter than a micron. Thus
we have two potentially conflicting constraints on the size
of the proposed interferometer. We will discuss the possible
directions forward in the Conclusion.

The outline of this paper is as follows. In Sec. II we review
the formalism of Majorana interferometry and the character-
istic conductance signal of the experiment. In Sec. III we
consider the impact of coupling between the chiral Majorana
and a bound Majorana mode in a vortex core. We study
how this limits the source-drain voltage and sets a lower
bound on the size of the system. In Sec. IV we consider the
leakage of current from the device to the TI substrate and
we establish an upper limit on the system size due to this
leakage. We conclude with numerical estimates and an outlook
for Majorana interferometry on the surface of TIs. Appendix A
contains a derivation of the average currents. In Appendix B we
provide generalizations of the single-point Majorana coupling
displayed in Fig. 2(a). Vortex-bound Majorana fermions in a
TI/SC hybrid structure and the energy splitting between zero
modes is discussed in Appendix C. In Appendix D we present

details of our estimate of the surface-bulk scattering rate based
on Fermi’s golden rule. Finally, in Appendix E signal loss due
to scattering with acoustic phonons is briefly discussed.

II. BACKGROUND ON INTERFEROMETRY WITH
MAJORANA FERMIONS

In this section we first review the formalism needed to calcu-
late the conductance and interferometry current [17,18,26,27].
In Fig. 2(a) we show a top view of the interferometer that
was described in the Introduction. For the moment we ignore
the Majorana coupled to the top arm (marked as an “X”) at
position 0. Charge transport from the source to the drain is
computed by using a transfer matrix which describes transport
of particles and holes from the source on the left (L), via the
perimeter of the superconductor, to the drain on the right (R),
[ψe,ψh]TR = T [ψe,ψh]TL , where the superscript T here means
transpose. The matrix T can be decomposed into three pieces
corresponding to the three key steps between the source and
the drain:

T = S†PS =
(
Tee Teh

The Thh

)
. (1)

The unitary matrix S relates the Majorana states [ξ1,ξ2] running
along the upper and lower edge of the superconducting disk
to the electron and hole states [ψe,ψh] that enter via the leads,
[ξ1,ξ2]T = S[ψe,ψh]T . The matrix P contains plane wave
phases that the low energy chiral Majorana modes accumulate
as they move along the edge of the superconducting disk.
Finally, the matrix S† reassembles the two Majoranas into
outgoing electron and hole states that enter the drain.

The matrices S and T are functions of energy. Due to
the particle-hole symmetry, we must have S(E) = S∗(−E)τx ,
where τx is a Pauli matrix in particle-hole space. AtE = 0 these
constraints fix S(0) up to an overall phase that observables do
not depend on [17],

S(0) = 1√
2

(
1 1
i −i

)(
eiα 0
0 e−iα

)
. (2)

We will apply S(0) with α = 0 for convenience. As discussed
in Ref. [18] this form is exact when the system has a left-
right symmetry. Even in cases where the system breaks this
symmetry, corrections are O(E2) and can thus be ignored
at low temperature and low voltage (see Appendix C 1). We
study the symmetric situation where the magnetization is M0 ≡
M↑ = −M↓ throughout the main text. The magnetization
enters the model Hamiltonian given in Eq. (C1).

The transfer matrix is used to calculate the average current
in the drain as the difference between the electron and hole
current, with the source biased at voltage V (see Appendix A
for a derivation),

ID = e

h

∫ ∞

0
dEδf (E)(|Tee|2 − |Teh|2). (3)

Here δf = fe − fh with fe/h(E) = f (E ∓ eV ), and f (E) =
(1 + eβE)−1 is the Fermi-Dirac distribution with β = 1/(kBT )
and E measured relative to the Dirac point. The incoming
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current is

IS = e

h

∫ ∞

0
dE δf (E). (4)

By current conservation, a net current of ISC = IS − ID is
absorbed by the grounded superconductor. As follows from
Eqs. (3), (4), and unitarity of T the differential conductance
measured in the grounded superconductor at zero temperature
is

GSC(V ) = dISC

dV

∣∣∣
T =0

= 2e2

h
|Teh(eV )|2. (5)

In order to calculate GSC(V ) we need only establish the
properties of the propagation matrix P . If the arms of the
interferometer are of length l1 and l2 we have

P(E) =
(

eik(E)l1+2iφ(E) 0
0 eik(E)l2

)
. (6)

Above the wave vector is of the form k(E) = E/vm due to the
linear dispersion of the Majorana modes [18] where vm is the
Majorana velocity. We have included an additional phase shift
φ which may come from a number of sources. In Refs. [17,18]
the possibility of n vortices being added in the center of
the superconducting region was considered. In this case the
additional phase is e2iφ = (−1)n. Inserting P into Eqs. (1) and
(5) at zero temperature yields the conductance

GSC,0(V ) = 2e2

h
sin2

(
nπ

2
+ eV δL

2h̄vm

)
. (7)

Here δL = l1 − l2 is the difference between the lengths of the
two arms. At δL = 0, GSC,0(V = 0) = 2e2/h for n odd, and
is zero for n even. This would be a rather clear experimental
signature. For the same phase matrix P , the drain current in
Eq. (3) evaluates to

ID,0(V ) = (−1)nπkBT
e

h

sin
(

eV δL
h̄vm

)
sinh

(
πδLkBT

h̄vm

) , (8)

which holds in the low temperature and low voltage limit
(compared to the bulk gap). We emphasise that these results
are derived with zero coupling to the central Majorana and to
any other degrees of freedom (e.g., phonons or conducting bulk
states), hence the subscript 0.

III. EFFECT OF MAJORANA COUPLING

We now consider the effect of coupling the Majoranas
trapped in the cores of vortices in the superconductor to the
chiral edge states. Each vortex traps a single Majorana mode.
If a vortex is close to the edge (roughly within the coherence
length) there will be tunneling coupling as shown in Fig. 2(a)
where the Majorana zero mode is marked as an “X” and
the (tunneling) coupling matrix element is of magnitude λ.
The magnitude of the coupling drops exponentially with the
distance between the vortex and the edge, see Appendixes C 2
and C 3.

We very generally describe the chiral Majorana on the upper
interferometer arm ξ1 by a Lagrangian density L1 = iξ1(∂t +
vm∂x)ξ1, where x is the spatial coordinate along the upper edge.
A similar description holds for the state on the lower edge ξ2.
The vortex bound Majorana ξ0 is described by L0 = iξ0∂t ξ0.

FIG. 3. The differential conductance from Eq. (13) as a function
of the voltage. Here ν = 1 μeV and h̄vm/δL = 2 μeV. The dotted
lines show the conductance with ν = 0. At low voltage the even-odd
effect is reversed.

We add the coupling term between the central bound state and
the chiral mode

Lbulk-edge = 2iλξ1(x = 0)ξ0. (9)

The equations of motion, following from the full Lagrangian
L0 + L1 + Lbulk-edge, are given by [28,29]

2∂tξ0 = λ[ξ1R + ξ1L], (10)

vmξ1R = vmξ1L + λξ0. (11)

Here the notation ξ1R = ξ1(x = 0+) and ξ1L = ξ1(x = 0−) was
introduced. A Fourier transformation yields a phase shift across
the coupling point,

ξ1R(ω) = ω + iν

ω − iν
ξ1L(ω) = e2iφ ξ1L(ω), (12)

with ω the frequency, ν ≡ λ2/(2h̄vm), and φ(ω) =
arctan(ν/ω). This energy-dependent phase shift is inserted
into Eq. (6) and we obtain the zero-temperature result

GSC(V ) = 2e2

h
sin2

[
nπ

2
+ eV δL

2h̄vm

+ arctan
( ν

eV

)]
. (13)

Observe that the even-odd effect undergoes a crossover when
the coupling strength is of the order λ ≈ √

2h̄vmeV . At zero
voltage, or at infinite coupling strength, the even-odd effect
is reversed from the value at high voltage or low coupling
strength. This crossover is equivalent to shifting n by one in
GSC,0, causing ξ1 to acquire a phase shift of π at low energy,
and it is assigned the interpretation that a vortex Majorana
effectively is absorbed by the edge [28]. Similar results are
known from quantum Hall interferometers at filling fraction
5/2 [29–31]. The original conductance is recovered at high
voltage (see Fig. 3).

The above result applies when there is no position depen-
dence in the coupling to the edge. If we instead consider a
continuous bulk-edge coupling

Lbulk-edge = 2i

∫
dx λ(x)ξ1(x)ξ0, (14)

then the total phase shift is again given by Eq. (12) with

λ2 → 2
∫

dx λ(x)eikx

∫
x

dx ′λ(x ′)e−ikx ′
(15)
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in the numerator and a similar replacement in the denominator,
see Appendix B 1. We note that if xc � 1/k, where xc is
defined such that λ(|x| > xc) ≈ 0, then the effective λ2 above
becomes 〈λ(x)〉2 with 〈λ(x)〉 = ∫

dxλ(x) up to corrections of
order kxc.

The scheme above can also be generalized to include more
complicated couplings to multiple (vortex) Majorana modes.
So long as these modes are coupled to only a single edge,
and not to each other, each coupling causes a phase shift of
arctan[ν/(eV )] in the phase of propagation along the edge,
see Appendix B 2. In the case that multiple vortex Majoranas
are coupled to each other, an even number of Majoranas will
gap out, whereas an odd number will leave a single effective
Majorana zero mode.

In the above calculation we assumed Majorana coupling
to one edge only. Since coupling varies exponentially with
distance to the edge, it is not unreasonable that this will
effectively be the case. However, it is also realistic that a vortex
will be roughly equal distance from, and hence equally coupled
to, both edges. This case is discussed in detail in Appendix B 3.
While the general result becomes complicated, at least in the
case of equal couplings to both edges and both edges of equal
length, the physics of the even-odd crossover found in this
section remains unchanged. Finally, coupling between a single
vortex Majorana and the edge at finite temperature is discussed
in Appendix B 4.

A. Lower bound on size and voltage constraints

The above derived crossover makes the observation of the
even-odd conductance effect impossible at low voltage. The
proposed experiment is to add a single vortex and observe a
change in conductance (say, from zero to 2e2/h). However,
if the Majorana is then effectively absorbed into the edge,
the conductance remains zero even once the vortex is added,
destroying the predicted effect. This will occur for interfer-
ometers of size comparable to the coherence length, i.e., the
length scale of an order-parameter deformation. Assuming that
�0 = 0.1 meV is an achievable proximity-induced gap in, e.g.,
Bi2Se3 [10,12], the naive lower size bound for the disk is
ξ = h̄vF /�0 � 4 μm [32]. The tunneling coupling is expected
to decay like λ ∝ μ exp(−R/ξ ) when R � ξ [see Eq. (C5)]
where μ is the chemical relative to the Dirac point [33]. For
disks of size R � ξ the energy splitting is comparable to the
energy gap and the notion of stable edge/vortex states breaks
down.

We note, however, that the Majorana coupling term vanishes
identically at μ = 0 in the topological insulator superconduc-
tor hybrid structure [34,35]. This is related to the appearance
of an additional symmetry at the Dirac point, bringing the
Hamiltonian [Eq. (C1) in the absence of a magnetic field]
from symmetry class D to the BDI in the Altland-Zirnbauer
classification. If there is disorder inducing local fluctuations
in the chemical potential (see Sec. IV C) [36], say on some
scale δμ, a random coupling term of the type in Eq. (14) will
be present and cause energy splitting. Still, the scenario of
having the average 〈λ(x)〉 ∼ 〈μ(x)e−r(x)/ξ 〉 ≈ 0, which would
make the parasitic phase shift vanish, is possible but becomes
extremely geometry sensitive (e.g., sensitive to the vortex
position) if R � ξ . Moreover, we should expect 〈λ(x)〉 to

be on the scale of δμ
√

l/d, which in general will not be
small. Here d is the length scale associated with the energy
fluctuations. Assuming that we cannot control disorder, the
only way to assure suppression of unwanted phase shifts and
energy splitting is to increase R. Thus, we will use R = ξ as a
strict lower size bound on the device.

As far as chiral transport on the interferometer arms is con-
cerned, it seems at this stage that one can operate at high voltage
eV � ν to avoid the coupling. Naturally the voltage is con-
strained from above by the global bulk gap eV � min{M0,�0},
to avoid excitation of nontopological states. Thus, if R � ξ the
remaining voltage range ν � eV � min{M0,�0} might be too
limited to have a clear experimental signature. Increasing the
disk radius to suppress the coupling (and therefore lower ν)
induces the problem of signal leakage to conducting bulk states,
which we estimate below.

Finally, we note that the upper voltage bound in practice
can be lower. This is due to the Caroli–de Gennes–Matricon
excited states of the vortex, characterized by a minigap ∼�2

0/μ

[37–39], which can be less than 1 mK. The excited vortex
bound states can be activated thermally or by tunneling from
the edge states, in analogy to the zero mode tunneling in the
beginning of this section. By pinning the vortex to a hole in the
superconductor, the minigap can be increased to a substantial
fraction of �0 [40,41]. Although the details of such a tunneling
process is outside the scope of this paper, additional resonances
and conductance phase shifts are expected as eV hits the bound
state energies.

IV. SURFACE-BULK SCATTERING

Topological qubits are intrinsically protected from deco-
herence [42]. In protocols based on braiding with topological
qubits, leakage of current is harmful since it generically causes
entanglement with the environment that potentially corrupt
the qubits [7]. Although the experiment we study here does
not probe a topological qubit, both types of experiment are
sensitive to bulk leakage. Since most TIs are poorly insulating
[21], bulk leakage is a relevant problem to consider.

In this section we model leakage of Majorana modes from
the surface of the TI to its poorly insulating bulk. This is done
by coupling the interferometer arm first to a single metallic
lead. Then we take multiple weakly coupled metallic leads to
represent a continuously leaking environment. We combine the
result of this scattering process with an estimate of the surface-
to-bulk scattering rate from disorder in doped TIs. Our results
suggest an upper size bound that potentially coincides with
the lower bound discussed in Sec. III for many unintentionally
doped TIs.

A. Scattering on conducting leads

Let the upper interferometer arm be coupled to a metallic
lead as depicted in Fig. 2(b). Referring to the formalism of
Ref. [27], the lead fermions are transformed to a Majorana basis
[η(±)

1 ,η
(±)
2 ]T = S[ψ (±)

e ,ψ
(±)
h ]T with the superscript indicating

incoming (−) or outgoing (+) states. The S matrix here may
differ from the one in Eq. (2) at low energy only by having
a different phase α, which is irrelevant for observables. The
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scattering process in the Majorana basis is denoted by A(E),(
ξ1R, η

(+)
1 , η

(+)
2

)T = A(E)
(
ξ1L, η

(−)
1 , η

(−)
2

)T
. (16)

By rotating the lead particles and holes into the appropriate
Majorana basis, the chiral Majorana mode can be shown to
decouple from one of the (artificial) lead Majoranas [27]. In the
low energy limit, the scattering matrix is a real rotation matrix
A(E) ∈ SO(3). If we denote the local reflection amplitude of
η1 (η2) by r1 (r2 = 1), this means that the scattering matrix can
be parametrized by r1 at the junction only (the transmission
amplitude is t1 =

√
1 − r2

1 ),

A(E) =
(

r1 −t1
t1 r1

)
⊕ r2. (17)

Including the state ξ2 on the lower arm and the plane wave
phases acquired across the interferometer, we obtain the matrix
P acting on [ξ1L,ξ2,η

(−)
1 ,η

(−)
2 ]T ,

P =

⎛
⎜⎝ r1e

ikl1+inπ 0 −t1e
i

kl1
2

0 eikl2 0

t1e
i

kl1
2 +inπ 0 r1

⎞
⎟⎠⊕ 1. (18)

Here r2 = 1 was used. The transfer matrix can be computed,
and it has the 2 × 2 subblock structure

T = (S† ⊕ S†)P(S ⊕ S) =
(
TS→D T�in→D

TS→�out T�in→�out

)
. (19)

Above, the subscripts indicate the result of transport from/to
the source (S), the drain (D), or the incoming/outgoing lead
(�in/out). The blocks in this transfer matrix are used to find the
average current contribution as measured in contact β, with

|(Tα→β)ee|2 − |(Tα→β)eh|2

=

⎧⎪⎨
⎪⎩

r1(−1)n cos
(

EδL
vm

)
(α,β) = (S,D),

r1 (α,β) = (�in,�out),
0 (α,β) = (S,�out),(�in,D).

(20)

Here the first line gives the contribution from combining
Majoranas ξ1 and ξ2, the second line from combining η1 and
η2, and the third line from combining ξ1 and η1. Combining
Majoranas from different sources always give a vanishing
contribution to the average current [27].

The drain current is thus ID(V ) = r1ID,0(V ), where ID,0 is
defined in Eq. (8); the visibility is coherently reduced by r1. The
current in the outgoing lead is I�out = r1e

2V ′/h at T = 0 when
the lead is biased at V ′. Subtracting the incoming current I�in =
e2V ′/h yields a net current of I�out − I�in = (r1 − 1)e2V ′/h in
the conducting lead. When decoupling the lead completely,
r1 = 1, no net current goes in the lead.

The matrix P can be trivially extended to include scattering
on many single-mode leads. Repeating the calculation above
with two scattering leads of the same reflection amplitude r1

gives the same reduction of current in both leads, independent
of which arms the leads are coupled to. The drain current
is reduced by r2

1 . Generalizing these statements by induction
[43], with N identical scatterers of reflection amplitude r1, the
total conductance from the collection of leads (representing
the bulk of the TI) is Gleads = e2N (1 − r1)/h. Furthermore,

the N scatterers reduce the visibility of the drain current
multiplicatively as ID(V ) = rN

1 ID,0(V ).
If we let lS denote the average length a chiral Majorana trav-

els before it scatters into the bulk, we may by definition express
the reflection amplitude as r1 = 1 − 1

N
l
lS

, which is equivalent
to defining the leakage conductance into the collection of leads
by Gleads = e2l/(hlS). Taking the continuum limit of infinitely
many weak scatterers means that limN→∞ rN

1 = exp(−l/ lS),
and the current is exponentially suppressed in the drain,

ID(V ) = ID,0(V )e−l/ lS . (21)

As for the differential conductance measured in the grounded
superconductor, the amplitude of the oscillations are sup-
pressed

GSC(V ) = GSC,0(V )e−l/ lS + e2

h
(1 − e−l/ lS ), (22)

and distinguishing even from odd n is rendered difficult as l

surpasses lS . Thus, lS acts as an upper bound on the length of
the interferometer arms.

B. The surface-bulk scattering rate

The remaining step of our argument is to estimate the scat-
tering length lS . We start by calculating the surface-bulk (SB)
scattering length for a TI surface electron (l(e)

S ) in the absence of
any surface superconductor or magnet. Then, we use a similar
calculation to estimate the Majorana scattering length (l(m)

S ).
We restrict ourselves to elastic (zero temperature) surface-bulk
scattering, where the electron-phonon coupling is irrelevant
(see Sec. IV D and Appendix E). Building on the formalism
developed in Ref. [44] we consider scattering via screened
charge impurities. We note that the consideration in Ref. [44]
is restricted to point scatterers where the overall scattering
strength is a priori unknown, whereas in our approach the
effective potential strength is fixed by the screened Coulomb
potential and the dopant concentration.

Specifically, we consider a surface state (S) with initial
wave vector k = (k‖,0) that scatters to a lowered conduction
band (a charge puddle) n′ in the bulk (B) with final wave
vector k′ = (k′

‖,k
′
z). The incoming surface state has energy

εF = vF k‖. For numerical purposes we work with a TI slab
of thickness L = 40 nm. In Fig. 4(a) we show the form
of |�(z)|2 at zero parallel momentum for the lowest three
eigenstates (derived in Ref. [45]). One of the TI surface states,
penetrating tens of Ås into the bulk, is seen in purple. Assuming
randomly distributed screened (dopant) charges with average
concentration n3D we get the scattering rate from Fermi’s
golden rule (cf. Appendix D):

�
imp
SB (εF )

= n3D

(
e2

2πε0εrk
2
‖

)2 ∑
n′∈B

k′
‖

|∇ξB,n′,k′
‖ |
∫ ∞

0
dk′

z

dσ
(n′)
long(εF )

dk′
z

.

(23)

Here ξB,n′,k′
‖ is the dispersion of bulk band n′ defining the

outgoing wave vector k′
‖ by ξB,n′,k′

‖ = εF . The differential
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(a)

(b)

(c)

(d)

FIG. 4. (a) The three lowest-lying eigenstates in a TI film of thick-
ness L = 40 nm. The surface state localized on the TI top is displayed
in purple; the bottom surface state is not shown. Inset: A sketch of the
typical transverse surface Majorana wave function. Its effect on the
scattering rate is discussed in Appendix D 1. The model parameters
are adjusted to those of Bi2Se3 except for the gap, which is here set to
�TI = 0.1 eV to model puddles from the conduction band [44,45]. (b)
The dispersion of the states displayed in (a) but with two additional
bulk states. In black: The typical Majorana surface dispersion. (c)
The differential scattering rate dσ

(n′=1)
long (εF )/dk′

z defined in Eq. (D5)
shown for three values of the Fermi energy (measured in eV). (d) The
electronic scattering rate as given in Eq. (23) with n3D = 1019 cm−3.
Van Hove singularities are seen whenever the Fermi energy hits the
bulk bands, but they are softened by the k′

‖ factor that goes to zero at
these points. Here we used εr = 100 [46].

scattering rate dσ
(n′)
long(εF )/dk′

z is the screened Coulomb cou-
pling convoluted with the overlap between the bulk and surface
states [cf. Eq. (D5)], see Fig. 4(c).

In most topological insulators the Fermi level resides in
the bottom of the conduction band or the top of the valence
band, and a significant doping of acceptors/donors is needed
to reach a bulk insulating state [25,47]. For Bi2Se3 films
(typically being n doped) we use the dopant concentration
n3D = 1019 cm−3 [25,48,49]. Such doping causes fluctuations
in the average (doping) concentration, making the conduction
band bend and inducing electron and hole puddles [25,36], i.e.,
effectively filled pockets from the conduction band at the Fermi
level. As a simple model of a typical situation we imagine that
chemical doping of the TI bulk lowers the bulk Fermi level to
lie in some region 0.10 � εF � 0.18 eV relative to the Dirac
point. This would naively be bulk insulating since the Dirac
point in Bi2Se3 is separated from the conduction band by a gap
of 0.28 eV [50]. Puddles coming from stretching the bottom of
the conduction band are simply modeled by setting the TI gap
to �TI = 0.1 eV, making elastic scattering to the puddles (i.e.,
the lowered conduction bands) allowed at the Fermi level, see
Fig. 4(b). This captures the generic features in unintentionally
doped TIs.

In order to consider scattering from the surface state into the
bulk, we need to know how close the surface Fermi energy is to
the Dirac point. Note that, as we will see below, the scattering
rate increases strongly if we are not very close (compared to
�0). Let us therefore assume that the surface Fermi energy is
tuned near the Dirac point. The electronic scattering rates as
a function of the bulk Fermi energy are shown in Fig. 4(d).
We note that the rate stays similar in magnitude for a large
TI film thickness range. When the film is made thinner, there
are fewer bulk states to scatter into, but this is compensated
by an increased surface-bulk overlap. Moreover, the rates in
Fig. 4(d) have the same qualitative features as seen for point
source scattering [44].

The (elastic) scattering lifetime of the surface electrons is
τ

(e)
SB = 1/�

imp
SB , and the scattering length is given by l

(e)
S =

τ
(e)
SBvF . As a typical value of the rates in Fig. 4(d) we use

�
imp
SB = 3 μeV, and we arrive at the unusually long scattering

time τ
(e)
SB ≈ 0.2 ns (l(e)

S ≈ 0.1 mm). This is typically a factor
of 102–103 longer than for bulk scattering lifetimes seen in
experiment [49]. Yet, our results could be consistent with
what was attributed to be unusually long surface lifetimes
as observed after optically exciting bulk states [51,52]. In
Ref. [51] one deduced that τ

(e)
BS > 10 ps after seeing a stable

population of the surface state induced by elastic bulk-surface
scattering in Bi2Se3 (the samples were kept at T = 70 K)
after subsequent inelastic decays associated with much shorter
time scales. It would be desirable to see similar experiments
engineered to measure the elastic surface-bulk scattering rate
in doped compounds conducted at lower temperatures.

C. Velocity suppression and contradicting requirements

We now use the same expression in Eq. (23) to extract
information about the Majorana lifetime and scattering rate.
In doing so we ignore the (confined) transverse profile of
the Majorana surface state. This is a valid approximation
because the reciprocal coherence length is far less than the
maximal transverse scattering momentum in the studied energy
regime, see Appendix D 1. Moreover, we assume that the
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induced superconductivity does not gap the TI bulk such that
elastic surface-bulk scattering is not precluded. The Majorana
scattering rate will typically be larger or equal to the electronic
scattering rate due to a suppression of the Majorana velocity
relative to the Fermi velocity.

The Majorana velocity is calculated from the low-energy
chiral solution of the Hamiltonian in Eq. (C1): vm/vF =√

1 − (μ/M0)2[1 + (μ/�0)2]−1 [18]. Here μ is the surface
chemical potential relative to the Dirac point. From the k‖ ∝
1/vF dependency of �

imp
SB in Eq. (23) we deduce that l

(m)
S =

τ
(m)
SB vm is suppressed approximatively as l

(m)
S ∼ (vm/vF )α l

(e)
S

with α ≈ 4 (up to some prefactor of order 1) [53]. Correspond-
ingly, τ

(m)
SB ∼ (vm/vF )α−1τ

(e)
SB . A nonzero size window for the

interferometer size is required by imposing l
(m)
S � ξ , which in

turn means that

vm/vF �
(
ξ/ l

(e)
S

)1/4
. (24)

Inserting the electronic rate from the end of the last subsection
and ξ � 4 μm in this yields vm/vF � 0.4. Hence, we must
require a very fine tuning of μ, |μ| � 1.2�0 � 0.1 meV given
that one can achieve M0 � μ.

When the TI bulk is increasingly doped with screened
Coulomb charges to make the Fermi energy approach the Dirac
point, fluctuations in the surface electrical potential energy are
enlarged. The spatial dependence of the local density of states
broadens the Fermi energy into a Gaussian distribution of finite
width. The standard deviation of this energy smearing has been
estimated in theory [25] and measured in experiment [36] to
be δμ � 10–20 meV within some 0.1 eV from the average
Dirac point (δμ decays inversely proportional to the average
chemical potential further away). For Fermi energies close to
the average Dirac point the notion of a uniform local density of
states breaks down. Tuning of the surface chemical potential is
consequently not globally possible within an energy resolution
set by the distribution width [49]. Importantly, the smearing
greatly exceeds the tuning required above |μ| ∼ δμ � �0,
even if we relax the assumption of a very small �0 by
increasing it one order of magnitude.

Finally, the spatial scale of the chemical potential fluctua-
tions is n

−1/3
3D ≈ 5 nm. Hence, a precise tuning of the chemical

potential might be possible within local regions of this size.
Still, this would not help in probing the experiment since
n

−1/3
3D � ξ . Thus, unless these spatial fluctuations in the local

density of states can be brought under control, unintentionally
doped TIs are left unsuited for Majorana interferometry.

D. Other limitations

Majorana interactions [35] and coupling between Majorana
modes and other degrees of freedom, such as phonons, are other
potential sources of decoherence. Local interactions between
chiral Majorana fermions are expected to be heavily suppressed
at low temperatures and momenta with the leading order term
going like O(k6) [18]. The chiral Majoranas on the interfer-
ometer arms can also excite phonons if an electron-phonon
coupling is present; see Appendix E for a short discussion. For
spatial inversion symmetric materials, e.g., Bi2Se3 and Bi2Te3,
where this coupling is dictated by a deformation potential,

the decay rate of quasiparticles due to scattering on acoustic
phonons at T = 0 exhibits a �ph ∼ (eV )3 behavior. This is a
posteriori expected to be small compared to bulk leakage at low
voltage. Without spatial inversion symmetry, a piezoelectric
interaction can cause the electron-phonon coupling to follow
a reciprocal power law in q, making scattering an increasing
problem for small momenta.

V. CONCLUSIONS

Two limiting effects in Majorana interferometers are con-
sidered. We include a previously neglected coupling between
chiral Majoranas and vortex-pinned modes. At low voltage
this coupling yields a crossover in the conductance even-odd
effect, distorting the interpretation of the experiment. We also
find that surface-to-bulk scattering in the TI sets an upper
bound on the size of the device. With a proximity gap of
�0 = 0.1 meV, the lower bound (the coherence length) is
about ξ = h̄vF /�0 � 4 μm for Bi2Se3. Due to the doping
needed to reach a bulk insulating state in many TIs, conduction
band puddles lead to large fluctuations in the surface Fermi
energy. In turn, this is in conflict with the surface chemical
potential fine tuning required to have a nonzero size window
for the interferometer. This leaves the possibility of probing the
experiment in many poorly bulk insulating bismuth compounds
potentially extremely difficult.

The most natural ways to overcome the restrictions con-
sidered here are (i) to find superconductors with excellent
contact to the TI such that �0 can be made (ideally orders of
magnitude) larger, or (ii) to pursue a search for TIs with a highly
insulating bulk. Most bismuth based TIs are poorly insulating
and are unintentionally doped [20], which results in them
being unsuited for Majorana interferometry. However, recently
reported mixed bismuth compounds have shown evidence of
an appreciably insulating bulk [54], which could potentially
open a window of opportunity for this material. We note that
the recommendation (i) above is similar to the need for high-
quality interfaces in superconductor-semiconductor nanowire
devices [55].

Another possible material system to consider is the putative
topological Kondo insulator SmB6, which gives strong sign
of surface conduction [23,56]. The bulk resistivity of this
material can reach several � cm at temperatures below a few
Kelvins [23]. Very recently, evidence of the superconducting
proximity effect in Nb/SmB6 bilayers was reported [57], hence
providing a possible platform for this experiment. However,
the physics of highly interacting topological Kondo insulators
is still poorly understood [22], and it is unclear how much of
the details of the simple noninteracting TI surface physics will
carry through to this more complicated case.
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APPENDIX A: DERIVATION OF THE AVERAGE CURRENT

The derivation of Eqs. (3) and (4) goes along the lines of
Ref. [58]. The scattering states of the interferometer are (chiral)
plane waves in the one-dimensional channel convoluted with
a transverse wave function (we let k > 0 by definition below)
(Fig. 5),

ψe
L = eikLxϕe

L(y), (A1)

ψh
L = e−ikLxϕh

L(y), (A2)

ψe
R = Teee

ikRxϕe
R(y) + Tehe

−ikRxϕh
R(y), (A3)

ψh
R = Thhe

−ikRxϕh
R(y) + Thee

ikRxϕe
R(y). (A4)

We have assumed that the contacts α ∈ {L,R} contain only
single mode states and that the incident state in the L contact
is either an electron or a hole.

One can construct arbitrary states by expanding in the
scattering states above. This is incorporated in the (second
quantized) field operator

�̂α,σ (r,t) = 1√
2π

∫
dEα√
h̄vα

ψσ
α (Eα,r)âα,σ (Eα)e−iωαt ,

(A5)

where we introduced ωα = Eα/h̄ = vαkα and the annihilation
operator âα,σ (Eα) of type σ ∈ {e,h} satisfying

{â†
α,σ (E),âβ,σ ′ (E′)} = δα,βδσ,σ ′δ(E − E′). (A6)

The current operator of type σ in contact α is defined by

Îα,σ = h̄e

2im

∫
d r⊥,α[�̂†

α,σ ∂x�̂α,σ − (∂x�̂
†
α,σ )�̂α,σ ]. (A7)

Here m is the effective mass, mvα = h̄kα . Assuming further
that the contacts act as thermal reservoirs kept at equal
temperature, we can average the density operator by〈

â†
α,σ (E)âα′,σ ′(E′)

〉 = δα,α′δσ,σ ′δ(E − E′)fσ (E), (A8)

where fe/h(E) = [exp(β[E ∓ μ]) + 1]−1 is the Fermi func-
tion for particles and holes. Finally, we assume the transverse
wave functions to be orthonormal,∫

dy (ϕσ
α (y))∗ϕσ ′

α′ (y) = δα,α′δσ,σ ′ . (A9)

The source and the drain current are defined by the aver-
age particle minus hole current ID ≡ 〈ÎD,e − ÎD,h〉 and IS ≡
〈ÎS,e − ÎS,h〉. Calculating these explicitly by using Eqs. (A7),
(A8), (A9), and unitarity of T leads exactly to the expressions
in Eqs. (3) and (4).

TL

ψe
L ∼ eikx

ψh
L ∼ e−ikx

R

ψe
R ∼ Teee

ikx + Tehe−ikx

ψh
R ∼ Thhe−ikx + Thee

ikx

FIG. 5. The scattering states at the two contact points.

APPENDIX B: CHARGE TRANSPORT WITH MAJORANA
COUPLING DISORDER

1. One Majorana with smeared coupling to the edge

Consider the case where the edge Majorana is coupled
continuously to the bound state as in Eq. (14). Using the
ansatz ξ1(x) = f (x)ei(kx−ωt) with f (−∞) being the Majorana
(fermion) field on the far left and ω = k/vm for the linearly
dispersing modes. The equations of motion can be combined
to give the continuum version of Eq. (12):

−ivmω∂xf (x) = λ(x)e−ikx

∫
dx ′ λ(x ′)f (x ′)eikx ′

. (B1)

Here the plane wave phase contribution that can be neglected in
the discrete case where λ(x) = λδ(x) is included. The equation
above can be solved as follows. Integrating both sides gives the
solution implicitly by

f (x) = f (−∞) − ζ

iωvm

∫ x

dx ′ λ(x ′)e−ikx ′
, (B2)

with ζ = ∫
dxλ(x)f (x)eikx . Inserting this back into (B1)

yields

ζ = f (−∞)
∫

dx λ(x)eikx

1 + 1
iωvm

∫
dx λ(x)eikx

∫ x
dx ′λ(x ′)e−ikx ′ . (B3)

Finally, this expression is used in (B2), and we obtain

f (+∞) =
ω + i

h̄vm

∫
dxλ(x)eikx

∫
x
dx ′λ(x ′)e−ikx ′

ω − i
h̄vm

∫
dxλ(x)eikx

∫ x
dx ′λ(x ′)e−ikx ′ f (−∞).

(B4)

Comparing this to Eq. (12) proves the statement in Eq. (15).

2. Multiple Majoranas coupled to each edge

In the main text we obtained a phase contribution of φ =
arctan( ν

eV
) in the differential conductance when the edge was

coupled to one vortex [Eq. (13)]. This can be generalized if
the chiral Majoranas have single-point couplings to several
vortices. In that case φ is replaced by

∑
i φi −∑

j φj , where
φi = arctan( νi

eV
) comes from vortex-edge coupling with the

upper edge and φj from coupling with the lower edge. Hence,
multiple phase crossovers will occur if several vortices are
located close to the edge.

3. One Majorana coupled to both edges

Another generalization is to study point couplings to both
the lower and the upper arm, in which case the coupling term in
the Lagrangian is Lbulk-edge = 2iλ1ξ1(x = 0)ξ0 + 2iλ2ξ2(x =
0)ξ0. The corresponding equations of motion are

2∂tξ0 = λ1[ξ1R + ξ1L] + λ2[ξ2R + ξ2L], (B5)

vmξ1R = vmξ1L + λ1ξ0, (B6)

vmξ2R = vmξ2L + λ2ξ0. (B7)

Here we again use the notation ξ1R = ξ1(x = 0+), ξ2R =
ξ2(x = 0+), ξ1L = ξ1(x = 0−), and ξ2L = ξ2(x = 0−). In fre-
quency space we find a relation between ξ1 and ξ2 across the
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coupling points [ξ1,ξ2]TR = U (ω)[ξ1,ξ2]TL , where U (ω) is the
unitary matrix

U (ω) = 1

W (ω)

(−ν1 + ν2 + iω −2
√

ν1ν2

−2
√

ν1ν2 ν1 − ν2 + iω

)
. (B8)

Above, νi ≡ λ2
i /(2h̄vm) and W (ω) = ν1 + ν2 + iω. Notice

how U (ω) is off-diagonal in the low-energy limit for the
configuration ν1 = ν2. The chiral Majoranas on the perimeter
therefore switch place by tunneling across the vortex Majorana
in this case. The phase matrix is given by

P =
(

ei
kl1
2 0

0 ei
kl2
2

)
U (ω)

(
ei

kl1
2 +inπ 0

0 ei
kl2
2

)
, (B9)

which leads to the differential conductance

GSC(V ) = 2e2

h

1

(eV )2 + (ν1 + ν2)2

{
(ν1 − ν2)2

+ [(eV )2 − (ν1 − ν2)2] sin2

(
nπ

2
+ eV δL

2h̄vm

)

+ eV (ν1 − ν2) sin

(
nπ + eV δL

h̄vm

)

+ 2ν1ν2[1 + (−1)n]

}
. (B10)

This reduces to Eq. (13) when ν2 = 0. For δL = 0 the ex-
pression above is identical to Eq. (13) with the replacement
ν → ν1 + ν2.

4. One Majorana coupled to one edge at finite temperature

We return to the case with a one-point Majorana coupling
[Fig. 2(a)]. The drain current can generally be reexpressed as
a residue sum over poles z+

j in the upper complex half-plane.
Rewriting Eq. (3),

ID(ν) = (−1)n
e

4
i sinh(βeV )

∑
j

Res{h(z),z+
j }, (B11)

where h(z) is the function

h(z) = 1

z2 + ν2

(z2 − ν2) cos
(

δLz
vm

)− 2zν sin
(

δLz
vm

)
cosh

[
β

2 (z − eV )
]

cosh
[

β

2 (z + eV )
] . (B12)

The set of simple poles of h(z) in the upper half-plane is
z+
j ∈ {iν} ∪ {iπ (2m − 1)/β + eV }∞m=1. For ν = 0, the sum is

obtainable in closed form and stated in Eq. (8).
For weak coupling at finite temperature ν � kBT ,eV , we

expand h(z) in powers of βν, with β−1 = kBT . For conve-
nience we define the reduced current as R ≡ ID(ν)/ID,0. To
second order in βν with δL = 0 we find

R = 1 − νπ

eV
tanh(βeV/2)

+ βν2

πeV
Im

{
ψ (1)

(
1

2
− i

βν

2π

)}
+ O(βν)3. (B13)

Above, ψ (1)(z) = d2

dz2 log �(z) is the trigamma function. In
the infinite coupling limit the sign of the drain current is
flipped, R → −1, which can be seen from Eq. (B12). The
reduced current decreases monotonically, a feature of setting

FIG. 6. The reduced drain current R as function of βν for
symmetric arms δL = 0. The dotted lines represent the weak coupling
result from Eq. (B13) and the full lines are numerical results for βeV

being 5 (purple), 10 (orange), and 25 (green).

δL = 0, with coupling strength until the vortex Majorana is
fully absorbed by the edge (Fig. 6).

At T = 0 the current is found to be (with h̄ = 1 here)

(−1)n
2π

e
ID = vm

δL
sin

(
δLeV

vm

)

+ 2ν

[
cosh

(
δLeV

vm

)
− sinh

(
δLeV

vm

)]

×
[

Im

{
Ci

(
δL

vm

(eV + iν)

)}

+ Im

{
Ci

(
−iν

δL

vm

)}

− Re

{
Si

(
δL

vm

(eV + iν)

)}]
. (B14)

Here Ci and Si are trigonometric integral functions. For
symmetric arms the above result simplifies to give the reduced
current R = 1 + 2 ν

eV
[arctan ( ν

eV
) − π

2 ]. From this, the afore-
mentioned result limν→∞ R = −1 follows trivially.

APPENDIX C: MAJORANA FERMIONS IN A TI/SC
HYBRID STRUCTURE

Superconductivity induced on the surface of a strong TI
support chiral Majorana fermions on domain walls and Ma-
jorana bound states localized in vortices. The Fu and Kane
Hamiltonian of a TI/SC hybrid structure with a single Dirac-
like dispersion is given by [7,18]

H = (vF σ · p − μ)τz + M(r)σz + �(r)τ+ + �∗(r)τ−,

(C1)
where τj and σj are Pauli matrices acting in particle-hole
and spin space, respectively. Moreover, τ± = (τx ± iτy)/2
and M is the Zeeman energy associated with a magnetic
field applied in the z direction. The standard procedure is
to introduce uσ (r) and vσ (r) that define the quasiparticles,
conveniently arranged in � = [u↑,u↓,v↑, − v↓]T satisfying
the BdG equations H� = E�.

1. Corrections to the S matrix

One may solve Eq. (C1) on a magnetic domain wall in
the absence of a superconductor. There are then two chiral
solutions: one in the particle sector |τz = +1〉, and one in the
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hole sector |τz = −1〉, both localized at the interface [18]. On
a magnet-superconductor interface there exists a single chiral
Majorana solution with linear dispersion. By the definition of
the S matrix, (

ξ1

ξ2

)
=
(

See Seh

She Shh

)(
ψe

ψh

)
, (C2)

one can estimate the scattering elements at the trijunction
as overlaps between the chiral states See = 〈τz = +1|ξ1〉,
Seh = 〈τz = −1|ξ1〉, etc. Here ξ1 (ξ2) is the chiral Majorana
fermion on the upper (lower) interferometer arm. The Majo-
rana wave function decays exponentially with the length scale
vF /

√
M2 − μ2 (vF /�0) in the magnetic (superconducting)

region [inset of Fig. 4(a)]. Interestingly, if the magnetization
on each side of the Dirac channel are of equal magnitude
(with opposite polarization), compactly expressed in terms of
the symmetry H(−y) = M−1H(y)M where M = iσy [18],
the zero energy result in Eq. (2) is obtained at all energies.
Experimentally, this is likely a weak assumption, and we
can therefore safely apply S(E = 0) throughout. If the two
magnetic fields in the Dirac region are of different strengths
there will be corrections to S that are small when E �
vm

vF
min {M0,�0}. One can heuristically add a correction term

to S(E) proportional to E/� (where � ∼ vm

vF
min {M0,�0} is

some phenomenological scale) and impose unitarity to order
O(E2) and particle-hole symmetry. This leads to order O(E2)
corrections to the drain current.

2. Majorana bound states and energy splitting

If a vortex is present in the system described by Eq. (C1),
�(r) = �(r)ei�θ , a single Majorana bound state will be lo-
calized in the vortex core when the vorticity � is odd [33,34].
Following the procedure in Ref. [59], the zero energy BdG
equations for the model in Eq. (C1) with a central vortex of
vorticity � = 1 are expressed in terms of two real and coupled
radial equations,( −μ η�(r) + vF

(
∂r + 1

r

)
−η�(r) − vF ∂r −μ

)(
u↑(r)
u↓(r)

)
= 0.

(C3)

Here vσ (r) = ηuσ (r) with η = ±1 dictating two possible
solution channels. Modeling the vortex by a hard step of
size R1 ≈ ξ , �(r) = �0�(r − R1), the resulting zero mode
is expressed in terms of Bessel functions,

(u↑(r),u↓(r))T

= N
(

J0( μr

vF
)

J1( μr

vF
)

)
[�(R1 − r) + e

− �0
vF

(r−R1)
�(r − R1)].

(C4)

Above, N is given by normalization of the two-component
spinor. Two vortex bound Majoranas separated by a distance
R will generally lift from zero energy by an energy splitting
exponentially small in R/ξ when R � ξ . If μ is tuned close to
the Dirac point (typically achieved by bulk doping of screened
charges [36]), this splitting has previously been estimated to
asymptotically approach ε+ ∼ −μ(R/ξ )3/2 exp(−R/ξ ) up to
some prefactor of order one [34].

Similarly, a superconducting disk of radius R (with a central
vortex) deposited on a TI supports a Majorana edge state
located exponentially close to the edge. For weak magnetic
fields the splitting between the central bound state and the
edge state has been estimated to decay like [33]

ε+ ∼ −μlBe
− R

ξ /ξ, (C5)

with lB the magnetic length.

3. Toy model calculation: Energy splitting in a
spinless p-wave superconductor

For completeness, and serving as an illuminating example
not found elsewhere, we explain how the energy splitting
between edge states in a Corbino geometry can be calculated
in the spinless p + ip superconductor. See, e.g., Ref. [1] for
general aspects of this system and Ref. [60] for a presentation of
the similar intervortex splitting. Finally, the problem of the Ma-
jorana energy hybridization in superconductor-semiconductor
hybrid structures is addressed in Ref. [61].

The spinless p-wave superconductor realizes a topological
phase for μ > 0 and the trivial phase for μ < 0. The model
has the corresponding zero energy BdG equations [42](

− 1
2m

∇2 − μ 1
2pF

{�(r),∂z∗ }
− 1

2pF
{�∗(r),∂z} 1

2m
∇2 + μ

)(
u(r)
v(r)

)
= 0, (C6)

with the operator ∂z∗ = eiθ (∂r + i
r
∂θ ). We let a radial annulus

geometry between R1 and R2 be superconducting with a vortex
located in the center hole �(r) = �0e

iθ�(r − R1)�(R2 − r),
with chemical potential 2mv2

F μ > �2
0 (causing the wave

functions to oscillate) and μ < 0 outside the disk. When
R ≡ R2 − R1 � ξ , we treat the two single-edged systems
separately and construct the ground state candidates φ± =

1√
2
(ψ1 ± iψ2), where ψ1 (ψ2) is the solution localized on the

inner (outer) edge [60]. The two solutions are exponentially
damped away from their respective edges and they oscillate
with frequency k =

√
2mμ − (�0/vF )2. Moreover, if both R1,

R2 � 1/k, the Bessel functions that appear as radial solutions
can be expanded asymptotically. The splitting integral can be
calculated, and we send μ → −∞ outside the annulus in the
end. Upon evaluating the splitting integrals and then taking the
limit, we obtain

ε± = 〈φ±|H|φ±〉 ≈ ∓4�0μ

vF k
sin (kR)e−R/ξ . (C7)

The splitting is zero for particular values of the domain
separation. Whenever R = πn/k for n ∈ N, there are two
degenerate ground states. The zero mode condition gives
associations of an interference phenomenon, caused by the
oscillating edge modes that convolute in a destructive manner
for certain values of the separation. The expression in Eq. (C7)
agrees with numerical diagonalization, already when R is a
small multiple of ξ . The Corbino geometry has been studied
for small disk size, in which case the same zero energy criterion
is found in the limit 2mv2

F μ � �2
0 by imposing Dirichlet

boundary conditions on the wave functions directly [62].
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APPENDIX D: SURFACE-BULK SCATTERING WITH
SCREENED DISORDER

In Ref. [44] Fermi’s golden rule is used to find the scattering
rate from the surface (S) to the bulk (B) of a TI in the
presence of static and dilute point impurities. Here we take
Ref. [44] as a starting point (the reader is referred to this
reference for further details) and apply the formalism to the

case of long range scatterers. As described in the main text we
study scattering from surface initial wave vector k = (k‖,0) [in
practice we let k‖ = (kx,0)] to the final bulk wave vector k′ =
(k′

‖,k
′
z). The energy of the incoming surface state determines

the Fermi energy, ξS,k‖ = vF k‖ ≡ εF . Assuming low energy
elastic scattering, and making use of the continuum limit∑

k′ → V
(2π)3

∫
d3k′, we find the scattering rate

�
imp
SB (εF ) = 2π

∑
k′,n′

∣∣gimp
k−k′

∣∣2(|FS,k‖;B,k′,1n′ |2 + |FS,k‖;B,k′,2n′ |2)δ(ξB,n′,k′
‖ − εF )

≈ V

(2π )2

∑
n′ :

min{ξ
B,n′ ,k′‖

}<εF

k′
‖

|∇ξB,n′,k′
‖ |
∫ ∞

0
dk′

z

∫ 2π

0
dϕ

∣∣gimp
k‖−k′

‖,k′
z,ϕ

∣∣2(|FS,k‖;B,k′,1n′ |2 + |FS,k‖;B,k′,2n′ |2). (D1)

In going from the first to the second line we integrated over k′
‖,

which in the last line is then defined implicitly by ξB,n′,k′
‖ = εF .

Above, ϕ is the polar angle between the incoming and the
outgoing momentum projected onto the kxky plane, i.e., k′

x =
k′
‖ cos ϕ and k′

y = k′
‖ sin ϕ. The F ′s are defined as convoluted

overlaps between the surface and the bulk states,

FS,k‖;B,k′,1n′ = 〈�S,k‖ |eik′
zz|�B,k′,1n′ 〉, (D2)

FS,k‖;B,k′,2n′ = 〈�S,k‖ |eik′
zz|�B,k′,2n′ 〉, (D3)

where two bulk bands 1n′ and 2n′ are degenerate. The four-
component wave functions in these expression are found by
solving the BdG equations for the 3D TI exactly at k‖ = 0 and
then applying perturbation theory to leading order in the wave
vector (see Appendix C in Ref. [44] where the full expressions
are listed in Eqs. (C1)–(C11)). This procedure also yields the
dispersion relations to leading order in the parallel wave vector.
In Figs. 4(a) and 4(b) the surface and some of the bulk states are
visualized in a thin film with model parameters as for Bi2Se3

[45], except for the bulk gap which is set to �TI = 0.1 eV as
motivated in the main text.

The coupling g
imp
k−k′ is here an ensemble averaged

Coulomb potential due to screened charge impurities.
Assuming randomly distributed impurities with zero
mean, the coupling should be proportional to |gimp

k−k′ |2 ∝
n3D[Ze2/(ε0εr )]2(|k − k′|2 + k2

TF)
−2

[63], where εr is the
relative permittivity, kTF is the Thomas-Fermi wave vector,
and n3D is the average dopant concentration. In cylindrical
coordinates the coupling is expressed as

∣∣gimp
k‖−k′

‖,k′
z,ϕ

∣∣2 = n3D

V

(
Ze2

ε0εrk
2
‖

)2[
(1 − k′

‖/k‖)2 + (k′
z/k‖)2 + r2

s

+ 4
k′
‖

k‖
sin2 ϕ

2

]−2

, (D4)

where rs = kTF/k‖ was introduced. In the main text we assume
that the screened charges have Z = 1. With this coupling
established we define the differential cross section for the

screened Coulomb scattering as

dσ
(n′)
long(εF )

dk′
z

≡
∫ 2π

0
dϕ

|FS,k‖;B,k′,1n′ |2 + |FS,k‖;B,k′,2n′ |2[(
1 − k′

‖
k‖

)2 + ( k′
z

k‖

)2 + r2
s + 4

k′
‖

k‖
sin2 ϕ

2

]2
. (D5)

This function is shown in Fig. 4(c) for rs = 0.035, which
corresponds to εr = 100 [46]. Note that in the case of point
scatterers, the differential cross section is obtained simply by
replacing the denominator in Eq. (D5) by 1.

Using Eqs. (D4) and (D5) in (D1) assembles the expression
for the scattering rate in the main text, Eq. (23). We note that
the rates as shown in Fig. 4(d) are seen to be in good agreement
with Ref. [44].

1. Effect of spatially confined transverse wave function

When applying the formula of the electronic scattering rate
in Eq. (23) to the case of the surface Majorana we neglect
the transverse profile of the surface wave function [inset of
Fig. 4(a)]. Here we argue why this is a valid approximation in
our parameter regime.

Assume for simplicity that the two surface gaps are of
similar magnitude �0 ≈ M0 � μ, so that the transverse wave
function is confined over a the scale σy ∼ ξ = vF /�0. By the
uncertainty principle, this confinement leads to an uncertainty
in k′

y of σk′
y
∼ ξ−1. To simulate this uncertainty we draw

random additions to k′
y = k′

‖ sin ϕ from a normal distribution
with the standard deviation above and zero mean for each
scattering direction ϕ. The resulting scattering rates display
an average absolute deviation 〈|ε|〉 [averaged over the Fermi
energy range in Fig. 4(d)] from the sharp k′

y curve of roughly
〈|ε|〉 ≈ (σk′

y
/max{k′

y})2. Since max{k′
y} � ξ−1 in the energy

range and with the proximity gaps we consider, the effect of
uncertainty in k′

y , and hence confinement in the y direction,
can be ignored.
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APPENDIX E: SCATTERING WITH ACOUSTIC PHONONS

Consider the toy model coupling electrons to (acoustic)
phonons through a deformation potential,

Hep =
∑

q1,q2,s,s
′
Ms,s ′

q1,q2
c
†
q1+q2,s

cq1,s
′
(
aq2

+ a
†
−q2

)
. (E1)

For small momenta, the electron-phonon coupling goes as
|M(q)| ∼ q for surface phonons [64,65]. Acoustic phonons
have linear dispersion ω(q) = cR|q| and are expected to
dominate the coupling Hamiltonian at low temperatures [64].
The scattering rate follows once again from Fermi’s golden
rule �

ph
i→f = 2πνf (E)|〈f |Hep|i〉|2, where νf (E) is the final

density of states. Recall also that states with a linear dispersion
in two dimensions have ν(E) ∝ E. In a superconducting
system, there will be a nonzero amplitude for the creation of
a phonon with the cost of annihilating two quasiparticles. For
illustrative purposes, we consider quasiparticles excitations of
the (s-wave) Bardeen-Cooper-Schrieffer (BCS) ground state
|�〉,

|i; σ1,σ2〉 = γ
†
k1,σ1

γ
†
k2,σ2

|�〉 , (E2)

|f 〉 = a†
q |�〉 , (E3)

|�〉 =
∏

k

(uk + vkc
†
k,↑c

†
−k,↓) |0〉 . (E4)

Above, the quasiparticle creation operators are γ
†
k,+ =

u∗
kc

†
k,↑ − v∗

kc−k,↓ and γ
†
k,− = u∗

kc
†
−k,↓ + v∗

kck,↑. The scattering
element is found to be

〈f |Hep|i; σ1,σ2〉
= (

M
↑,s(σ1)
σ1 k1,−σ1 k1−k2

δq,σ1 k1+k2 − M
↓,s(σ1)
σ1 k1,−σ1 k1+k2

δq,σ1 k1−k2

)
× v∗

−k2
u∗

k1

− (
M

↑,s(σ2)
σ2 k2,−σ2 k2−k1

δq,σ2 k2+k1 − M
↓,s(σ2)
σ2 k2,−σ2 k2+k1

δq,σ2 k2−k1

)
× v∗

−k1
u∗

k2
. (E5)

Above we introduced the symbol s(+) = ↑ and s(−) = ↓. The
scattering amplitude depends only on the momentum transfer
for small energies, in which case the coupling above vanishes
identically. This is presumably because the average charge of
the quasiparticles becomes zero in the low energy limit.

A careful analysis for the electron decay rate alone yields
a �ph ∼ T 3 law well below the Bloch-Grüneisen temperature
at the Fermi surface [64]. Away from the Fermi surface, by
biasing the electrons at a small voltage V , the decay rate is
finite at T = 0 and goes as �ph ∼ (eV )3. Inserting the exact
prefactor (for Bi2Te3), by following the steps in Ref. [64], we
find a decay rate in the peV range when V � 1 μV. This means
that the electron lifetime due to acoustic phonon scattering
τph = 1/�ph is in the microsecond range, making this effect
negligible at T = 0 at low voltage.
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