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The successful realization of metamaterials and metasurfaces requires the judicious choice of constituent
elements. In this paper, we demonstrate the implementation of time-varying metamaterials in the terahertz
frequency regime by utilizing graphene-wrapped microwires as building blocks and modulation of graphene
conductivity through exterior electrical gating. These elements enable enhancement of light-graphene interaction
by utilizing optical resonances associated with Mie scattering, yielding a large tunability and modulation depth.
We develop a semianalytical framework based on transition-matrix formulation for modeling and analysis of
periodic and aperiodic arrays of such time-varying building blocks. The proposed method is validated against
full-wave numerical results obtained using the finite-difference time-domain method. It provides an ideal
tool for mathematical synthesis and analysis of space-time gradient metamaterials, eliminating the need for
computationally expensive numerical models. Moreover, it allows for a wider exploration of exotic space-time
scattering phenomena in time-modulated metamaterials. We apply the method to explore the role of modulation
parameters in the generation of frequency harmonics and their emerging wavefronts. Several potential applications
of such platforms are demonstrated, including frequency conversion, holographic generation of frequency
harmonics, and spatiotemporal manipulation of light. The presented results provide key physical insights to
design time-modulated functional metadevices using various building blocks and open up new directions in the
emerging paradigm of time-modulated metamaterials.
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Metamaterials, composed of subwavelength engineered
building blocks, provide great flexibility in the manipulation
of light waves and fields by providing access to a wider design
space beyond naturally available materials [1]. In particular, a
great amount of attention has been given to two-dimensional
metamaterials, or metasurfaces, due to their low profile, which
makes them more favorable in terms of fabrication and allows
shrinking the size of optical platforms [2]. The operation
of metamaterials and metasurfaces relies predominantly on
the realization of a gradient index profile [3] or a gradient
discontinuity in the phase and amplitude [4]. These design
principles have been used in a variety of flat and bulk optical
components for different applications, such as focusing [5],
bending [6], holography [7], etc.

In conventional designs of metamaterials, the gradient
characteristics are achieved through geometrical variation of
building blocks, which makes their operation static, tying them
to a specific application after fabrication. More recently, sev-
eral efforts have been made regarding postfabrication control
of the metamaterials by exploiting mechanical reconfiguration
[8,9], thermal phase transitions [10,11], and electro-optical
materials [12–17] in geometrically fixed platforms. Such
tunable designs render more flexibility in the operation, al-
lowing for multifunctionality and on-demand manipulation of
light.
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Despite the real-time tunability offered by reconfigurable
metamaterials, their operation has remained mostly quasistatic
as the variations in time are disregarded. Exploiting tunabil-
ity mechanisms also offers the possibility of implementing
time-varying metamaterials in which the parameters of the
metamaterials are varying in time by changing the external
stimuli. Temporal variation enables several exotic scattering
phenomena by breaking the time-reversal symmetry and gen-
eration of frequency harmonics in the output spectrum [18–29].
It also adds a new dimensionality to the design space, providing
even further flexibility in the design, which can be exploited to
tackle several challenges associated with static and quasistatic
metamaterials and realize novel advanced functionalities.

In the microwave frequency regime, implementation of
time-modulated metamaterials has been demonstrated by using
lumped elements such as varactors in microstrip circuits
[23–26]. Moving beyond microwaves into terahertz (THz) and
infrared (IR) frequencies, several mechanisms can be foreseen
for the synthesis of time-varying metamaterials by utilizing
different trigger mechanisms, such as, mechanical actuation,
thermal phase transition, and electrical gating. Among all
these mechanisms, electrical gating of electro-optical materials
holds the greatest promise as it offers a continuous tunability
range and has the quickest response time, allowing for larger
modulation frequencies. Graphene has been shown to be an
ideal candidate for electro-optical tunability in the THz and
IR frequency regimes due to its many advantages, including
low loss, low dimensionality, broadband tunability, large-scale
fabrication feasibility, and interface compatibility with silicon
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fabrication technology. The surface carrier concentration of a
graphene layer can be changed by applying an exterior gate
voltage in a parallel capacitor configuration, which results in a
change in the surface conductivity. Graphene has been incor-
porated into many active optical platforms for different appli-
cations, such as tuning the optical absorption [17] and phase
modulation of reflected light [13]. In such designs, graphene
is integrated into resonant geometries that enhance the light-
graphene interaction, yielding a larger tunability. The surface
conductivity of graphene can be modulated with frequencies
up to several gigahertz (GHz) [30–34]. As such, graphene-
integrated building blocks can be used to implement electri-
cally tunable time-modulated metamaterials in THz and IR fre-
quencies by utilizing a radiofrequency (RF) biasing network.

Along with the progress in materials technology, which
allows realization of time-varying metamaterials, there is a
need for simulation techniques to design and analyze such
emerging platforms and unravel the novel physics associated
with light scattering from time-varying metamaterials. The
finite-difference time-domain (FDTD) method can be conve-
niently used as it can easily take into account the variation of
material parameters in time. However, it lacks efficiency to
model arrays of large area with subwavelength features as it
requires the discretization of a whole computational domain
in space and time, which leads to numerical models featuring
a large number of degrees of freedom. Introducing time
variations adds yet another challenge for FDTD simulations.
In particular, modulation frequencies of the materials that
are accessible in practice are small compared to operating
frequencies at IR and THz frequency regimes. As such, the
FDTD method requires an enormous number of time steps
to capture steady-state solutions, which becomes very time-
consuming and requires tremendous computational resources.
Therefore, developing semianalytical techniques capable of
modeling time-varying elements offers great benefits as they
do not suffer from numerical inaccuracies inherent within the
FDTD method, and they enable fast design of time-varying
metamaterials. Furthermore, they can provide more physical
insight into the scattering phenomena.

The objective of this paper is threefold: (a) implementation
of time-varying metamaterials in the THz frequency regime
based on graphene-wrapped microwires, (b) developing a
robust semianalytical framework for rigorous modeling of such
structures, and (c) investigating unexplored potential applica-
tions of time-modulated metamaterials for light manipulation.
We demonstrate the realization of time-varying metamaterials
in the THz frequencies by adopting graphene-wrapped
microwires as building blocks and modulating the surface
conductivity of graphene via RF signals. Such elements can
enhance light-graphene interactions through resonant features
associated with Mie scattering, yielding comparable modu-
lation depths with planar structures of much greater volume.
Furthermore, these elements exhibit a strong gate dependence
and reduced subthreshold swing due to their large aspect
ratios [35,36]. Graphene-wrapped wires have been fabricated
via chemical-vapor-deposition (CVD) growth of monolayer
graphene on microwires [37,38] and draping graphene flakes
over microwires with an adhesive tape [39]. They have been
envisioned for a variety of applications, such as tunable
modulation of absorption [40], cloaking [41], wave guiding

[42], nonlinear harmonic generation [43], etc. We develop
a robust semianalytical framework for the analysis of such
time-varying elements based on a transition-matrix (T-matrix)
formulation. The method is able to accurately characterize both
near-field and far-field responses of periodic and aperiodic
arrangements of the elements on top of a substrate. The validity
of the method is rigorously verified by comparing the results
obtained with FDTD simulations. An enormous computational
gain is afforded by the proposed method, which can be used for
the fast design of time-varying metamaterials and metasurfaces
with advanced functionalities by avoiding computationally
expensive numerical models. We apply the method to explore
several potential applications of time-modulated metamaterial
platforms for light manipulation. The frequency conversion
process in the time-modulated building blocks is studied, and
its dependence on the resonant characteristics of the element
is analyzed. We also analyze the effects of modulation
parameters on the amplitude and phase of generated frequency
harmonics in time-modulated metasurfaces. It is revealed
that an independent control over the phase and amplitude of
scattered frequency harmonics can be achieved by controlling
the modulation phase delay and the modulation depth,
enabling high-efficiency holography. Furthermore, we
demonstrate that the effective refractive index of deeply
subwavelength microwires can be modulated in time to realize
time-modulated metamaterials offering spatiotemporal control
of light. In particular, a time-modulated lens is designed in
which the bending angle varies with time enabling ultrafast
beam scanning. The rest of this paper is organized as follows.
In Sec. I, the development of a semianalytical technique is
detailed. Then, the method is validated by comparing the
near-field results against full-wave FDTD simulations in
Sec. II. In Sec. III, we utilize the method to establish design
rules for novel functional time-modulated metamaterial
platforms. Finally, the conclusions are drawn in Sec. IV.

I. FORMULATION

There have been several efforts in analytical modeling
of electromagnetic scattering from time-varying structures
[18–24]. However, all of those efforts dealt with space-time
modulated slabs or impedance surfaces with relatively simple
periodic space-time gradients for effective constituent param-
eters that rely on homogenization and provide no clue about
implementation. The homogenization approach becomes un-
reliable for aperiodic structures or when constituent elements
are resonant and not deeply subwavelength. Furthermore,
this approach is not applicable to metadevices with arbitrary
arrangements of time-modulated building blocks driven by
different modulation parameters. Here, we aim at developing a
robust semianalytical method capable of modeling space-time
gradient metamaterials consisting of periodic and aperiodic
arrangement of microwires wrapped by time-varying graphene
layers. Our method avoids the limitations associated with prior
analytic homogenization techniques.

The available geometrical features of a scatterer allow
us to study electromagnetic scattering analytically using
different techniques relying on multipole expansion of the
fields. Among the various multipole scattering techniques, the
T-matrix method is the most powerful due to its simplicity and
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FIG. 1. The schematic of an isolated microwire wrapped by time-
varying graphene.

generality. The T-matrix method was introduced by Waterman
[44] for electromagnetic scattering from an arbitrarily shaped
homogeneous scatterer. The formulation was extended by
Peterson and Strom to the case of an arbitrary number of
two-dimensional (2D) scatterers by applying the translation
formula to the cylindrical wave solution of Helmoltz’s wave
equation [45]. The method has evolved quite dramatically ever
since and has been adapted to solve several problems involving
periodic and aperiodic arrangements of cylindrical objects
[46–49]. In particular, the authors have extended the method
to take into account multiple scattering between cylinders
and layered substrates [50] as well as crossed configura-
tions of cylinders [51,52]. Here, we develop a semianalytic
framework by extending the T-matrix formulation to solve
electromagnetic scattering from substrate-supported periodic
and aperiodic arrays of cylindrical structures wrapped by time-
varying graphene layers. In the following, we establish the
matrix equations for electromagnetic scattering of multipoles
corresponding to different frequency harmonics generated
by time-varying elements similar to the definition of the T-
matrix for time-varying acoustic materials [53]. Further details
regarding the block structure of the matrices and building the
matrix equations can be found in Sec. 1 of the Supplemental
Material [54].

A. T-matrix of an isolated time-varying graphene-wrapped wire

We begin developing the formulation by obtaining the
T-matrix of an isolated wire element wrapped by a time-
varying isotropic graphene layer located in free space, as
shown in Fig. 1(a). The radius, relative permittivity, and
relative permeability of the core are denoted by R, εc, and μc,
respectively. The graphene layer is characterized by a time-
varying surface conductivity of σ (ω0,t), which is dependent
on the excitation frequency (ω0). The coordinate system is
chosen such that z axis lies along the microwire axis while
the origin is located at the center of the microwire. (ρ,φ)
are polar coordinates of the frame as shown in Fig. 1(b).
First, we consider a plane-wave incidence with transverse
magnetic (TMz) polarization where the electric field is along
the microwire axis. We assume the temporal variations are
small compared with oscillations of excitation frequency such
that the dispersion effects induced by time modulation can
be ignored. The validity of this assumption is ensured by the
range of accessible modulation frequencies for electro-optical
materials in the THz and IR frequency regimes. As such, the
constitutive relations can be written in multiplicative form
in the time domain for each excitation frequency. It should
be remarked that while disregarding the modulation-induced
dispersion effects, we consider the dependency of conductivity

temporal variations to excitation frequency, thus considering
strong material dispersion in these frequency regimes. In this
case, the boundary conditions at the interface of the microwire
(ρ = R) can be written as follows in the time domain [55]:

ρ̂ × [ �Eiz(t) + �Esz(t) − �Ecz(t)] = 0, (1)

ρ̂ × [ �Hiφ(t) + �Hsφ(t) − �Hcφ(t)] = σ (ω0,t) �Ecz(t), (2)

where �E and �H are electric and magnetic fields, respectively,
and the subscripts i, s, and c correspond to the incident, scat-
tered, and internal field contributions, respectively. According
to the multipole expansion of the fields, they can be expressed
as a summation of orthogonal cylindrical wave functions in the
frequency domain. Therefore, the time-domain representation
of the electric-field contributions can be written as the inverse
Fourier transforms of the multipole expansions:

�Eiz(t) = 1

2π

∫ +∞∑
m=−∞

Am(ω)Jm

(
ω

c
ρ

)
e(imφ)e(iωt)dω, (3)

�Esz(t) = 1

2π

∫ +∞∑
m=−∞

Bm(ω)Hm

(
ω

c
ρ

)
e(imφ)e(iωt)dω, (4)

�Ecz(t) = 1

2π

∫ +∞∑
m=−∞

Cm(ω)Jm

(
ncω

c
ρ

)
e(imφ)e(iωt)dω,

(5)

where ω is the angular frequency, c is the speed of light in
vacuum, and nc =√

εcμc is the refractive index of the core.
Jm(·) and Hm(·) are the Bessel and Hankel functions of the first
kind and order m. Am(ω), Bm(ω), and Cm(ω) are the unknown
coefficients of the multipole expansions of the fields. Similarly,
the φ-component of the magnetic-field contributions can be

obtained using �Hφ = − 1
iωμ0

∂ �Ez

∂ρ
, as

�Hiφ(t) = i

2πμ0c

∫ +∞∑
m=−∞

Am(ω)J ′
m

(
ω

c
ρ

)
e(imφ)e(iωt)dω,

(6)

�Hsφ(t) = i

2πμ0c

∫ +∞∑
m=−∞

Bm(ω)H ′
m

(
ω

c
ρ

)
e(imφ)e(iωt)dω,

(7)

�Hcφ(t) = inc

2πμ0c

∫ +∞∑
m=−∞

Cm(ω)J ′
m

(
ncω

c
ρ

)
e(imφ)e(iωt)dω,

(8)

where μ0 is the free-space permeability and the prime denotes
derivative with respect to ρ. Substituting field representation
(3)–(5) into boundary condition (1) and using the orthogonality
of exponential functions of eimφ and eiωt , it can be easily
obtained that

Cm(ω) = Am(ω)Jm

(
ω
c
R
) + Bm(ω)Hm

(
ω
c
R
)

Jm

(
ncω

c
R
) . (9)

For treating boundary condition (2), we rewrite the time-
domain multiplication in the right-hand side of the equation
as the inverse Fourier transform of the convolution in the
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frequency domain as

1

2π
F−1

ω

[
σ̂0(ω) ∗

+∞∑
m=−∞

Cm(ω)Jm

(ncω

c
ρ
)
e(imφ)

]

= 1

2π
F−1

ω

[∫
σ̂0(ω − ω′)

+∞∑
m=−∞

Cm(ω′)Jm

×
(

ncω
′

c
ρ

)
e(imφ)dω′

]

= 1

4π2

∫ ∫
σ̂0(ω − ω′)

+∞∑
m=−∞

Cm(ω′)Jm

×
(

ncω
′

c
ρ

)
e(imφ)dω′e(iωt)dω, (10)

where F−1 denotes inverse Fourier transform and σ̂0(ω) is
the Fourier transform of σ (ω0,t) with respect to t . Now,
using the field representations (6)–(8) and (10), the boundary
condition (2) will result in the following equation, according
to the orthogonality of exponential functions eimφ and eiωt :

Am(ω)J ′
m

(ω

c
R
)

+ Bm(ω)H ′
m

(ω

c
R
)

− ncCm(ω)J ′
m

(
ncω

c
R

)

− iμc

2π

∫
σ̂0(ω − ω′)Cm(ω′)Jm

(
ncω

′

c
R

)
dω′ = 0. (11)

To build the T-matrix, we are looking for an equation that
relates Am(ω) to Bm(ω). Substituting (9) into (11), we will
arrive at

Am(ω)

[
J ′

m

(ω

c
R
)

− ncJm

(ω

c
R
)J ′

m

(
ncω

c
R
)

Jm

(
ncω

c
R
)
]

+ icncμ

2π

∫
σ̂0(ω − ω′)Am(ω′)Jm

(
ω′

c
R

)
Jm( ω′

c
R)

Jm( ncω′
c

R)
dω′

= Bm(ω)

[
ncHm

(ω

c
R
) J ′

n

(
ncω

c
R
)

Jm

(
ncω

c
R
) − H ′

m

(ω

c
R
)]

− icncμ

2π

∫
σ̂0(ω − ω′)Bm(ω′)Hm

(
ω′

c
R

)
Jm( ω′

c
R)

Jm( ncω′
c

R)
dω′.

(12)

The above integral equation implies that a monochromatic
Am(ω) will excite a continuous spectrum of frequency har-
monics Bm(ω′) in the output. The equation can be discretized
with a specific frequency resolution 	ω to obtain the T-matrix.
Choosing ω = ωp = ω0 + p	ω and ω′ = ωq = ω0 + q	ω,
we will arrive at the T-matrix of a wire wrapped by time-varying

graphene as T = [T ]qpmn with m,n,p,q = . . . , − 1,0, + 1, . . . ,
whose elements are given in (13).

[T ]qpmn is the T-matrix element that relates the pth frequency
harmonic corresponding to the nth cylindrical mode of the
incident field to the qth frequency harmonic corresponding to
the mth cylindrical mode of the scattered field. Due to the δmn

term in Eq. (13), it can be understood that the cylindrical modes
are decoupled similar to the static case. Therefore, for each
cylindrical mode, Eq. (13) will result in a matrix division whose
solution gives a matrix relating the incident and scattered
frequency harmonics corresponding to that cylindrical mode.

For the transverse electric polarization where the magnetic
field is along the microwire axis (TEz), we can follow the same
procedure by writing the time-domain representation of �Hz and
�Eφ field contributions as the inverse Fourier transform of their
corresponding multipole expansions. Treating the boundary
conditions for these field components in a similar fashion will
result in the T-matrix for TE polarization whose elements are
given in (14).

Setting σ̂0(ωp − ωq) = 0, Eqs. (13) and (14) will result in
the T-matrices of an isolated microwire without any graphene
coating [47]. Moreover, setting σ̂0(ωp − ωq) = 2πδpqσ (ω0)
will yield the T-matrices of a microwire coated by a time-
invariant graphene layer, which verifies the validity of our
formulation in the static limit [55].

It is important to mention that for a periodic modulation in
time with a modulation frequency of ωm, the Fourier spectrum
of σ (ω0,t) becomes discrete and can be written as σ̂0(ω) =∑

s P sδ(ω − sωm). This implies that the output spectrum will
be discrete as well and the generated frequency harmonics will
consist of the excitation frequency up- and down-modulated
by the modulation frequency. In this case, one can choose
	ω = ωm for discretization of the T-matrix equation and
replace σ̂0(ωp − ωq) by P (p−q) in Eqs. (13) and (14). The
modulation-induced dispersion effects in self-couplings and
mutual couplings can be taken into account approximately
by considering the dependence of the Fourier spectrum of
conductivity to input frequencies ωp in the matrix equation.

TM polarization:

[T ]qpmn = δmn

J ′
n

(ωp

c
R
)
Jn

( ncωp

c
R
)
δpq − ncJn

(ωp

c
R
)
J ′

n

( ncωp

c
R
)
δpq + icμ0

2π
σ̂0(ωp − ωq)Jn

( ncωq

c
R
)
Jn

(ωq

c
R
)

−H ′
n

(ωp

c
R
)
Jn

( ncωp

c
R
)
δpq + ncHn

(ωp

c
R
)
J ′

n

( ncωp

c
R
)
δpq − icμ0

2π
σ̂0(ωp − ωq)Jn

( ncωq

c
R
)
Hn

(ωq

c
R
) . (13)

TE polarization:

[T ]qpmn = δmn

J ′
n

( ncωp

c
R
)
Jn

(ωp

c
R
)
δpq − ncJn

( ncωp

c
R
)
J ′

n

(ωp

c
R
)
δpq − i

2πε0c
σ̂0(ωp − ωq)J ′

n

( ncωq

c
R
)
J ′

n

(ωq

c
R
)

−Hn

(ωp

c
R
)
J ′

n

( ncωp

c
R
)
δpq + ncH ′

n

(ωp

c
R
)
Jn

( ncωp

c
R
)
δpq + i

2πε0c
σ̂0(ωp − ωq)J ′

n

( ncωq

c
R
)
H ′

n

(ωq

c
R
) . (14)

The T-matrix for a multimaterial wire consisting of several
dielectric and graphene layers can be obtained by generalizing
the T-matrix obtained here using an aggregate T-matrix [49]

approach, which is presented in Sec. 2 of the Supplemental
Material [54].
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FIG. 2. The schematic of an aperiodic arrangement of microwires
wrapped by time-varying graphene layers.

B. Aperiodic array of time-varying wires

Next, we consider an aperiodic array of N graphene-
wrapped wires that can have different sizes, different materials,
and different time-variation profiles for the conductivity of
graphene layers, as shown in Fig. 2. We introduce N local
coordinate systems located at the centers of N wires, with
(xl,yl) and (ρl,φl) denoting the Cartesian and polar coordinates
of the frame corresponding to the lth wire, respectively. The
vector pointing from the origin of the global coordinate system
to the center of the lth wire is defined as �rl = (xcl,ycl,0), as
shown in Fig. 2.

The scattered fields from each wire can be expressed as a
summation of multipole expansions with different frequency
harmonics in its corresponding local coordinate system. For
the TM polarization, the scattered electric field from the lth
microwire can be written as

�El
sz =

+∞∑
p=−∞

+∞∑
m=−∞

p
mBlHm

(
ωp

c
ρl

)
eimφl , (15)

where p
mBl is the scattering coefficient of the lth microwire

corresponding to the mth cylindrical mode and the pth fre-
quency harmonic and ωp = ω0 + p	ω. A similar equation can
be written for �Hsz in the case of TE polarization. Using Graf’s
addition theorem, each cylindrical mode of the scattered field
in the local coordinates of the lth microwire can be translated
to an expansion of cylindrical modes of incident field in the
local coordinates of the kth microwire as [46]

Hm

(
ωp

c
ρl

)
eimφl =

+∞∑
n=−∞

αmn(�rk,�rl)Jn

(
ωp

c
ρk

)
einφk , (16)

where αmn(�rk,�rl) is the translation coefficient of cylindrical
harmonics and is given as [46]

αmn(�rk,�rl) = Hm−n

(
ωp

c
dl,k

)
ei(n−m)φl,k , (17)

where dl,k =
√

(ycl − yck)2 + (xcl − xck)2 and φl,k =
arctan 2(ycl − yck,xcl − xck). Following the block structure

of the T-matrix, a translation matrix can be defined as
α(�rk,�rl) = [α(�rk,�rl)]

qp
mn, whose element relates the pth

frequency harmonic corresponding to the nth cylindrical
mode of the incident field to the qth frequency harmonic
corresponding to the mth cylindrical mode of the scattered
field. Due to the decoupling of frequency harmonics in
translation of cylindrical modes, α

qp
mn(�rk,�rl) = δqpαmn(�rk,�rl).

Denoting the isolated T-matrix of the lth microwire as T l ,
it can be written as

Bl = T l

⎛
⎜⎜⎜⎝Al +

N∑
k=1
k �=l

α(�rl,�rk)Bk

⎞
⎟⎟⎟⎠. (18)

Writing the same coupling equation for all N microwires, we
will arrive at the following system of equations whose solution
gives the unknown scattering coefficients of each microwire:⎡

⎢⎢⎢⎢⎢⎢⎣

(T 1)−1 −α(�r1,�r2) · · · −α(�r1,�rN )

−α(�r2,�r1) (T 2)−1 · · · −α(�r2,�rN )

...
...

. . .
...

−α(�rN ,�r1) −α(�rN ,�r2) · · · (T N )−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

B1

B2

...

BN

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

A1

A2

...

AN

⎤
⎥⎥⎥⎥⎦. (19)

In the above equation, Al is the vector of coefficients corre-
sponding to the multipole expansion of the incident field in the
local coordinates of the lth microwire. Similar equations can
be obtained for TE polarization simply by replacing the TM
T-matrix with the TE counter.

In building the T-matrices of the wires with periodic
modulations in time, if the modulation frequencies are the same
and equal to ωm, one can choose 	ω = ωm. Otherwise, in the
case of different modulation frequencies, 	ω should be chosen
as the greatest common divisor of all modulation frequencies
to capture the cross coupling of all frequency harmonics.

C. Periodic array of time-varying wires

Now, let us consider an array of time-varying graphene-
wrapped microwires that is periodic along the x-axis direction
with a periodicity of � as shown in Fig. 3. According to the
Floquet theorem [47,48], the scattered field from the array
under illumination of a monochromatic plane wave with an
excitation frequency of ω0 and an incidence angle of φ0 can be
written as follows for TM polarization:

�Esz =
+∞∑

l=−∞

+∞∑
p=−∞

+∞∑
m=−∞

Bp
mHm

(
ωp

c
ρl

)
eimφl eiω0l� cos(φ0)/c

(20)

in which the exponential term eiω0l� cos(φ0)/c is due to the trans-
verse moment introduced by the oblique incidence. Following
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FIG. 3. The schematic of a periodic array of microwires wrapped
by time-varying graphene layers.

a similar procedure for the treatment of an aperiodic array, the
coupling equation in this case can be written as

B = T

⎛
⎜⎜⎜⎝A +

+∞∑
l=−∞
l �=0

α(�r0,�rl)e
iω0l� cos(φ0)/cB

⎞
⎟⎟⎟⎠, (21)

which leads to

B = T

⎛
⎜⎜⎜⎝I − T

+∞∑
l=−∞
l �=0

α(�r0,�rl)e
iω0l� cos(φ0)/c

⎞
⎟⎟⎟⎠

−1

A. (22)

The semi-infinite summations in (22) are called lattice sums,
which are slowly convergent. However, they can be efficiently
and accurately evaluated using a recurrence formula [48] or a
series acceleration technique such as Shank’s transformation
[51]. Once the unknown scattering coefficients are obtained,
the Fourier integral representation of Hankel functions can be
used to expand the scattered fields in terms of a summation
of reflected and transmitted plane waves [48] over different
frequency harmonics and spatial diffraction orders as

Er (x,y) =
+∞∑

p=−∞

+∞∑
v=−∞

ei(kxvx+kv,py)
+∞∑

m=−∞
pv,p,mBp

m, (23)

Et (x,y)=
+∞∑

p=−∞

+∞∑
v=−∞

ei(kxvx+kv,py)

(
δv0δp0 +

+∞∑
m=−∞

pv,p,mBp
m

)

(24)

with

pv,p,m =
⎧⎨
⎩

2cm(−i)m(kxv+ikv,p)m

�kv,pωm
p

(m � 0),

2c|m|(i)|m|(kxv−ikv,p)|m|

�kv,pω
|m|
p

(m < 0),
(25)

qv,p,m =
⎧⎨
⎩

2cm(−i)m(kxv−ikv,p)m

�kv,pωm
p

(m � 0),

2c|m|(i)|m|(kxv+ikv,p)|m|

�kv,pω
|m|
p

(m < 0),
(26)

where kxv,p = −ω0
c

cos(φ0) + 2vπ� and kv,p =√
ω2

p/c2 − k2
xv . In the above equations, v denotes the spatial

diffraction order, p denotes the order of the frequency
harmonic, and m denotes the cylindrical mode index.

D. Substrate multiple-scattering effects

For a finite aperiodic array, the multiple scattering effects
between wires and a layered substrate can be characterized
through a reflection matrix whose elements are obtained by
evaluating Weyl-type integrals. In this case, the coupling
equation (18) can be modified as [50,56]

Bl = T l

⎛
⎜⎜⎜⎝Al +

k=N∑
k=1
k �=l

α(�rl,�rk)Bk +
k=N∑
k=1

RWkβ(�rl,�rk)Bk

⎞
⎟⎟⎟⎠,

(27)

where β(�rl,�rk) is the matrix of translation coefficients for
regular cylindrical harmonics, which can be built similar to
α(�rl,�rk), and its elements are obtained as [46]

βqp
mn(�rl,�rk) = δqpJm−n

(
ωp

c
dl,k

)
ei(n−m)φl,k . (28)

RWk is the reflection matrix of the substrate for multipoles of
the kth wire whose elements can be expressed as [50]

qp
mnRWk = δqp

2π

∫ +∞

−∞
�(ωp,nx)Fm+n

(
2ωp

c
hk,nx

)
dnx (29)

in which hk is the distance of the kth wire from the top interface
of the substrate, �(ωp,nx) is the TM or TE reflection coefficient
from the top interface of the substrate corresponding to an
angular frequency of ωp and a tangential wave vector of kx =
nxωp/c, and Fm(y,nx) is the angular spectrum of scattered
cylindrical harmonics, which can be expressed as

Fm(y,nx) = 2ei
√

1−n2
xy√

1 − n2
x

e−im arccos(ny ). (30)

The integrals in (29) are Weyl-type integrals that can
be evaluated efficiently by adopting a numerical integration
scheme based on a quadrature algorithm [57,58]. It should be
noted that in the presence of a substrate, Al takes into account
both incident and reflected fields from the substrate.

For the periodic case, a similar procedure can be adopted.
However, it is more convenient to use a scattering matrix
approach to obtain reflection and transmission coefficients of
the layered system through a recursive formula [48,51] as it
does not involve numerical evaluation of Weyl-type integrals.

E. Scope of the method

A block diagram of the procedure for calculation of reflected
and transmitted fields in the periodic case and the involved
equations is demonstrated in Fig. 4. The procedure for obtain-
ing scattered fields in an aperiodic array is similar, with the
governing matrix equation being replaced with (19) and the
scattered field being given by (15). Further details regarding
technical implementation and assembling of matrices are given
in the Supplemental Material [54].

The proposed technique is an analytical treatment of the
problem, and it should yield exact results as long as the
modulation-induced dispersion effects are negligible, which
is guaranteed for the experimentally accessible modulation
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FIG. 4. The block diagram of the steps and equations involved in
the calculation of transmitted and reflected fields for a periodic array
of wires wrapped by time-modulated graphene layers.

frequencies of electro-optical materials in THz and IR frequen-
cies. The only numerical treatments regarded in the method are
a truncation of frequency harmonic and multipole expansions,
which can be carried out carefully to ensure the convergence
of the results.

Although the T-matrix method developed here is only
applicable for modeling wire elements with time-modulated
surface conductivities, its application is not limited to only
graphene. The active charge accumulation layers in highly
doped semiconductors, transparent conducting oxides, and
transition-metal nitrides are ultrathin and quasi-2D, which
allows them to be modeled with a surface conductivity. The
equivalence between 2D and volumetric models is established
for modeling graphene layers [59]. It has been shown that
an ultrathin volumetric layer with a permittivity of ε and
a thickness of d is equivalent to a surface conductivity of
σ = −iωε0d(ε − 1).

In the development of this formulation, it has been assumed
that the axes of microwires are parallel to each other and the
incident plane is perpendicular to the wires axes such that there
is no cross-coupling between TE and TM polarizations. The
method can be readily extended to the case of crossed wire
configurations and out-of-plane incidence using a generalized
T-matrix accounting for cross-coupling between orthogonal
polarizations [51], which is beyond the focus of this work.
Furthermore, the method can be used for any arbitrarily-shaped
time-varying 2D scatterer by numerical retrieval of the T-
matrix corresponding to different frequency harmonics. An
extension to the three-dimensional T-matrix method [60] is
also feasible, but we leave it for future research. It should be
mentioned that the use of 2D scatterers is preferred in terms
of viability as they can be addressed and biased independently
without the need for complex three-dimensional grids.

II. VALIDATION

In this section, we rigorously validate the developed semi-
analytical framework by comparing the near-field results with

full-wave FDTD simulations. To this purpose, we consider
a dielectric microwire with a radius of R = 50 μm and a
permittivity of ε = 3.9 under normal incidence of a plane
wave with an excitation wavelength of λ = 100 μm. The
frequency-dependent conductivity of monolayer graphene is
dominated by intraband transitions in the THz regime, which
can be expressed as [61]

σintra(ω) = i
2e2

πh̄2

kBT

ω + iτ−1

×
(

Ef

2kBT
+ ln[1 + exp(−Ef /kBT )]

)
, (31)

where e is the electron charge, h̄ is the reduced Planck’s
constant, kB is the Boltzmann constant, T is temperature,
and τ and Ef are the scattering time and Fermi energy
level of graphene, respectively. At room temperature, kBT =
25.7 meV and Ef � kBT for moderately doped graphene. As
such, the conductivity can be approximated as [61]

σintra(ω) ≈ 2ie2

πh̄2

kBT

ω + iτ−1

(
Ef

2kBT

)
. (32)

The relationship between the Fermi level, Ef , of the graphene
sheet and the gate voltage, Vg , in a parallel capacitor configu-
ration can be expressed as

Ef = h̄vf

√
πCox/e|Vg − VDirac|, (33)

where Cox is the geometric capacitance of the gate oxide
and VDirac is the gate voltage at which minimum conductance
is observed. According to (32) and (33), the conductivity
of graphene follows a temporal profile proportional to the
square root of the modulation voltage. Applying an external
bias with a sine-squared waveform such that Ef = Ef 0[1 +
β sin(ωmt + α)], the temporal profile of graphene conductivity
for an excitation frequency of ω0 can be written as

σ (ω0,t) = σintra(ω0,Ef 0){[1 + β sin(ωmt + α)]}. (34)

Throughout this paper, the scattering time is considered as τ =
0.5 ps. Electrical tunability of graphene’s Fermi energy level
has been demonstrated experimentally in a range of 0–0.6 eV
[13]. Here, we have considered Ef 0 = 0.3 eV and β = 0.3
such that the doping level is moderate and within a practical
range.

FDTD simulations were carried out using an in-house de-
veloped solver, characterizing graphene as a dispersive surface
conductivity [62] whose plasma frequency is also modulated
in time according to the sinusoidal profile. To model the
conformal graphene sheet coating the microwire, a staircase
approximation was used [62]. First, the results were compared
for different Fermi energy levels and frequencies in the case
of unmodulated conductivity. A frequency shift of 0.3 THz
was observed in the FDTD results compared to semianalytical
solutions as a result of staircasing approximation. This shift
is considered in all the FDTD simulations to make a more
accurate comparison. The numerical simulation of harmonic
generation in time-modulated objects using FDTD requires
long time simulations, making it more susceptible to numerical
errors. In particular, for modulation frequencies accessible in
practice, which are very small compared to the excitation
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frequency in the THz regime, capturing the steady-state so-
lution will become very challenging and time-consuming. To
ensure the accuracy and convergence of FDTD simulations, we
consider a modulation frequency of fm = f0/8. It should be
remarked that this modulation frequency may not be accessible
in practice and is only considered here for the sake of valida-
tion. In all the subsequent analyses and presented applications,
we limit ourselves to the experimentally accessible range for
the modulation frequency of graphene. The microwires were
simulated by applying periodic boundary conditions along
the wire axis. A cell size of 	x = 	y = 	z = 0.5 μm was
used for discretization of the computational domain. The time
step was chosen as 	t = 0.925 fs and the total simulation
time was considered as 23 040 time steps (≈21.3 ns). The
near-field results were postprocessed in the last four cycles of
modulation to obtain generated frequency harmonics through
taking the fast Fourier transform (FFT) of time-domain fields.
In the semianalytical simulations, the number of cylindrical
modes and frequency harmonics were truncated at M = ±3
and Mf = ±3 to ensure an almost perfect convergence.

To validate our semianalytical framework, we obtain the
near-field results of fundamental and first-order generated har-
monics using the FDTD and T-matrix methods for both TE and
TM polarizations in two cases of isolated microwires as well as
a periodic arrangement of microwires with a periodicity of � =
130 μm. For the sake of brevity, only the near-field results cor-
responding to the periodic arrangement of microwires incident
by a TE-polarized plane wave are included here in Fig. 5, and
the rest of the results are presented in Sec. 3 of the Supplemental
Material [54]. An excellent agreement is obtained between
the results. The mean absolute differences between the results
are 3.86%, 6.68%, and 5.49% with respect to the maximum
field amplitude for the fundamental, up-modulated, and down-
modulated harmonics, respectively. A similar agreement can
also be observed for other configurations included in the Sup-
plemental Material, which verifies the validity of our developed
theoretical framework. These discrepancies between the two
methods are mainly attributed to the FDTD inherent errors and
nonidealities, such as a staggered grid for evaluation of field
components and finite-time simulations.

We stress that capturing the steady-state response of time-
modulated metamaterials in the infrared and optical frequency
regimes is very challenging for FDTD simulations due to
the small spectral separation between frequency harmonics,
which requires long time simulations to be resolved accurately,
while the proposed technique gives an analytical solution of
the problem and it should yield exact results as long as the
modulation-induced dispersion effects are negligible. It is ex-
pected that the FDTD results converge to the analytical solution
for small modulation frequencies by refining the discretization
and increasing the simulation time. In the account of limited
computational resources, here we have increased modulation
frequency up to fm = f0/8 and used a total simulation time
of ≈21.3 ns to successfully perform FDTD simulations and
validate our theoretical framework.

The computational statistics of the two methods are com-
pared in Table I for the periodic simulation of microwires. As
can be seen, a significant computational gain is afforded by
using the semianalytical technique in terms of required mem-
ory and computation time. The large required computational

FIG. 5. The comparison of near-field results obtained with the
T-matrix and FDTD method corresponding to a periodic array of
dielectric cylinders coated by sinusoidally modulated graphene layers
incident normally by a TE-polarized plane wave.

resources by FDTD limit its applicability to the analysis of
metamaterials, even with a few unit-cells, hindering the fast
design of realistic structures. On the contrary, the proposed
semianalytical approach can be used efficiently for the simula-
tion of large-area space-time gradient metamaterials. Further-
more, it provides physical insight into the space-time scattering
phenomena without the need for costly postprocessing.

III. POTENTIAL APPLICATIONS

Almost all of the previous works on space-time gradient
structures focused on exploiting time-reversal asymmetry to
develop nonreciprocal components [20–28] such as circula-
tors and insulators, while the capabilities of time-modulated
metamaterials in beam-shaping and wavefront engineering of
light have remained unexplored thus far. In this section, we
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TABLE I. Comparison of computational statistics of the T-matrix
and FDTD methods for the periodic simulation of microwires.

Method Computational time Memory requirement

T-matrix 15 s 2.6 KB
FDTD 40 min 150 MB

utilize the developed semianalytical framework to explore
potential applications of time-modulated metamaterial and
metasurface platforms for light manipulation. First, we analyze
the dependence of the frequency conversion process to the
resonant characteristics of time-modulated building blocks.
Then, we establish a systematic design rule for independent
control of the amplitude and phase of frequency harmonics in
time-modulated metasurfaces, which enables wavefront engi-
neering and holographic generation of frequency harmonics.
Finally, we demonstrate the potential of space-time gradient
metamaterials for spatiotemporal manipulation of light by
designing a time-modulated metalens for beam scanning in
time. The presented results provide key physical insights
to design time-modulated metamaterials, and they can be
generalized and implemented using various time-modulated
building blocks with alternative geometries incorporating dif-
ferent electro-optical materials in different frequency regimes.

A. Frequency conversion in time-modulated microwires

To gain more insight into the scattering phenomena from
time-modulated antennas, in this section we study the fre-
quency conversion efficiency of a time-modulated graphene-
wrapped microwire through analysis of scattering spectra
of frequency harmonics. The dependence of the frequency
conversion process to the resonant behavior of time-modulated
antennas has not been rigorously addressed so far and can
provide an intuitive starting point for designing metamaterial
platforms consisting of a plurality of such elements.

The frequency conversion can be thought of as a change
in the energy of photons due to time modulation, and it is a
direct result of temporal variation in the scattering [28,29]. As
such, the use of graphene as an electrically tunable material
offers a greater advantage in the THz frequency regime,
where graphene yields the largest tunability. Furthermore, it
is beneficial to integrate graphene into resonant geometries,
resulting in larger scattering modulation and higher-frequency
conversion efficiency. Here, the topology of the microwire is
chosen to meet the following requirements: (i) support Mie
resonances in the THz regime, and (ii) allow for electrical
biasing of graphene in a parallel capacitor configuration. An
n-type silicon microwire with a radius of 40 μm and moderate
doping of 1015 cm−3 coated by a thin insulating layer of SiO2

with a radial thickness of 20 nm is chosen accordingly, as
shown in Fig. 6(a). The complex permittivity of silicon is

obtained via a Drude model [63] as ε(ω) = εinf − ω2
p

ω2+iω�
in

which εinf is the high-frequency permittivity, and ωp and �

are the plasma frequency and damping constant, respectively.
The plasma frequency is related to carrier concentration (N )
through ω2

p = Ne2

ε0m∗ , in which e is the electron charge, ε0 is
the vacuum permittivity, and m∗ is the effective mass of an

FIG. 6. Frequency conversion in a time-modulated graphene-
wrapped microwire. (a) The schematic depiction of a graphene-
wrapped Si/SiO2 microwire modulated sinusoidally in time. (b) The
TE scattering efficiency spectrum of time-invariant microwire with
a Fermi energy level of Ef = 0.3 eV. The peaks correspond to TE
resonant modes. Parts (c) and (d) represent the scattering efficiencies
of the fundamental and first-order generated frequency harmonics as
functions of Fermi energy modulation depth and wavelength. (e) The
magnetic-field profiles corresponding to the resonant modes of the
fundamental and first-order frequency harmonics.

electron. For silicon, we use εinf = 11.7, � = 180 THz, and
m∗ = 0.27me.

The scattering efficiency of the microwire is demonstrated
in Fig. 6(b) as a function of wavelength for time-invariant
graphene with a Fermi-energy level of Ef = 0.3 eV, incident
normally by a TE-polarized plane wave. The peaks in the
scattering efficiency spectrum correspond to the TE resonant
modes, which are characterized according to their mode pro-
files. Next, we consider modulating the Fermi energy level
sinusoidally with an average value of Ef 0 = 0.3 eV. The
modulation frequency is chosen as fm = 1 GHz, which is well
within the practical range [30]. Furthermore, the generated fre-
quency harmonics can be resolved with the resolution of THz
detectors [64]. The extinction coefficients of fundamental and
first-order frequency harmonics are demonstrated in Figs. 6(c)
and 6(d), respectively, as functions of wavelength and Fermi
energy modulation depth. The resonant wavelengths corre-
sponding to the maximal scattering efficiencies are denoted
by white dashed lines for each frequency harmonic. As can be
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observed from the results, the maximum frequency conversion
efficiency is obtained in the vicinity of resonant modes of
the fundamental frequency harmonic as a result of maximal
scattering modulation, while the increase in the modulation
depth of the Fermi energy level results in a spectral shift
of the resonant modes. Moreover, the frequency conversion
efficiency is directly proportional to the modulation depth of
the Fermi energy level. It should be noted that, in the ac-
count of small modulation frequency, that modulation-induced
dispersion effects are negligible and the conversion efficiencies
of up- and down-modulated harmonics are almost equal. As
the modulation frequency increases, the dispersion effects
become more pronounced, which leads to a larger difference
between up- and down-modulated harmonics. By changing the
modulation frequency in the external bias, the time-modulated
microwire can serve as an electrically tunable harmonic gen-
erator. Figure 6(e) represents the near-field distributions of the
magnetic field corresponding to the resonances of fundamental
and first-order frequency harmonics. As can be seen, the mode
profiles of the generated frequency harmonic follow the same
distribution as those of the fundamental harmonic while being
symmetric with respect to the axial direction, which is due to
the symmetry and the absence of an incident field component
at these frequencies.

It should be mentioned that similar results can be obtained
for TM polarization, while the resonant spectra of frequency
harmonics will be different due to geometrical asymmetry in
orthogonal directions.

B. Time-modulated metasurfaces:
Holographic generation of harmonics

Due to the enhanced conversion efficiency associated with
resonant features of Mie scattering, graphene-wrapped mi-
crowires are ideal candidates for realization of time-modulated
metasurfaces. Furthermore, the developed semianalytical tech-
nique in this paper allows for a broader exploration of novel
space-time scattering phenomena, and it can be used to estab-
lish design rules for such emerging paradigms.

Here, we consider a periodic arrangement of graphene-
wrapped Si (40 μm)/SiO2 (20 nm) microwires with a sub-
wavelength periodicity of � = 130 μm deposited laterally
on a silica substrate with a thickness of 80 μm, incident
normally by a TE-polarized plane wave. The Fermi-energy
level of graphene is modulated with an offset sinusoid as
Ef = Ef 0[1 + β sin(ωmt + α)] with Ef 0 = 0.3 eV, and the
modulation frequency is assumed to be fm = 1 GHz. Such
a metasurface can be implemented by using an active RF
biasing grid, which allows for independent addressing and
biasing of each microwire. Different modulation depths and
phase delays can be achieved by using RF amplifiers
and phase shifters [65], respectively. We study the effect of
these parameters on the amplitude and phase of generated
frequency harmonics to establish a design rule for wavefront
engineering in time-modulated metasurfaces.

Figure 7(a) demonstrates the amplitude and phase shift of
the transmission coefficients corresponding to the fundamental
and first-order frequency harmonics generated by the metasur-
face, as functions of modulation depth and incident wavelength
for a modulation phase delay of α = 0. The phase shifts of

FIG. 7. (a) The amplitude and phase shifts of transmission co-
efficients corresponding to fundamental and first-order frequency
harmonics as functions of wavelength and modulation depth of the
Fermi energy for a modulation phase delay of α = 0. The phase shift
is depicted as pseudocolor and is measured at each wavelength with
respect to the phase atβ = 0. Part (b) demonstrates the same quantities
as functions of wavelength and modulation phase delay of the Fermi
energy for a modulation depth of β = 0.75. The phase shift at each
wavelength is measured with respect to the phase at α = 0.

frequency harmonics are shown as the pseudocolors in the 3D
plots. The phase reference at each wavelength is chosen as the
phase corresponding to β = 0 to show more clearly the phase
variations with respect to the Fermi energy modulation depth.
The dips in the transmission spectrum of the fundamental
frequency harmonic correspond to TE resonant modes. As
can be seen from the results, the transmission coefficients of
generated frequency harmonics exhibit a peak in the vicinity of
fundamental harmonic resonant wavelengths due to enhanced
scattering modulation. Moreover, the transmission amplitude
of generated frequency harmonics increases almost linearly
by increments of modulation depth of the Fermi energy while
maintaining an almost constant phase at each wavelength. As
such, changing the modulation depth of the Fermi energy level
can be used for broadband amplitude modulation of generated
frequency harmonics.

We also study the amplitude and phase shift of the transmis-
sion coefficients as functions of modulation phase delay and
incident wavelength for a Fermi energy modulation depth of
β = 0.75. The results are presented in 3D plots of Fig. 7(b)
in which the phase shift at each wavelength is measured with
respect to the phase at α = 0. It can be clearly observed from
the results that the generated frequency harmonics acquires
a phase shift of ±α while maintaining a constant amplitude
at each wavelength. It can be inferred that the light picks up a
dispersionless phase shift proportional to the modulation phase
delay upon frequency transitions in a time-modulated meta-
surface while maintaining a constant amplitude. In particular,
the phase shifts of up- and down-modulated harmonics are
conjugate. In this context, this phase shift closely resembles
the dispersionless geometric phase shift, which is introduced
by the rotation of elements when the circularly polarized light
is undergoing polarization conversion in a half-wave plate
while the phase shifts for circular polarizations of opposite
handedness are opposite [66,67]. The dispersionless phase
shift introduced by modulation phase delay covers a 2π

span by electrically tuning the modulation phase delay via
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RF phase shifters in biasing. As such, it can be used for
broadband wavefront engineering of generated harmonics and
realization of different functionalities such as steering and
focusing.

It should be noted that similar results can be obtained for
reflection of generated harmonics, which are not included here
for the sake of brevity. Time-modulated elements are bound to
radiate higher-order frequency harmonics on both sides of the
metasurface due to symmetry and the absence of an incident
field component at these frequencies, unless the transmission
is blocked by a backmirror.

The obtained results suggest that independent control over
the amplitude and phase of generated harmonics can be
achieved by changing the modulation depth and the phase
delay, which enables full complex-amplitude modulation and
holographic generation of frequency harmonics. This approach
is ideal for holography and reconstruction of complex patterns
in the nearfields of generated frequency harmonics as the
amplitude and phase modulations do not interfere with each
other. Moreover, it can address the challenges facing electri-
cally tunable designs based on resonant phase shifts [12–16]
suffering from limited phase shift and an extremely narrow
bandwidth.

To demonstrate the capability of the proposed approach and
the time-modulated metasurface in holographic generation of
harmonics, we aim to reconstruct a linear pattern of the first
up-modulated frequency harmonic with three flat spots at the
intervals of −12λ < x < −6λ, 2λ < x < 6λ, and 10λ < x <

12λ at a target plane with a distance of 5λ from the metasurface
for an incident wavelength of λ = 300 μm at which the meta-
surface exhibits an enhanced frequency conversion efficiency.
We consider a space-time gradient metasurface consisting of
a finite array of 101 identical graphene-wrapped microwires,
which are modulated via an RF biasing grid incorporating
amplifiers and phase shifters to provide the require modu-
lation depth and phase delay for each element, as shown in
Fig. 8(a).

The required amplitude and phase distributions at the
metasurface plane are obtained using the fast Fourier transform
holography method [7], and they are mapped to the mod-
ulation depth and modulation phase delay of the elements,
respectively, as shown in Figs. 8(b) and 8(c). The transmit-
ted magnetic-field distribution corresponding to the first up-
modulated frequency harmonic is obtained and demonstrated
in Fig. 8(d). As can be seen from the results, the pattern is
clearly described at the desired location, which indicates that
the amplitude profiles are correctly imprinted as well as the
phase profiles. Figure 8(e) compares the desired pattern and
the realized pattern by the time-modulated metasurface. The
edges of flat spots are reconstructed with excellent accuracy.
The speckle noise in the flat spots is mainly due to the
limited sampling size of the metasurface. It should be noted
that the target image is formed in both below and above the
metasurface due to the symmetrical radiation of generated
frequency harmonics. A similar behavior can be observed for
single-layer nonlinear metasurfaces and linear metasurfaces
operating at cross-polarization [66–68].

The electrical tunability of the modulation parameters
allows for multifunctionality and on-demand manipulation of
light. By controlling modulation frequency (fm), modulation

FIG. 8. Holographic generation of frequency harmonics using
time-modulated metasurfaces. (a) The schematic of a time-modulated
metasurface consisted of graphene-wrapped microwires biased via
an active RF circuit incorporating amplifiers and phase shifters to
provide required modulation depth and phase delay. Parts (b) and
(c) demonstrate the required amplitude and phase modulation at the
metasurface plane, respectively, which are mapped to the modulation
depth and phase delay of the elements. (d) The magnetic field am-
plitude corresponding to the first-up modulated frequency harmonic
generated in the forward direction (transmission). (e) Comparison of
the ideal and realized patterns at the target plane located 5λ away from
the metasurface plane.

phase delay (α), and modulation depth (β) via RF biasing grid,
the metasurface can act simultaneously as a tunable harmonic
generator and a manipulator. Furthermore, as demonstrated
by the results in Fig. 7, the independent control over the
amplitude and phase of generated harmonics can be achieved
in a broad range of wavelengths enabling wideband holog-
raphy. It should be remarked, however, that the frequency
conversion efficiency depends on the resonant characteristics
of the element, which makes the efficiency dependent on the
wavelength and polarization, with the maximum efficiencies
obtained in the vicinity of the resonant wavelengths of the
fundamental frequency harmonic. In the account of broadband
tunability of graphene, the design can be modified to operate in
near-IR and mid-IR frequency regimes with a lower frequency
conversion efficiency due to the smaller tunability of graphene
conductivity.

C. Time-modulated metamaterials:
Spatiotemporal control of light

In the nonresonant Mie scattering region (effective medium
regime) associated with deeply subwavelength microwires,
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FIG. 9. (a) The effective permittivity of the deeply subwavelength
graphene-wrapped microwire as a function of the Fermi energy level
of graphene. Parts (b) and (c) compare the near-field distributions
of electric field corresponding to graphene-wrapped microwires and
homogenized counterparts for Fermi energy levels of Ef = 0.2 and
0.5 eV, respectively.

they can be used to realize an effective refractive index by
virtue of internal homogenization [3,15,52]. As such, time-
modulated graphene-wrapped microwires can be used for
realization of space-time gradient metamaterials and photonic
crystals [69]. Such platforms offer exciting opportunities for
realization of magnetless nonreciprocal optical components
[27] as well as spatiotemporal manipulation of light.

As graphene yields a larger tunability at longer wavelengths
while exhibiting a lower loss in shorter wavelengths, we choose
to operate at λ = 100 μm to achieve a balanced large tunability
and low loss in the effective refractive index of elements. The
microwire topology is chosen as Si (5 μm)/SiO2 (10 nm) to be
within the effective-medium regime. To demonstrate the appli-
cability of graphene-wrapped microwires as time-modulated
building blocks for both polarizations, in this section we
consider a TM-polarized incidence. The effective permittivity
of the graphene-wrapped microwire is obtained as a function
of the Fermi energy level of graphene for a TM-polarized
plane wave using a parameter retrieval technique [3,52], and
it is shown in Fig. 9(a). A large tunability is achieved for the
real part of permittivity while maintaining a relatively small
imaginary part by changing the Fermi energy level from 0 to
0.6 eV. To verify the homogenization, we compare the scat-
tering of graphene-wrapped microwire against homogenized
counterparts. Figures 9(b) and 9(c) compare the distribution
of electric-field magnitude corresponding to the graphene-
wrapped microwires with Fermi energy levels of 0.2 eV and
0.5 eV with their homogenized counters, respectively. An
excellent agreement is observed between the near-field distri-
butions verifying the validity of the homogenization approach
and implying that the graphene-wrapped microwires indeed
scatter similarly to the homogenized counters. It should be
noted that the field profiles inside the microwires are different
for the graphene-wrapped and homogenized microwires.

The results presented in Fig. 9 can be used to implement
space-time gradient metamaterials. Here, we aim to design a
time-modulated metalens yielding sinusoidal beam-scanning
in time such that θ = θ0 + 	θ sin(ωmt) withfm = 1 GHz. This
enables ultrafast scanning of light as it affords a period of τ =
1 ns for each scanning cycle. In the static case, a generalized
Eaton lens can be used for bending a beam toward an arbitrary

FIG. 10. Spatiotemporal manipulation of light using a time-
modulated metamaterial. (a) The schematic depiction of a space-time
gradient metamaterial consisted of graphene-wrapped microwires bi-
ased from the top using an RF biasing grid incorporating amplifiers to
provide required modulation depth and offset for each element. Parts
(b) and (c) demonstrate the required average value and modulation
depth of the effective permittivity, respectively, as functions of the
radial position within the lens, which are mapped to the average
value and modulation depth of the Fermi energy of graphene-wrapped
microwires. (d) The steady-state electric-field amplitude distribution
at different time steps within a scanning cycle.

refraction angle of θ . The spatial refractive index profile of
such a lens can be approximated as [70]

n(r) ≈
(

Dlens

r
− 1

)( θ
π+θ

)

, (35)

where Dlens is the diameter of the lens and r is the radial
distance from the center. It should be noted that the singularity
of the refractive index profile at the center of the lens and
the large required indices limits the applicability of graphene-
wrapped Si microwires for achieving large steering angles. By
substituting θ = θ0 + 	θsin(ωmt) into the above equation and
assuming 	θ 
 π + θ0, we can obtain

n(r,t) ≈
(

Dlens

r
− 1

)( θ0
π+θ0

)

×
[

1 + 	θ sin(ωmt)

π + θ0
ln

(
Dlens

r
− 1

)]
= navg(r) + 	n sin(ωmt). (36)

According to (36), a sinusoidal beam-steering can be achieved
by a sinusoidal modulation of the refractive index profile when
the steering range is small (	θ 
 π + θ0). The space-time
gradient metamaterial can be implemented by vertical deposi-
tion of microwires on a substrate, which can be addressed and
biased independently from the top using an RF biasing grid
incorporating amplifiers to provide the required modulation
depth and offset for each element, as shown schematically in
Fig. 10(a).
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We use a circular array of 331 microwires arranged in 11
layers with an edge-to-edge separation distance of 10 μm
forming a circular lens with a diameter of Dlens = 4λ =
400 μm. The filling fraction in this case is FF ≈ 0.2 and the
sampling period in the radial direction is 20 μm (λ/5), which is
within the effective-medium regime. The lens is incident by a
TM-polarized Gaussian beam with a waist of Dy/4 = λ and an
offset of x0 = Dy/4 with respect to the center of the lens. We
choose θ0 = 45◦ and	θ = 25◦ and obtain the required average
value and modulation depth of the effective permittivity of
microwires using (36) based on the effective-medium theory as
functions of radial position within the lens. Using the presented
results in Fig. 9, the values are then mapped into the average
value and modulation depth of graphene-wrapped microwires,
as shown in Figs. 10(b) and 10(c).

The structure is solved using the proposed semianalyt-
ical framework, and the steady-state time-domain solution
is obtained by taking the inverse Fourier transform of the
frequency response. The frequency harmonics are considered
up to Mf = ±4 in simulations to ensure the convergence
of the results. Figure 10(d) demonstrates the electric-field
amplitude at different time steps within a cycle of modulation.
The results verify the ultrafast beam scanning achieved in the
steering range set by the design. The temporal scanning of
the beam can be seen more clearly in the movie provided
as Supplemental Material [54]. The presented design illus-
trates the great promise of time-varying metamaterials for
spatiotemporal manipulation of light. A more rigorous design

approach can be established by extending generalized field
transformations into the time domain and employing temporal
variations beyond the sinusoidal modulation profile.

IV. CONCLUSION

A robust semianalytical framework was developed based on
a transition-matrix formulation that is able to efficiently char-
acterize the near-field and far-field scattering from periodic and
aperiodic arrangements of time-varying graphene-wrapped
wire elements on top of layered substrates. The method
was verified by comparing the results with full-wave FDTD
simulations. A significant computational gain was afforded by
the method, which enables fast design of space-time gradient
metamaterials with advanced functionalities. It was applied to
establish novel design rules for time-modulated metamaterial
platforms and explore their potential applications in frequency
conversion, holographic generation of frequency harmonics,
and spatiotemporal manipulation of light. Our finding can
foster the design of time-modulated metamaterials with dif-
ferent geometries and tunable materials in different frequency
regimes, enabling novel and improved functionalities.
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