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Application of the Landau-Zener-Stückelberg-Majorana dynamics to the electrically
driven flip of a hole spin
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An idea of employing the Landau-Zener-Stückelberg-Majorana dynamics to flip a spin of a single ground
state hole is introduced and explored by a time-dependent simulation. This configuration interaction study
considers a hole confined in a quantum molecule formed in an InSb 〈111〉 quantum wire by application
of an electrostatic potential. An up-down spin-mixing avoided crossing is formed by nonaxial terms in the
Kohn-Luttinger Hamiltonian and the Dresselhaus spin-orbit one. Manipulation of the system is possible by the
dynamic change of an external vertical electric field, which enables the consecutive driving of the hole through
two anticrossings. Moreover, a simple model of the power-law-type noise that impedes precise electric control of
the system is included in the form of random telegraph noise to estimate the limitations of the working conditions.
We show that in principle the process is possible, but it requires precise control of the parameters of the driving
impulse.
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I. INTRODUCTION

Electric dipole spin resonance (EDSR) is a process in which
the spin state of a quantum system is manipulated by means
of an ac electric field [1–11]. This process can utilize a few
different mechanisms of electric-spin coupling: the spin-orbit
interaction [1,3,6–8,10,11], the spatial inhomogeneity of the
applied magnetic field [2,5], or of the hyperfine interaction
[4]. If the frequency of the electric signal is resonant to the
relevant energy difference of two levels with different spin,
then a transition between the levels may be induced, depending
on a certain set of selection rules.

A typical EDSR transition is done between two uncoupled
spin states. However, when two levels are involved in an
avoided crossing, then driving the system through this anti-
crossing is described by the Landau-Zener dynamics instead.
When the driving is periodic, the system accumulates the
Stückelberg phase between the transitions and this leads to
a constructive or destructive interference, depending on the
specific parameters of a given system. The theory related to
systems of this kind is described in a review article of Ref. [12].

Multiple harmonic generation in EDSR in an InAs nanowire
double quantum dot was recently observed for conduction band
electrons in double quantum dots [13]. The harmonics displays
a remarkable detuning dependence: Near the interdot charge
transition as many as eight harmonics were observed, while at
large detunings only the fundamental spin resonance condition
was detected. The transport dynamics of a periodically driven
system, modeling the level structure of a two-electron double
quantum dot, was studied theoretically [14,15]. It was shown
that the observed multiphoton resonances, which are dominant
near interdot charge transitions, are due to multilevel Landau-
Zener-Stückelberg-Majorana interference. The main features
observed in the experiments of Ref. [13] were replicated:
multiphoton resonances up to eight photons, a robust odd-
even dependence, and oscillations in the electric dipole spin-
resonance signal as a function of energy-level detuning.

The Landau-Zener dynamic was used to study the
possibility of manipulating the singlet-triplet (S-T+) avoided
crossing that arises due to the hyperfine interactions in a system
of two electrons in a double quantum dot in GaAs [16,17]. The
results concern a two-electron Landau-Zener system with the
spin-mixing singlet-triplet avoided crossing, resulting from
the hyperfine interaction. In both works, the necessity of
going beyond the simplest infinite-time Landau-Zener model
is stressed out, and the finite-time Landau-Zener theory
is employed. Moreover, the formulated master-equation
formalism allowed one to study the impact of phonon-mediated
hyperfine relaxation and charge-noise-induced dephasing on
the evolution of the system [17]. In the corresponding
experimental work [18], an all-electrical method for quantum
control was presented that relies on electron-nuclear spin
coupling and drives spin rotations on nanosecond time scales.
Interference patterns were observed [18] in singlet-state
occupation as a function of waiting time between consecutively
sweeping the system back and forth through a singlet-triplet
avoided crossing, due to phase accumulation, in agreement
with the Landau-Zener theory.

In a recent work, a p-channel silicon metal-oxide-
semiconductor field-effect transistor with a double dot in the
channel, formed by a pair of defects or impurities, was studied
[19]. A two-spin EDSR was realized experimentally, with the
main line as well as additional few-photon lines visible. A
suppression of the spin resonance was found in the vicinity of
a singlet-triplet avoided crossing.

II. MOTIVATION

The EDSR manipulation scheme was realized for valence
band holes in a quantum molecule created in a gated InSb
nanowire [11]. The mentioned work employed the strong
spin-orbit coupling of this material for the spin flipping and
measured the transport through the system as a result of lifting
the Pauli spin blockade.
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FIG. 1. An illustrative scheme of the transfer process idea. The
spin-dependent energy-level structure is shown with the desired spin-
flipping process utilizing two avoided crossings.

In this paper, we suggest a scheme for reversing the spin
state of a single hole confined in two electrostatic quantum
dots with tunneling coupling in a nanowire. The energy-level
structure of the system is presented schematically in Fig. 1.
First, by application of an external magnetic field along the
axis of the nanowire, an energy shift between the opposite spin
states, previously degenerated, is introduced—see the energy
difference between two tunneling anticrossings on the left-
hand side of Fig. 1. Second, we have taken advantage of an
avoided crossing that involves the states localized in different
dots with an opposing spin characteristic that appears in the
spectrum—see the right-hand side of Fig. 1. Its appearance
occurs due to the spin-orbit interaction and it is procured by
the shift mentioned above. We propose that an electrical control
signal can be applied that leads to a transition from the ground
state, of the heavy-hole spin-down type, to the first excited
state, of the heavy-hole spin-up type—see the dashed line
leading from the “START” to “STOP” points in Fig. 1. Instead
of using a long periodic signal, as is typically done in EDSR
processes, the system will be driven through two anticrossings
only a few times by a short cosine impulse.

The specifics of the impulse have been determined in our
calculations and a high transition efficiency of about 0.99 was
obtained by a detailed balancing of the impulse parameters.
The process is one order of magnitude faster than the alternative
EDSR approach, of a similar electric field amplitude, realized
in the same system, which is especially important in the
context of limited spin coherence time when performing spin
operations.

III. THEORY

A. Geometry of the system

We consider a system of a single hole in a quantum molecule
consisting of two quantum dots coupled vertically. The dots
are made by applying an external electrostatic potential to an
InSb quantum wire of a 〈111〉 zinc-blende crystal structure.

The nanowire is assumed to have a circular shape in the cross
section and a radius of Rdot = 50 nm. The geometry of the
system is similar to the one considered in Ref. [11].

We model a confinement potential of two vertically stacked
quantum dots in the form of an infinite circular quantum well
in the xy plane (corresponding to the cross section of the wire)
and two finite quantum wells along the z axis (the growth axis of
the wire). The zero of the energy scale is set to the degenerated
top of the heavy- and light-hole bands outside the dots. The
total potential is Û = [Vxy(ρ) + Vz(z)]I, where I is the unity
matrix,

Vxy(ρ) =
{

0, ρ � Rdot,

∞, ρ > Rdot,
(1)

and

Vz(z) = V0
[
V d

z (z + z0) + V d
z (z − z0)

]
,

V d
z (z) = −

e
z
4

(
1 + e

Hd
8

)2

e
z
4 + e

z+Hd
4 + e

4z+Hd
8 + e

Hd
8

,

z0 = 1

2
(Hb + Hd ). (2)

In the above equation, the V d
z (z + z0) part corresponds to the

shape of the confinement of one of the dots and the V d
z (z −

z0) part corresponds to the shape of the confinement of the
other one. V0 = 50 meV is the depth of the confinement. The
Hb = 11 nm parameter describes the separation of the dots
and Hd = 40 nm describes the width of the dots. The Vz(z)
potential is presented in Fig. 2(a) and the shape of the dots in
Fig. 2(b).

The adopted potential defining the system is symmetric with
respect to reversing the nanowire z axis. In any experimental
realization, the potential for each dot would be slightly differ-
ent. We have studied the impact of the asymmetry of the dots
in Appendix E.

B. Kohn-Luttinger Hamiltonian

We work in the effective mass approximation. The kinetic
energy of holes is calculated using the four-band Kohn-
Luttinger Hamiltonian [20]. The Hamiltonian for 〈100〉 crystal
orientation is given (in atomic units) by

T̂100 = 1

2

(
γ1 + 5

2
γ2

)
k2I − 2γ2

(
k2
xJx + k2

yJy + k2
z Jz

)
− 4γ3(kxkyJxy + kykzJyz + kzkxJzx), (3)

where Jx,Jy,Jz are the spin matrices for spin 3
2 , Jij =

1
2 (JiJj + JjJi), γ1,γ2,γ3 are the Luttinger parameters, and
k2 = k2

x + k2
y + k2

z [21,22]. To obtain the expression of the
same Hamiltonian for 〈111〉 orientation, one should express the
(kx,ky,kz)100 and (Jx,Jy,Jz)100 vectors of the 〈100〉 orientation
in the terms of (kx,ky,kz)111 and (Jx,Jy,Jz)111 vectors of the
〈111〉 orientation, respectively (see Appendix A).

If written in the basis (HH↑,LH↓,LH↑,HH↓) =
(| 3

2 , + 3
2 〉,| 3

2 , − 1
2 〉,| 3

2 , + 1
2 〉,| 3

2 , − 3
2 〉) the Hamiltonian for
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TABLE I. The operators used in the KL Hamiltonian definition.

P̂+ = (γ1+γ3)k̂2
⊥+(γ1−2γ3)k̂2

z

2 P̂− = (γ1−γ3)k̂2
⊥+(γ1+2γ3)k̂2

z

2

R̂s = −
√

3
6 (γ2 + 2γ3)k̂2

− R̂as =
√

6
3 (γ2 − γ3)k̂+k̂z

Ŝs =
√

3
3 (2γ2 + γ3)k̂−k̂z Ŝas = −

√
6

6 (γ2 − γ3)k̂2
+

k̂− = k̂x − ik̂y k̂+ = k̂x + ik̂y

k̂2
⊥ = k̂2

x + k̂2
y

the 〈111〉 orientation has the following form,

T̂ =

⎛
⎜⎜⎜⎝

P̂+ R̂s + R̂as −Ŝs − Ŝas 0

R̂∗
s + R̂∗

as P̂− 0 Ŝs + Ŝas

−Ŝ∗
s − Ŝ∗

as 0 P̂− R̂s + R̂as

0 Ŝ∗
s + Ŝ∗

as R̂∗
s + R̂∗

as P̂+

⎞
⎟⎟⎟⎠,

(4)

where the operators used in this definition are listed in Table I.
The Kohn-Luttinger Hamiltonian can be divided into two

parts,

T̂ = T̂s + T̂as,

T̂s =

⎛
⎜⎜⎜⎝

P̂+ R̂s −Ŝs 0

R̂∗
s P̂− 0 Ŝs

−Ŝ∗
s 0 P̂− R̂s

0 Ŝ∗
s R̂∗

s P̂+

⎞
⎟⎟⎟⎠,

T̂as =

⎛
⎜⎜⎜⎝

0 R̂as −Ŝas 0

R̂∗
as 0 0 Ŝas

−Ŝ∗
as 0 0 R̂as

0 Ŝ∗
as R̂∗

as 0

⎞
⎟⎟⎟⎠. (5)

The T̂s part is axially symmetric and hence its eigenstates
have defined z components of total angular momentum Jz =
J Bl

z + J en
z , which is the sum of Bloch J Bl

z and envelope J en
z z

components. For this reason, the computation of the system
described by T̂s is much easier as the process for each one
of the Jz subspaces can be done separately. The envelope

eigenfunctions of T̂s are four-dimensional vector functions,

�ax
(Jz,m)(
rh) =

⎛
⎜⎜⎜⎜⎜⎝

ξ
HH↑
jh

ei(Jz−3/2)φ

ξ
LH↓
jh

ei(Jz+1/2)φ

ξ
LH↑
jh

ei(Jz−1/2)φ

ξ
HH↓
jh

ei(Jz+3/2)φ

⎞
⎟⎟⎟⎟⎟⎠. (6)

Moreover, the non-axially-symmetric part T̂as is relatively
small: The constant in R̂s is about 14 times greater than the
one in R̂as , and the constant in Ŝs about 54 times greater than
the one in Ŝas .

The diagonal terms of the T̂s + Û Hamiltonian,

ĤHH↑ = ĤHH↓ = P̂+ + [Vxy(ρ) + Vz(z)],

ĤLH↑ = ĤLH↓ = P̂− + [Vxy(ρ) + Vz(z)], (7)

have the corresponding envelope eigenfunctions,

ψHH
k,J en

z ,n(
rh) = eiJ en
z φχJ en

z

(
χ0

(
k,J en

z

)
ρ

R

)
ZHH

n (z),

ψLH
k,J en

z ,n(
rh) = eiJ en
z φχJ en

z

(
χ0(k,J en

z )ρ

R

)
ZLH

n (z), (8)

where χJ en
z

is a Bessel function of the first kind of (J en
z )th order

and χ0(k,J en
z ) is the kth zero of that function. The n quantum

numbers order the ZHH
n (z) functions by ascending energy and

(separately) order the ZLH
n (z) functions in the same way.

Finally, the Hamiltonian for the axially symmetric static
system is

Ĥs = T̂s + Û + ĤBz
+ ĤFz

, (9)

where ĤBz
and ĤFz

are the magnetic field and electric field
Hamiltonians (as defined below), respectively. As the last two
terms do not mix states with different Jz quantum numbers,
the eigenfunctions of Eq. (9) also have the form presented in
Eq. (6).
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FIG. 2. (a) Solid line, left axis: The confinement potential along the z axis. Dashed line, right axis: The zs(z) shape function of the electric
field Fz. The arrows correspond to the “sewing” points in Eq. (10). (b) Shape of the dots. The z boundary is shown for Vz(z) = V0

2 .
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C. Electric and magnetic fields

The Hamiltonian of the external electric field, applied along
the growth z axis, in atomic units, has the form of

ĤFz
= Fzzs(z), s(z) =

⎧⎪⎨
⎪⎩

1, |z| � 70 nm,
100
|z| , |z| � 130 nm,

|sp(z)|, 70 nm � |z| � 130 nm,

(10)

where Fz is the electric field amplitude and s(z) is the shape
function used to allow the electric field dependence (linear in z)
to be felt only in the dot region [see Fig. 2(a)]. The motivation
for using the shape function s(z) is for numerical purposes—to
avoid an additional artificial bonding center appearing near the
end of the computational box. The s(z) has such a character
that it simulates an electric field that (i) is homogeneous in
the area of the dots, (ii) is continuous everywhere up to the
second derivative, and (iii) decreases as 1

|z| in area far from
the system. sp(z) is the simplest polynomial that meets the
continuity assumptions [23].

The Hamiltonian of the homogeneous magnetic field 
B =
(0,0,Bz), in atomic units, is given by

(ĤBz
)11 = Bz

2

[
(γ1 + γ3)

(
Jz − 3

2

)
+ 3κ

2

]
,

(ĤBz
)22 = Bz

2

[
(γ1 − γ3)

(
Jz + 1

2

)
− κ

2

]
,

(ĤBz
)33 = Bz

2

[
(γ1 − γ3)

(
Jz − 1

2

)
+ κ

2

]
,

(ĤBz
)44 = Bz

2

[
(γ1 + γ3)

(
Jz + 3

2

)
− 3κ

2

]
,

(ĤBz
)ij = 0, i �= j, (11)

where κ is the g-factor for heavy and light holes in the system.
This is a model that was used in Ref. [24], but with two changes:
(i) The inverted effective mass values for heavy holes in the
xy plane γ1 + γ2 and the light holes one γ1 − γ2 for 〈100〉
orientation were substituted by analogous values for the 〈111〉
system (i.e., γ1 + γ3 and γ1 − γ3, respectively) and (ii) we omit
the terms proportional to B2

z as they are very small for the
range of magnetic field that was considered [25]. The g-factor
for bulk InSb is equal to 15.6, but in a system of this type the
value is significantly quenched, i.e., κ ∈ (0,4) [11]. The Landé
value, which does not take into account the influence of remote
bands, is 4/3. We decided to adopt a middle value of κ = 2.0.

D. Dresselhaus Hamiltonian

In order to account for the mixing of the states with different
spins, the Dresselhaus Hamiltonian was included. In the case
of 〈100〉 crystal orientation it has the form of

Ĥ 100
D = 2√

3
Ck

(
kx

{
Jx,J

2
y − J 2

z

} + c.p.
)

+ b41
({

kx,k
2
y − k2

z

}
Jx + c.p.

)
+ b42

({
kx,k

2
y − k2

z

}
J 3

x + c.p.
)

+ b51
({

kx,k
2
y + k2

z

}{
Jx,J

2
y − J 2

z

} + c.p.
)

+ b52
(
k3
x

{
Jx,J

2
y − J 2

z

} + c.p.
)
, (12)

TABLE II. The material constants used for Dresselhaus Hamilto-
nian definition.

c1 = 12b41+23b42
16

√
6

c2 = − 4b41+9b42+4(b51+b52)
16

c3 = 4b41+9b42−4b51+4b52
8
√

2
c4 = 4b41+9b42−2b52

4

c5 = −b42+b51+b52
4
√

2
c6 = b42+b51−b52

4
√

3

c7 = 2b42+b52
2
√

2
c8 = b42−b51+b52

4
√

3

c9 = 2b51+b52√
6

c10 = −4b41−7b42+6(b51+b52)
8
√

3

c11 = 4b41+7b42+6b51−6b52
4
√

6
c12 = 4b41+7b42+3b52

2
√

3

c13 =
√

3
2 b52 a = 4b41+13b42

12b41+23b42

where Ck , b41, b42, b51, b52 are material parameters, {A,B} =
1
2 (AB + BA) and c.p. stands for cyclic permutations of the
preceding terms [26,27]. The procedure for obtaining the
Hamiltonian for 〈111〉 orientation is the same as for the Kohn-
Luttinger Hamiltonian (see Appendix A). It leads to the
following result,

ĤD =

⎛
⎜⎜⎜⎝

Ô1 Ô3 Ô2 Ô4

Ô+
3 −aÔ1 Ô5 Ô2

Ô+
2 Ô+

5 aÔ1 −Ô3

Ô+
4 Ô+

2 −Ô+
3 −Ô1

⎞
⎟⎟⎟⎠, (13)

where the element operators are defined as follows,

Ô1 = −c1(ik̂−)3 + c1(ik̂+)3,

Ô2 = − Ck√
3

(ik̂−) + c2k̂
2
⊥(ik̂−) − ic3k̂z(ik̂+)2 + c4k̂

2
z (ik̂−),

Ô3 = Ck√
6

(ik̂+) + c5k̂
2
⊥(ik̂+) − i

√
3c6k̂z(ik̂−)2,

Ô4 = c6(ik̂−)3 − c8(ik̂+)3 − ic13k̂zk̂
2
⊥ − i

√
2Ckk̂z − ic9k̂

3
z ,

Ô5 = −Ck(ik̂+) − c10k̂
2
⊥(ik̂+) + ic11k̂z(ik̂−)2 − c12k̂

2
z (ik̂+),

(14)

where constants a and c1-c13 are defined in the terms of
b41, b42, b51, and b52 (see Table II). Please note that if the
angular dependencies of |L〉 and |R〉 states are eilLφ and eilRφ ,
respectively, then the 〈L|k̂−|R〉 matrix element is nonzero
only for lR = lL + 1, the 〈L|k̂+|R〉 matrix element is nonzero
only for lR = lL − 1, and the 〈L|k̂2

⊥|R〉 and the 〈L|k̂z|R〉
matrix elements are nonzero only for lR = lL. This leads to a
significant simplification of the Hamiltonian (see Appendix B).

E. Computational method

Our computational method consists of several separable
steps. At the beginning, the one-band hole Hamiltonian
eigenequations (7) are solved. The ZHH

n (z) and ZLH
n (z) func-

tions in Eq. (8) are determined by direct diagonalization on
one-dimensional mesh with a mesh spacing 
z = 0.5 nm and
computation box of z ∈ (−200 nm,200 nm). Afterwards, the
�ax

(Jz,m)(
r) eigenfunctions of the axially symmetric Hamiltonian
Eq. (9) are obtained in a base constructed by taking functions
of the type as in formula (8) with k ∈ {1,8}, n ∈ {1,32},
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and Jz ∈ {− 13
2 , . . . , 13

2 }. As it was mentioned before, each Jz

defines a separable subspace and the m quantum number sorts
the eigenfunctions of each subspace in the order of ascending
energy.

The next step is to include the nonaxial part into the
calculation. This part consists of the small nonaxial terms
in the Kohn-Luttinger Hamiltonian and of the Dresselhaus
Hamiltonian,

Ĥas = T̂as + ĤD. (15)

This operation is made in a basis consisting of a selected set
of lowest-lying Ĥs eigenstates,

�j (
r) =
∑

(Jz,m)∈�basis

λj,(Jz,m)�
ax
(Jz,m)(
r), (16)

where �basis is the basis for the non-axially-symmetric calcu-
lation and λj,(Jz,m) is the projection of the j th nonaxial state
onto an individual (Jz,m) basis state.

F. Evolution

The total Hamiltonian for the time-dependent calculation is

Ĥev(t) = T̂s + Û + ĤBz
+ Ĥas + ĤFz

(t), (17)

where ĤFz
(t) = Fz(t)zs(z) is the time-dependent part. The

function Fz(t) can be, in general, arbitrary. The specifics
of such Fz(t) that manage to accomplish the desired spin
operation on the system remain to be found in the course of
our study.

The evolution simulation of the system is done with the
Runge-Kutta method of the fourth order with a time step of

t = 0.2 fs. The basis for the evolution is the set of states
obtained in the non-axially-symmetric calculation, without the
external electric field,

(
r,t) =
∑

j∈basis

dj (t)�j (
r; Fz = 0), (18)

where basis is the evolution basis and dj is the projection
of the time-dependent state onto an individual j th basis state
(in order of ascending energy). The specific algorithm for the
evolution of dj projections is described in Appendix C.

Please note that all results for the evolution are presented in
a local Fz basis (also known as instantaneous basis),

(
r,t) =
∑

j

dl
j (t)�j (
r), (19)

and not in the Fz = 0 basis [see Eq. (18)], for ease of
interpretation. The projections dj (t), obtained as have been
explained above, are recalculated to represent the projections
as if the levels �j (
r) at each given Fz were the basis states
instead of the �j (
r; Fz = 0) states,

dl
j (t) =

∑
i

di(t)〈�j |�i(Fz = 0)〉. (20)

This way, one can refer to these projections as corresponding to
the instantaneous basis in each given moment of the evolution.

G. Parametrization

The values of material constants for the Dresselhaus Hamil-
tonian, i.e.,

Ck = −0.82 meV nm, b41 = −934.8 meV nm3,

b42 = 41.73 meV nm3, b51 = 13.91 meV nm3,

b52 = −27.82 meV nm3,

are taken from Ref. [27]. All the other material parameters
were taken from the work of Vurgaftman et al. [28]. Luttinger
parameters for InSb are γ1 = 34.8, γ2 = 15.5, and γ3 = 16.5.

IV. RESULTS

A. Time-independent system

We begin by studying the energy spectrum with a static
electric field Fz applied. The energy spectrum of the hole
system for the axially symmetric Hamiltonian Hs [see Eq. (9)]
for Bz = 150 mT is presented in Fig. 3(a). The set of levels with
the lowest energies has the following elements: (Jz = − 3

2 ,m =
1), (Jz = − 3

2 ,m = 2), (Jz = 3
2 ,m = 1), and (Jz = 3

2 ,m = 2).
This set of levels is separated energetically from the next ones
for any Fz in the considered range by about 0.53 meV. The
characteristics of the four lowest-lying Ĥs eigenstates are given
in Table III. In every case, the dominating valence band is the
one with the lowest |J en

z | value (that equals 0 for the first four
levels), and, in each case, it is one of the heavy-hole bands.

The main two features of this spectrum are the two avoided
crossings: the one of the two Jz = − 3

2 levels [marked as A
in Fig. 3(a)] and the one of the two Jz = 3

2 levels [marked as
B in Fig. 3(a)]. The mentioned avoided crossings occur due
to the tunneling coupling between the dots. At Fz = 0 the
confinement potential of the system is symmetric in respect
to z = 0, hence the eigenfunctions are equally distributed
between both dots. For Fz  0, away from the crossing, the
hole is localized in the energetically preferable z < 0 dot in
the ground level of each Jz subspace (i.e., levels with m = 1)
and in the energetically unpreferable z > 0 dot in the excited
levels (i.e., levels with m = 2). The situation is reversed for
Fz � 0.

In the case of the non-axially-symmetric calculation, due to
computational constraints, we are interested in the lowest-lying
states only. Due to an energy separation of about 0.53 meV,
the first four energy levels, shown in Fig. 3(a), create a natural
basis for this calculation. Thus we define the basis �basis in
Eq. (16) as the set of levels listed in Table III.

TABLE III. The characteristics of the four lowest-lying Ĥs eigen-
states that make up the variational base �basis.

Level Dominating valence band Set of J en
z values

(Jz = − 3
2 ,m = 1) HH↓ (−3, − 1, − 2,0)

(Jz = − 3
2 ,m = 2) HH↓ (−3, − 1, − 2,0)

(Jz = 3
2 ,m = 1) HH↑ (0,2,1,3)

(Jz = 3
2 ,m = 2) HH↑ (0,2,1,3)
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FIG. 3. (a) Hole energy spectrum of the axially symmetric system. (b) Hole energy spectrum of the system with non-axially-symmetric
terms included and the scheme of the hole transfer. Arrows indicate the successive steps of the process. FA is the field range used for the
Landau-Zener transfer in the β step. The dashed ζ arrow denotes an alternative EDSR approach (see Sec. IV C). The inset is a fragment of the
spectrum in magnification.

The hole energy spectrum for the total Hamiltonian is
presented in Fig. 3(b). In comparison to the axial one [see
Fig. 3(a)], the only important difference is the formation of
two additional smaller avoided crossings, marked as C and D
in Fig. 3(b). These anticrossings correspond to the mixing of
the (Jz = − 3

2 ,m = 1) state, that is, the spin-down state, and the
(Jz = 3

2 ,m = 1) state, that is, the spin-up one. Apart from that,
the energy shifts are very small, and the spectrum in Fig. 3(b)
is nearly the same as the one in Fig. 3(a).

The one-band densities, integrated over the φ coordinate,
are defined as follows,

Pj,k(ρ,z) = ρ

∫ 2π

0
�∗

j (ρ,φ,z)Ik�j (ρ,φ,z)dφ,

Ik =

⎛
⎜⎜⎜⎝

δ1,k 0 0 0

0 δ2,k 0 0

0 0 δ3,k 0

0 0 0 δ4,k

⎞
⎟⎟⎟⎠, (21)

where δi,k is the Kronecker delta. They describe, for k ∈ {1,4},
the partial spatial densities with respect to each of the Bloch
bands, i.e., (HH↑,LH↓,LH↑,HH↓). They are shown for Fz =
4 kV/m: P1,k in Fig. 4(a) for the ground state, the intended
initial state of the evolution, and P2,k in Fig. 4(b) for the
first excited level, the intended final state of the evolution,
respectively. The ground state of the hole is localized in the
z < 0 dot and is strongly dominated by the HH↓ band. The
first excited state is localized in the same dot and is strongly
dominated by the HH↑ band. This corresponds to our idea to
flip the spin of a hole by transferring it from the ground state to
the first excited level. This would result in reversing the state
from being HH↓ dominated to being HH↑ dominated, while
remaining in the same z < 0 dot. In order to do so, we plan
to employ the Landau-Zener transitions of A and D avoided
crossings [see Fig. 3(b)].

B. Evolution

The idea of the spin flip is presented in Fig. 3(b). The
initial state of the simulation is the time-independent ground
state at Fz = 4 kV/m and the intended final state is the time-
independent first excited state at the same electric field. The
transfer is planned to be made in five steps. It should start with
tuning the electric field to the Fz > 0 side of the larger avoided
crossing in such a way that the time-dependent state would
remain equal to the time-independent ground level [arrow α in
Fig. 3(b)]. The second step consists of using this anticrossing to
transfer the time-dependent hole state to the first excited level at
the same electric field [arrow β in Fig. 3(b)]. The third stage is

FIG. 4. The hole one-band densities integrated over the φ co-
ordinate, for Fz = 4 kV/m: (a) P1,k(ρ,z) for the ground state, and
(b) P2,k(ρ,z) for the first excited level.
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.
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FIG. 5. The evolution process for the complete transition. Upper
part, right axis: The driving field Fz(t) function. Lower part, left axis:
The |dj (t)|2 projections for the time-dependent state (
r,t) on the j th
time-independent state �j (
r), respectively. For j = 4 the projection
is not shown as it is negligible at every moment of the evolution.

the drive of the hole from the tunneling-generated anticrossing
to the lower Fz side of the smaller spin-mixing one [arrow
γ in the inset of Fig. 3(b)]. After that, the hole state should
be transferred across the smaller avoided crossing without the
leak of the time-dependent state to another time-independent
level [arrow δ in Fig. 3(b)]. It is here that the spin flip takes
place. The final step is the drive of the system to Fz = 4 kV/m
[arrow ε in Fig. 3(b)].

Each of the {α,β,γ,δ,ε} stages was optimized separately
for transfer efficiency in terms of relevant parameters (see Ap-
pendix D) and the total Fz(t) driving impulse was constructed
by joining all the parts together. The evolution of the total
transfer is presented in Fig. 5. The initial state is equal to
the time-independent ground state �1(
r), that is, d1(0) = 1.
After the evolution, the evolving state ends in the first excited
state �2(
r) with |d2(TP )|2 > 0.99. This means that the system
started and ended evolution in the same electric field. Both
the initial and the final states are localized in the same dot.
However, the system started evolution in a state dominated by
the HH↓ spin state and it ended it in a state dominated by the
opposite HH↑ spin state. This proposition of the process that
reverses the spin state of the hole is the main result of this work.

C. Comparison with the EDSR of uncoupled levels

The Landau-Zener (LZ) type of spin flip is an alternative
for the EDSR one. In the latter case, the levels involved in
the transition are not engaged in an avoided crossing. In order
to make a comparison between these two mechanisms, the
transition ζ in Fig. 3(b) was calculated. The frequency of the
driving signal,

Fz(t) = Fo + A cos (ωct), (22)

is tuned to resonance with the energy difference between the
final and the initial level, ωc = Ef − Ei = 2π × 28.8 GHz for
the offset Fo = 3.5 kV/m. The amplitude of the EDSR signal
is A = 0.95 kV/m. The results are presented in Fig. 6. The
evolving state starts in the ground state of the time-independent
system and then typical Rabi oscillations begin. The evolving

.

.

..

.

.

.

FIG. 6. The evolution process for the EDSR of uncoupled levels.
The |dj (t)|2 projections for the time-dependent state (
r,t) on the
j th time-independent state �j (
r), respectively. For j ∈ {3,4} the
projections are not shown as they are negligible at every moment
of the evolution.

state occupies the first excited state after t ∼ 7 ns, which
corresponds to about 200 periods of the Fz signal function.
Please note that this time is about one order of magnitude
larger than the time of the total evolution for the {α,β,γ,δ,ε}
scheme. In general, increasing the driving amplitude A would
decrease the time of the EDSR transition. However, we wanted
to compare the EDSR and LZ approaches with the amplitudes
of comparable orders of magnitude.

Moreover, there are two limits to increasing the driving
field amplitude in the EDSR process: (i) It can cause the
state to traverse the avoided crossings, therefore making the
transition an LZ-like one and (ii) the EDSR Rabi oscillations
are themselves a perturbation theory result and occur only if the
amplitude of the driving is small in comparison to the energy
difference between the involved levels.

V. NOISE

A. The models of the noise

The evolution simulation assumes total control of the
driving electric field Fz(t). In an experiment, such precise
control is impossible. The impact of the power-law noise on the
effectiveness of the transfer is studied by the implementation of
a simple random telegraph noise model (RTN), as described in
Ref. [29]. According to the model, the actual time dependence
of the electric field is given by

Fe
z (t) = Fz(t) + FNGi(t,fc), (23)

where Fz(t) is the nondistorted electric field drive, FN is the
jump amplitude of RTN,

Gi(t,fc) = Csgn(−1)
∑

j �(t−ti,j ) (24)

is the electric distortion of the RTN, � stands for the Heaviside
step function, the sign of the first jump Csgn is determined
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FIG. 7. The final |d2|2 projection for the RTN Fz noise simulation
(the fast-variable noise regime). FN is the amplitude of the noise and
fc is the characteristic frequency of the noise. The square in the upper
left-hand corner marks the region where an analog of the motionary
narrowing occurs (see Appendix F).

randomly, and the time of the j th jump is defined as follows,

ti,j = − 1

fc

j∑
n=1

ln pi,n. (25)

In Eqs. (24) and (25) the i variable is the current iteration of
random generation of a set of pi,n numbers from a uniform
distribution over a [0,1] range. The characteristic frequency fc

is related to the average number of jumps occurring during the
evolution time TP ,

Navg = TP fc. (26)

It was shown that this model simulates the power-law noise
well for a sufficiently high amount of jumps per one evolution
(fc > 1 GHz) [29]. On the opposite end of the scale, where the
frequency of the noise change is low, e.g., if 90% of cases have
no jumps (fc < 100 MHz), a different model was adopted. The
little variability in the noise signal during the evolution can be
simulated by adopting a static shift in the electric field,

Fe
z (t) = Fz(t) ± FN, (27)

where the sign of the shift is determined randomly.

B. The noise simulation

The results for the RTN noise model are presented in
Fig. 7. The final efficiency was averaged over 1000 simulations
for each pair of FN and fc values. Keeping the transfer
efficiency equal, an increase in fc leads to an increase in
FN . The mechanism of the observed effect is very similar
to the one responsible for the motional narrowing effect in
magnetic resonance (see, e.g., Ref. [30], pp. 212 and 213, and
Appendix F). If the noise changes very quickly, then the system
does not adapt to each individual shift value. The mean value
of the noise shift is equal to zero, and so the overall effect of

.

.

.

..

.

.
. . . . . . . . . .

FIG. 8. The final |d2|2 projection for the staticFz offset (the slowly
variable noise regime) (solid curve). The results for the maximal fc

considered in the RTN model are shown for comparison. The points
are simulation data and the dotted line is a 1/(1 + cF 2

N ) function fitted
to the data.

the noise is diminished in comparison to the noise with lower
fc.

The results for the static offset are presented in Fig. 8. The
value of the final projection was averaged over both poss-
ible signs of FN . The effectiveness of the operation is nearly
one for FN = 0 and it drops to nearly zero as FN increases.
The condition for high fidelity |d2(TP )|2 > 0.9 is in approxi-
mation FN < 0.05 kV/m, and if FN > 0.13 kV/m, then the
probability of a successful operation is less than a half. These
relations may be seen as estimates for the necessary conditions
of an electric field control in any experimental realization of
the presented scheme.

The imperfections in the Fz control process can be intu-
itively divided into two categories. The first one can be thought
of, in a simplified way, as a systematic error type: Instead of
the desired F1 value, the system is tuned to F1 + 
 at a given
time and the lifetime of the 
 error value is large. The second
type consists of errors constantly oscillating around the correct
F1 value (i.e., RTN model). We have shown that the first type
of error, the static one, is more destructive to the described
process than the second one. Thus the experimental setup used
for the realization of the proposed scheme should especially
minimize the systematic kind of Fz control error.

VI. DISCUSSION

The values of the parameters of any given realization of
the quantum dot system are not perfectly known a priori. This
relates to the exact size and geometry of the dots, the confining
potential, the precise value of the g-factor, among others.

The energy spectrum depends on the following geometric
and electrostatic parameters of the system: (i) depth of the
binding potential, (ii) width of the barrier between the dots,
(iii) size of the dots, and (iv) magnetic field intensity. Isolated
parameters cannot be addressed separately. For example, for
a given depth of potential, and a given barrier between the
dots, some optimal width of the dots and value of the magnetic
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field can be found. Unfortunately, as the dependence is highly
nonlinear, there is no “rule of thumb” or simple formula.
The suitable subspace of parameter values (potential, barrier,
size of the dots, magnetic field) to obtain a suitable spectrum
needs to be found numerically, if necessary. But because it
is an extremely computationally demanding task (a nonlinear
system with at least four degrees of freedom), it could be as
well the subject of a separate study and we consider it outside
the scope of this work.

Fortunately, the presented scheme is, on a general level,
adaptive to the specifics of a given system. The only necessary
condition is that the four lowest-lying eigenstates of a system
need to be qualitatively similar to the ones presented in Fig. 3(b)
for some magnetic field Bz and some electric field Fz range.
That is, the two avoided crossings used for the transitions
need to be present in the energy spectrum. Unfortunately, the
efficiency of the whole process is strongly dependent on the
specifics of the driving impulse, and these specifics depend
in turn on the details of the previously mentioned parameters
of the system. Thus, for a practical realization of this idea,
it is necessary to study a given system experimentally in
order to establish reliable estimates of the parameters. This
is especially true in the case of the characteristic energy of the
avoided crossing C in Fig. 3(b). Any imperfections in the axial
symmetry of the nanowire shape as well as the piezoelectric
effects (also breaking this symmetry) will contribute to the
mixing of the states with different Jz values. In practice, it
would be most efficient to take the approach of Ref. [14], i.e.,
to treat the anticrossing energy as a fittable parameter and try
to deduce its value from experimental data. After that, one can
employ the presented {α,β,γ,δ,ε} scheme and optimize each of
the steps and join them together, as has been presented above.

The Kohn-Luttinger Hamiltonian allows one to obtain the
hole energy spectrum, which is unknown a priori. In the results
there are four energy-separated levels of such a spin structure
that enable the realization of the spin-flip idea and create the
basis for further steps of the calculation. The Dresselhaus
Hamiltonian enables one to take into account the mixing of
the opposite spin states. In order for the spin operation to be
possible, the order of magnitude of the anticrossing energy,
strongly dependent on the mixing on the valence bands, must
be adequate. Thus we consider our model to be the minimal
one for this work.

Please note that there are analytically integrable models for
at least four-level Landau-Zener systems. They rely on the
typical Landau-Zener assumptions, that is, (i) the evolution is
done from t = −∞ to t = +∞, and (ii) the time derivative
of the instantaneous adiabatic energy is constant. Our Fz(t)
dependence for each anticrossing has the form of a sine
function. In the case of such a function, these two assumptions
would approximately hold if the Fz(t) oscillation amplitude
was much greater than the Fz width of the anticrossing.
However, in our case, these two are more or less comparable,
and our use of the Runge-Kutta method to directly access the
evolution of the wave function is justified.

VII. SUMMARY AND CONCLUSIONS

In the presented work, a system of double quantum dots,
created in an InSb nanowire by application of an external

potential, was investigated. The energy spectrum of the system
in a static electric field, applied in the direction of the wire,
was obtained. The presence of non-axially-symmetric terms in
the overall Hamiltonian leads to the formation of an avoided
crossing in the spectrum, which involves two states of opposite
spin states, in addition to the tunnel-coupling one. A scheme for
reversing the spin state of a hole by manipulating the evolution
with electric field was proposed, based on driving the hole state
through two anticrossings. The results provided show that a
perfect realization of the process, with exact control over the
electric field, is possible, and the total process time is one order
of magnitude smaller than the realization time of an alternative
classic EDSR approach. The impact of imperfect control of
the driving factor was studied with two simple models that
correspond to two different kinds of errors, respectively.
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APPENDIX A: THE TRANSFORMATION OF
KOHN-LUTTINGER AND DRESSELHAUS

HAMILTONIANS FROM 〈100〉 TO 〈111〉 DIRECTION

The four-band Kohn-Luttinger Hamiltonian for 〈100〉 crys-
tal orientation is given by Eq. (3) and the Dresselhaus spin-orbit
Hamiltonian in this orientation is given by Eq. (12). Please note
that both are defined in the terms of 
k and 
J vectors. To trans-
form the Hamiltonians to 〈111〉 crystal orientation, one needs
to express the coordinates of these vectors for 〈100〉 in terms of
their coordinates for 〈111〉 orientation. Within the scope of this
Appendix, the x,y,z,kx,ky,kz,Jx,Jy,Jz symbols are used for
the old crystal orientation and the x ′,y ′,z′,k′

x,k
′
y,k

′
z,J

′
x,J

′
y,J

′
z

symbols are used for the new one.
In x,y,z coordinates, the x ′ axis goes along the [1,1, − 2]

vector, the y ′ along the [−1,1,0] vector, and z′ along the [1,1,1]
vector. The related versors are

x̂ ′ = x̂√
6

+ ŷ√
6

− 2ẑ√
6
,

ŷ ′ = − x̂√
2

+ ŷ√
2
,

ẑ′ = x̂√
3

+ ŷ√
3

+ ẑ√
3
,

(A1)

and in consequence,

x = x ′
√

6
− y ′

√
2

+ z′
√

3
,

y = x ′
√

6
+ y ′

√
2

+ z′
√

3
,

z = −
√

2

3
x ′ + z′

√
3
.

(A2)

The u derivative in the {x ′,y ′,z′} basis is equal to ∂
∂u

=
∂x ′
∂u

∂
∂x ′ + ∂y ′

∂u
∂

∂y ′ + ∂z′
∂u

∂
∂z′ . After taking into account Eq. (A1),
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the following relation for 
k is obtained,

kx = 1√
6
k′
x − 1√

2
k′
y + 1√

3
k′
z,

ky = 1√
6
k′
x + 1√

2
k′
y + 1√

3
k′
z,

kz = −
√

2

3
k′
x + 1√

3
k′
z.

(A3)

The spin vector in the old basis is equal to


J 3
2

= [Jx,Jy,Jz] = Jxx̂ + Jyŷ + Jzẑ, (A4)

and in the new basis the same vector is given by


J 3
2

= [J ′
x,J

′
y,J

′
z] = J ′

x x̂
′ + J ′

y ŷ
′ + J ′

zẑ
′. (A5)

By comparing the right-hand sides of Eqs. (A4) and (A5) and
taking into account Eq. (A1), the following expression for spin
matrices can be obtained,

Jx = 1√
6
J ′

x − 1√
2
J ′

y + 1√
3
J ′

z,

Jy = 1√
6
J ′

x + 1√
2
J ′

y + 1√
3
J ′

z,

Jz = −
√

2

3
J ′

x + 1√
3
J ′

z.

(A6)

APPENDIX B: THE DRESSELHAUS HAMILTONIAN
MATRICES FOR SPECIFIC Jz VALUES

The Dresselhaus Hamiltonian for the considered system
[see Eqs. (13) and (14) and Table II] is defined in terms
of k̂−, k̂+, k̂2

⊥, and k̂z operators that act on specific types
of valence bands. Each single-band component of an Ĥs

eigenvector has an eiJ en
z φ type of angular dependency and

thus a defined envelope angular momentum quantum number
J en

z [see Eqs. (6) and (9)]. In the case of matrix elements of
the mentioned operators, for states with (J en

z )L and (J ean
z )R

quantum numbers, for |L〉 and |R〉 states, respectively, the
result is nonzero only in the case of some relations of these
numbers, (

J en
z

)
R

�= (
J en

z

)
L

+ 1 ⇒ 〈L|k̂−|R〉 = 0,(
J en

z

)
R

�= (J ean
z )L − 1 ⇒ 〈L|k̂+|R〉 = 0,(

J en
z

)
R

�= (
J en

z

)
L

⇒ 〈L|k̂2
⊥|R〉 = 0,(

J en
z

)
R

�= (
J en

z

)
L

⇒ 〈L|k̂z|R〉 = 0. (B1)

The mentioned relations lead to a significant simplification
of the Dresselhaus Hamiltonian for each specific pair of Jz

numbers.
If we take into account only the states with a cer-

tain Jz, then the four envelope angular momentum quan-
tum numbers J en

z in (HH↑,LH↓,LH↑,HH↓) basis are
(Jz − 3

2 ,Jz + 1
2 ,Jz − 1

2 ,Jz + 3
2 ). For example, the Jz = − 3

2
gives (−3, − 1, − 2,0) and for Jz = + 3

2 the values (0,2,1,3)
are obtained. The effective form of the Hamiltonian, for equal

Jz numbers of bra and ket states, becomes

Ĥ ′
D =

⎛
⎜⎜⎜⎝

0 Ô3 Ô2 Ô4

Ô+
3 0 Ô5 Ô2

Ô+
2 Ô+

5 0 −Ô3

Ô+
4 Ô+

2 −Ô+
3 0

⎞
⎟⎟⎟⎠, (B2)

with the operators defined as follows,

Ô2 = − Ck√
3

(ik̂−) + c2k̂
2
⊥(ik̂−) + c4k̂

2
z (ik̂−),

Ô3 = −i
√

3c6k̂z(ik̂−)2, Ô4 = c6(ik̂−)3,

Ô5 = −Ck(ik̂+) − c10k̂
2
⊥(ik̂+) − c12k̂

2
z (ik̂+),

Ô+
2 = Ck√

3
(ik̂+) − c2k̂

2
⊥(ik̂+) − c4k̂

2
z (ik̂+),

Ô+
3 = i

√
3c6k̂z(ik̂+)2, Ô+

4 = −c6(ik̂+)3,

Ô+
5 = Ck(ik̂−) + c10k̂

2
⊥(ik̂−) + c12k̂

2
z (ik̂−), (B3)

and the constants c2-c12 as defined in Table II.
Analogously, the effective Hamiltonian for Jz and Jz + 3

(for bra and ket states, respectively) can be obtained. This cor-
responds, for example, to a pair of Jz = − 3

2 and Jz = + 3
2 states

with the sets of envelope angular momentum quantum numbers
J en

z of (−3, − 1, − 2,0) and of (0,2,1,3), respectively. In this
case, the effective Hamiltonian takes the form of

Ĥ ′′
D =

⎛
⎜⎜⎜⎝

Ô1 0 0 0

Ô+
3 −aÔ1 Ô5 0

Ô+
2 0 aÔ1 0

Ô+
4 Ô+

2 −Ô+
3 −Ô1

⎞
⎟⎟⎟⎠, (B4)

with the operators defined as follows,

Ô1 = −c1(ik̂−)3,

Ô5 = ic11k̂z(ik̂−)2,

Ô+
2 = ic3k̂zK̂

2
1 ,

Ô+
3 = − Ck√

6
K̂1 − c5K̂3K̂1 − c7K̂1k̂

2
z ,

Ô+
4 = i

√
2Ckk̂z + ic13k̂zK̂3 + ic9k̂

3
z , (B5)

and the constants a and c1-c13 as defined in Table II.
Please note that in the cases of (i) Jz and J ′

z = Jz + 1 (e.g.,
the Jz = − 5

2 , J ′
z = − 3

2 pair and the Jz = 1
2 , J ′

z = 3
2 pair), (ii) Jz

and J ′
z = Jz + 2 (e.g., the Jz = − 3

2 , J ′
z = 1

2 pair), and (iii) Jz

and J ′
z = Jz + 4 (e.g., the Jz = − 4

2 , J ′
z = 3

2 pair), the effective
Dresselhaus Hamiltonian is zero and hence Dresselhaus-type
spin orbit does not induce mixing of these states.

APPENDIX C: IMPLEMENTATION OF THE
RUNGE-KUTTA METHOD

The Runge-Kutta method of the fourth order allows one to
numerically solve the differential equation of the dy

dt
= f (t,y)

kind with the starting condition yn = y(tn). The value of the
next step is calculated as follows,

yn+1 = yn + k1 + 2k2 + 2k3 + k4

6
,

115417-10



APPLICATION OF THE LANDAU-ZENER-STÜCKELBERG- … PHYSICAL REVIEW B 97, 115417 (2018)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

FIG. 9. Evolution for β transition; ps = 1.16 kV/m, pb =
−1.98 kV/m, and TP = 295 ps. Left axis: |dj (t)|2 projections for the
time-dependent state (
r,t) on the time-independent states �j (
r). For
j = 4 the projection is not shown as it is negligible for all t∈(0,TP ).
Right axis: Fz(t) electric field drive.

k1 = 
tf (tn,yn),

k2 = 
tf

(
tn+ 1

2
,yn + k1

2

)
,

k3 = 
tf

(
tn+ 1

2
,yn + k2

2

)
,

k4 = 
tf (tn+1,yn + k3). (C1)

In the case of the Schrödinger equation

ih̄
∂

∂t
|〉 = Ĥ |〉, (C2)

the f (t,y) time derivative of Eq. (C1) is equal to

f (t,|〉) = ∂

∂t
|〉 = − i

h̄
Ĥ |〉, (C3)

and consequently

|〉n+1 = |〉n + k1 + 2k2 + 2k3 + k4

6
, (C4)

where

k1 = 
tf (tn,|〉n) = − i
t

h̄
Ĥn|〉n,

k2 = 
tf

(
tn+ 1

2
,|〉n + k1

2

)
= − i
t

h̄
Ĥn+ 1

2

(
|〉n + k1

2

)
,

k3 = 
tf

(
tn+ 1

2
,|〉n + k2

2

)
= − i
t

h̄
Ĥn+ 1

2

(
|〉n + k2

2

)
,

k4 = 
tf (tn+1,|〉n + k3) = − i
t

h̄
Ĥn+1(|〉n + k3). (C5)

Due to code implementation purposes, it is convenient to
redefine the algorithm in the terms of

|x1〉 = |〉n + k1

2
= |〉n − i
t

2h̄
Ĥn|〉n,

|x2〉 = |〉n + k2

2
= |〉n − i
t

2h̄
Ĥn+ 1

2
|x1〉,

|x3〉 = |〉n + k3 = |〉n − i
t

h̄
Ĥn+ 1

2
|x2〉,

|x4〉 = k4

2
= − i
t

2h̄
Ĥn+1|x3〉, (C6)

and that leads to

|〉n+1 = |x1〉 + 2|x2〉 + |x3〉 + |x4〉 − |〉n
3

. (C7)

As the evolving wave function |〉 is defined as the super-
position of basis states [see Eq. (18)], the way to obtain the
evolution algorithm for a given projection dj is to multiply
Eq. (C7) by the ket j th basis state 〈�j (Fz = 0)| from the
left-hand side. This leads to the following formula, in atomic
units,

dj (tn+1) = [x1]j + 2[x2]j + [x3]j + [x4]j − dj (tn)

3
,

[x1]j = dj (tn) − i
t

2
〈�j (Fz = 0)|Ĥn|〉n,

[x2]j = dj (tn) − i
t

2
〈�j (Fz = 0)|Ĥn+ 1

2
|x1〉,

[x3]j = dj (tn) − i
t 〈�j (Fz = 0)|Ĥn+ 1
2
|x2〉,

[x4]j = − i
t

2
〈�j (Fz = 0)|Ĥtn+1 |x3〉, (C8)

where [xi]j = 〈�j (Fz = 0)|xi〉 and j ∈ basis.

APPENDIX D: DETAILED OPTIMIZATION OF THE
DRIVING SIGNAL

1. Transfer using the larger avoided crossing

For this part of the transfer, an initial state identical to the
ground state d1(0) = 1 is assumed and our goal is to maximize
the first excited state projection after the evolution |d2(TP )|2
[see Eq. (18)]. The following function was accepted as the

.

.

.

.

.

.

.

.

.

.

.

.

.

.

FIG. 10. Evolution for δ transition; ps = 1.23 kV/m, pf =
2.56 kV/m, and TP = 240 ps. Left axis: |dj (t)|2 projections for the
time-dependent state (
r,t) on the time-independent states �j (
r).
For j∈{1,4} the projections are not shown as they are negligible for
all t∈(0,TP ). Right axis: Fz(t) electric field drive.
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FIG. 11. Optimization of the TP parameter for α, γ , and ε

transitions. The |dj (TP )|2 projection for the time-dependent state
(
r,t) on the j th time-independent state �j (
r) as a function of
evolution time TP , where j = 1 for α and j = 2 for γ and ε.

driving element for the β transition [see Fig. 3(b)],

Fz(t) = ps + pb

2
+ ps − pb

2
cos

(
6πt

TP

)
, (D1)

where ps is the initial and final value of the Fz pulse, pb is the
bouncing point on the Fz < 0 side of the avoided crossing,
and TP is the evolution time. The function (D1) has three
parameters, ps , pb, and TP . A three-dimensional optimization
of these parameters has been done in order to maximize the
efficiency of the transfer. The method used was a grid search
with a mesh spacing of 
ps = 
pb = 0.01 kV/m and with

 log10 ( TP

1 s ) = 0.01. The ranges for the search were chosen
so that the values of ps and pb ensure the correct overlap
of the Fz(t) pulse range and the range of the A anticrossing.
The evolution time TP corresponds to the time scale of the
process. The points on the search grid were chosen to lie
in equal distances of log10 ( TP

1 s ) due to the need to search
among more than one order of magnitude. The obtained values
of the parameters are ps = 1.16 kV/m, pb = −1.98 kV/m,
and TP = 295 ps. The optimal value |d2(TP )|2 > 0.996 was

obtained. This value is very close to unity and it is sufficient
for the realization of the intended goal. The range of the pulse
is marked in Fig. 3(b) as FA.

The evolution for the set of parameters obtained in the
optimization is presented in Fig. 9. The evolving state starts
in the ground state, d1(0) = 1. As the impulse Fz(t) starts to
diverge from the initial value ps , the |d1|2 drops and |d2|2 grows
by an equal amount. In the regions where Fz is close to pb, the
second excited state is active in the process with |d3(0)|2 > 0
storing a bit of the evolving wave function for a small moment.
This is due to the fact that pb lies relatively close to the C
anticrossing that involves the first and the second excited levels
[see FA in Fig. 3(b)]. As the impulse begins to go back from
pb to ps , the transfer continues. The process repeats three
times until the evolving state is transferred almost completely
to the first excited time-independent level, |d2(TP )|2≈1. The
first movement through the avoided crossing from ps to pb and
back results in transferring 0.25 of the initial |d1|2 projection
to the |d2|2 one. The second go increases |d2|2 by an additional
0.5 and the last one results in transferring the remaining 0.25
from |d1|2.

2. Transfer using the smaller avoided crossing

At this stage the initial state of the system is equal to the
first excited time-independent state, d2(0) = 1. We seek to
maximize |d2(TP )|2, that is, the projection of the same kind
after the evolution [see Eq. (18)]. The time-dependent electric
field for the δ transition [see Fig. 3(b)] is given by

Fz(t) = ps + pf

2
+ ps − pf

2
cos

(
5πt

TP

)
, (D2)

where ps is the initial value of the Fz pulse, pf is the final
value, and TP is the evolution time. The function (D2) has three
parameters, ps , pf , and TP . A three-dimensional optimization
of these parameters has been done in order to maximize the
efficiency of the transfer, with the grid search method similar to
the one described above, for the case of the larger anticrossing.
We have accepted (1.57,2.3) kV/m as a rough estimate for the
Fz range of the considered anticrossing. The three-dimensional
optimization yielded the following values for the parameters,

(a)
(b) (c)
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FIG. 12. (a) The confinement potential along the z axis with no asymmetry (solid line), 1% asymmetry (dashed line), and 5% asymmetry
(dotted line). (b), (c) (Bottom Fz scale, left energy scale, solid line) Hole energy spectrum of the system with non-axially-symmetric terms
included with (b) 1% asymmetry, (c) 5% asymmetry; (top Fz scale, right energy scale, dotted line) hole energy spectrum of the system with
non-axially-symmetric terms included without the z-axis asymmetry, for comparison.
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FIG. 13. The loss in final |d2|2 projection for the RTN noise

simulation as a function of the
F 2

N

fc
argument. The line is a linear

fit to the data.

ps = 1.23 kV/m, pf = 2.56 kV/m, and TP = 240 ps. An
optimal value |d2(TP )|2 > 0.995 was obtained. This value is
very close to unity and it is sufficient for the realization of the
intended goal. The range of the pulse is shown in Fig. 3(b) as
the δ stage.

The evolution for the set of parameters obtained from the
optimization is presented in Fig. 10. The evolving state starts
in the first excited state d2(0) = 1. The driving field Fz(t) has
a minimal value ps = 1.23 kV/m for t ∈ {0, 96 ps, 192 ps},
which corresponds to the hole being driven to the left-hand side
of the avoided crossing D in Fig. 3(b). For this sequence of time
values a characteristic behavior can be observed: The corre-
sponding values of |d2|2 are systematically decreasing and the
corresponding values of |d3|2 are systematically increasing. On
the other hand, when the driving field Fz(t) has a maximal value
pf = 2.56 kV/m for t ∈ {48 ps,144 ps,TP }, the hole system is
on the right-hand side of the mentioned avoided crossing. For
this sequence of time values the corresponding values of |d2|2
are systematically increasing and the corresponding values of
|d3|2 are systematically decreasing. This marks the transition
from the system in which the hole occupies the first excited
state �2(
r) on the left-hand side and it occupies the second
excited state �3(
r) on the right-hand side, to the system with
reversed occupation characteristics.

3. α, γ , and ε transfers

The optimization of the transfers through both avoided
crossings yields the border Fz values for other stages of
the process [see Fig. 3(b)]. Explicitly, the α transfer should
drive the system from Fz = 4 kV/m to Fz = 1.16 kV/m, the
γ transfer needs to initiate at Fz = 1.16 kV/m and end at
Fz = 1.23 kV/m, and the ε transfer is to be done between
electric field values of Fz = 2.56 kV/m and Fz = 4 kV/m.
For each of these stages, the hole state occupation should
remain the same. The only limitation of the process is that
it should be done slowly enough to enable the wave function

to accommodate for the change in Fz. In other words, these
transfers should be made quasiadiabatically.

The following Fz(t) function driving the system from ps to
pf has been adopted,

Fz(t) = ps + (pf − ps)
t

TP

, (D3)

which (if the ps and pf values are already set) has only one
free parameter TP , i.e., the evolution time. The results of
optimization of this parameter for α, γ , and ε transfers are
presented in Fig. 11. TP should be as small as possible to make
the process fast, while it also should guarantee a very good
transfer effectiveness. The evolution time adopted for theα step
is TP = 10−9.9 s = 125 ps, for the γ step it is TP = 10−10.3 s =
50 ps, and for the ε step it is TP = 10−9.825 s = 150 ps. In
each case the chosen time allows for a transition effectiveness
> 0.995.

APPENDIX E: THE ASYMMETRIC SYSTEM

The quantum dot confinement that was considered in the
main part of the work is symmetric with respect to reversing the
z axis. In reality, it is probable that the perfect symmetry in this
regard cannot be maintained, due to technological limitations.
In this Appendix, we present the study of an impact of a small
asymmetry in the confinement potential on the behavior of the
system. Two cases have been considered: (i) The z < 0 dot is
1% shallower than the z > 0 dot, and (ii) the z < 0 dot is 5%
shallower than the z > 0 dot. The z-axis confining potential
has the form of

Vz(z) = V0
[
xasV

d
z (zl) + V d

z (zr )
]
, (E1)

where xas ∈ {0.95,0.99} and the other symbols are as defined
in Eq. (2).

The shapes of the z-axis confinement potentials are pre-
sented in Fig. 12(a) and the energy spectra of the system,
with the nonaxial part taken into consideration, are presented
in Figs. 12(b) and 12(c). The potential with the smaller
asymmetry is almost identical to the symmetric one and the
potential with the bigger asymmetry is easily discernible from
the symmetric one [see Fig. 12(a)]. However, the spectra in
both cases have nearly the same character as the one for
the symmetric system [compare solid and dashed lines in
Figs. 12(b) and 12(c)]. The only difference is the shift of the
whole spectrum in terms of the electric field and energy, but
the shape and the size remain the same. The position of the
middle of the tunneling anticrossing is at about Fz = 0 for
the system considered in the main part of this work, but it is
shifted to about Fz = 9.6 kV/m in the case of 1% asymmetry
[see Fig. 12(b)] and to Fz = 48.4 kV/m in the case of 5%
asymmetry [see Fig. 12(c)]. The results for the case when the
z > 0 dot is shallower than the z < 0 one (not shown) are
nearly the same, with the exception that the electric field shift
is negative. In conclusion, the impact of a small asymmetry
on the behavior of the system is minimal and the evolution
research can be done for the symmetric system.
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APPENDIX F: THE ANALOGY BETWEEN THE
HIGH-FREQUENCY RTN REGIME AND THE MOTIONAL

NARROWING

The motional narrowing is a decrease in the linewidth of
a resonant frequency, that is, an effect of the motion in an
inhomogeneous system. For a description of the phenomenon
in the case of magnetic resonance, see, e.g., Ref. [30]. In a very
simple model it can be described by the following formula (see
Ref. [30], p. 213),

1

T2
= γ 2

n H 2
z τ, (F1)

where Hz is the magnetic field amplitude, τ is the lifetime of
an 
H orientation, T2 is the relaxation time, and γ 2

n is a constant.
In our system, the analog of Hz is the RTN amplitude of the

electric field FN . The equivalent of the reverse of τ is the noise
frequency fc. As a first approximation, we assume that the left-
hand side 1

T2
corresponds to the final efficiency loss of the

transfer 
|d2(TP )|2. This leads to the following equation,


|d2(TP )|2 = C
F 2

N

fc

. (F2)

The results of the RTN simulation for the highest frequency
and small amplitude regime, presented as a function of

the F 2
N

fc
argument, are given in Fig. 13. The corresponding

area is marked in Fig. 7 with a square. The linear func-
tion fits the data quite well for the considered range of
parameters.
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