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Role of frequency dependence in dynamical gap generation in graphene
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We study the frequency dependencies of the fermion and photon dressing functions in dynamical gap generation
in graphene. We use a low-energy effective QED-like description, but within this approximation, we include all
frequency-dependent effects, including retardation. We obtain the critical coupling by calculating the gap using a
nonperturbative Dyson-Schwinger approach. Compared to the results of our previous calculation [M. E. Carrington
et al., Phys. Rev. B 94, 125102 (2016)], which used a Lindhard screening approximation instead of including a
self-consistently calculated dynamical screening function, the critical coupling is substantially reduced.
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I. INTRODUCTION

Graphene is a two-dimensional crystal of carbon atoms with
many possible applications in a wide range of technological
fields. Theoretically, graphene is interesting to physicists, in
part, because it provides a condensed matter analog of many
problems that are studied in particle physics using relativistic
quantum-field theory. Two recent reviews of the properties of
graphene are Refs. [1,2].

Graphene is normally found in a (semi) metal state, but
if quasiparticle interactions are strong enough, they could
produce a gap and cause a phase transition to an insulating
state. The effective coupling can be written as α = e2

4πεh̄vF
,

where vF ∼ c/300 is the velocity of a massless electron in
graphene and ε � 1 is related to the screening properties of
the graphene sheet. The maximum possible effective coupling
is the vacuum value (corresponding to ε = 1) and is about
αmax = 2.2. To determine theoretically if a gap is formed in
the physical system, we calculate the critical coupling αc for
gap formation. If αc > 2.2, then the physical interactions are
not strong enough to produce an insulating phase. Experiments
indicate that the insulating state is not physically realizable [3].

Many theoretical calculations of the critical coupling for
gap formation have been done. Some earlier calculations can
be found in Refs. [4–15]. There are two major issues that
are difficult to correctly formulate in a theoretical calcula-
tion: screening and frequency-dependent effects. Realistically
screened Coulomb interactions have been included by using
a constrained random phase approximation in Ref. [16], and
in hybrid-Monte-Carlo simulations on a hexagonal lattice
[17,18]. However, these calculations are done within the
Coulomb approximation and therefore ignore many frequency-
dependent effects.

In this paper, we are interested in the second issue—the
influences of frequency-dependent screening and retardation
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effects. We consider the simplest form, monolayer graphene,
in which the carbon atoms are arranged in a two-dimensional
hexagonal lattice, and we work at half-filling (zero chem-
ical potential). The low-energy dynamics are described by
a continuum quantum-field theory in which the electronic
quasiparticles have a linear Dirac-like dispersion relation of
the form E = ±vF p. We therefore use an effective QED-like
description for the low-energy excitations, which allows us
to correctly include all frequency effects, but does not allow
for the inclusion of screening from the σ -band electrons and
localized higher energy states. We include nonperturbative
effects by introducing fermion and photon dressing functions,
and solving a set of coupled Dyson-Schwinger (DS) equations.
Using this formulation, a gap function, which would produce
a phase transition to an insulating state, would appear as a
dynamically generated fermion mass.

The DS equations are an infinite hierarchy of integral equa-
tions that must be decoupled by introducting some additional
approximation. In our paper, we perform this decoupling by
using an approximation for the vertex, which is given in
Eq. (19). Our approximation corresponds to the first term in
the Ball-Chiu vertex [19]. The Ball-Chiu vertex is the most
general form of the vertex that satisfies gauge invariance, and
the first term of it is the easiest piece to calculate. In a previous
paper [20], we solved the fermion DS equation using the full
Ball-Chiu vertex and a perturbative Lindhard-type screening
function in the photon propagator, including retardation ef-
fects, and using a variety of ansätze for the vertex function.
Our results indicate that the role of frequency dependencies
in the photon propagator and fermion dressing functions is
important, but the calculation is relatively insensitive to the
form of the vertex function.

The potentially important simplifying assumption in our
previous calculation was the use of the Lindhard screening
function in the photon propagator. This screening function
is a specific approximation to the electric part of the one-
loop vacuum photon polarization tensor. The approximation
is usually justified by the idea that the vanishing fermion
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density of states at the Dirac points indicates that the one-
loop contribution to the photon polarization should dominate
(see, for example, Refs. [2,21,22]). However, our previous
calculations [13,20] show clearly that it is crucial to include
without approximation the fermion dressing functions that give
the renormalization of the Fermi velocity. Since the photon
polarization is determined from a fermion loop, we therefore
expect that a self-consistent calculation of photon screening
could have a significant effect on the result. In this paper, we
present the complete version of our previous calculation, which
does not make use of the Lindhard screening approximation,
but instead includes a self-consistently determined photon
dressing function. For comparison, we also consider a self-
consistent Coulomb approximation, which includes a self-
consistent photon dressing function but neglects retardation
effects. A diagrammatic representation of the approximations
discussed above is shown in Fig. 1.

We comment that the Ball-Chiu vertex ansatz that we use
represents a first step toward a full calculation that would
involve self-consistent three-point functions. The ansatz is
modeled on gauge invariance and experience from many
previous calculations with 2+1 dimensional QED. It allows
us to obtain and solve a complete and closed set of integral
equations for the two point functions of the theory. A disad-
vantage of such a vertex ansatz is that the resulting integral
equations cannot be directly related to Feynman diagrams,
and there is no straightforward way to estimate corrections.
However, calculations involving self-consistent vertices are
computationally much more difficult, and the fact that results
seem insensitive to the form of the vertex ansatz may indicate
that they are unnecessary.

Our results show that there is, in fact, a significant change
in the critical coupling when the photon self-energy is calcu-
lated self-consistently. Relative to the Lindhard calculation in
Ref. [20], the critical coupling is reduced by about 10%. When
retardation effects are neglected, the self-consistent result is
reduced by approximately 9%. We emphasize that the precise
numerical values of the critical couplings that we obtain are not
meant to be realistic, since they will clearly be changed (in a
predictable manner) by short-distance screening effects, which
we have not included (additional screening would increase
the critical coupling that we obtain). However, our calculation
provides valuable information about the extent to which the
Lindhard and Coulomb approximations are valid.

II. NOTATION

The Euclidean action of the low-energy effective theory is
given by

S =
∫

d3x
∑

a

ψ̄a(i∂μ − eAμ)Mμνγνψa

− ε

4e2

∫
d3xFμν

1

2
√−∂2

Fμν + gauge fixing, (1)

where the Greek indices take values ∈ {0,1,2}. The nonlocal
nature of the gauge-field action is due to the fact that the
photon, which mediates the interactions between the electrons,
propagates out of the graphene plane, in the bulk of the 3+1
dimensional space-time. This “brane action” can be obtained

by integrating out the photon momentum modes in the third
spatial dimension, and has some significant differences from
three-dimensional QED [5,23]. The fermionic part of the action
looks like that of a free Dirac theory with a linear dispersion
relation. This reflects the fact that the low-energy effective
theory is a valid description of the system close to the Dirac
points. Four-component Dirac spinors are used for quasipar-
ticle excitations on both sublattices, with momenta close to
either of the two Dirac points. The true spin of the electrons
formally appears as an additional flavor quantum number, and
we take Nf = 2 for monolayer graphene. The three four-
dimensional γ -matrices form a reducible representation of
the Clifford algebra {γμ,γν} = 2δμν in 2+1 dimensions. The
matrix denoted M is defined

M =
⎡
⎣ 1 0 0

0 vF 0
0 0 vF

⎤
⎦ . (2)

Lorentz invariance is explicitly broken by the presence of this
matrix with vF �= 1.

We work in Landau gauge. The Euclidean space Feynman
rules are

S(0)(P ) = −[iγμMμνPν]−1 , (3)

G(0)
μν(P ) =

[
δμν − PμPν

P 2

]
1

2
√

P 2
, (4)

�(0)
μ = Mμνγν , (5)

where we use the notation Pμ = (p0, �p) and P 2 = p2
0 + p2,

and similarly for the momenta K and Q = K − P . We also
use

dK =
∫

dk0 d2k

(2π )3
. (6)

Since Lorentz invariance is explicitly broken, the dressed
fermion propagator contains three dressing functions, which
we call Z(p0, �p), A(p0, �p), and �(p0, �p). Defining the diagonal
3 × 3 matrix

H (p0, �p) =
⎡
⎣Z(p0, �p) 0 0

0 vF A(p0, �p) 0
0 0 vF A(p0, �p)

⎤
⎦ , (7)

the dressed fermion propagator has the form

S−1(P ) = −iγμHμτ (p0, �p)Pτ + �(p0, �p) . (8)

We rewrite the inverse propagator as

S−1(P ) = (S(0))−1(P ) + �(P ), (9)

and use the Dyson equation to represent the fermion self-
energy

�(p0, �p) = e2
∫

dK Gμν(q0,�q) Mμτ γτ S(k0,�k) �ν .

(10)
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FIG. 1. Graphical representation of some DS equations. Solid dots represent dressed propagators and the gray dots are model-dependent
vertices. In (a), we show the equation solved in our previous paper [20], in which a one-loop approximation for the photon self-energy and the
Ball-Chiu vertex are used. In (b), we show the set of self-consistent equations that we solve in this paper, where the vertex represented by the
gray dot is given in Eq. (19).

We define projection operators and decompose the polarization
tensor,

P 1
μν = δμν − PμPν

P 2
, P 3

μν = nμnν

n2
, (11)

P 2
μν = PμPν

P 2
, P̂ 4

μν = (nμPν + nνPμ)/p , (12)

nμ = δμ0 − p0Pμ

P 2
, (13)

�μν = α(p0,p)P 1
μν + β(p0,p)P 2

μν

+ γ (p0,p)P 3
μν + δ̂(p0,p)P̂ 4

μν . (14)

The inverse photon propagator in Lorentz gauge is written

G−1
μν = 2√

P 2
P 2

(
P 1

μν + 1

ξ
P 2

μν

)
+ �μν . (15)

Inverting this equation, choosing Landau gauge (ξ = 0), and
taking the polarization tensor to be transverse, the propagator
is

Gμν = P 1
μν

GT (p0, �p)
+ P 3

μν

(
1

GL(p0, �p)
− 1

GT (p0, �p)

)
,

(16)

GT (p0, �p) = 2
√

P 2 + α(p0,p), GL(p0, �p)

= 2
√

P 2 + α(p0,p) + γ (p0,p) . (17)

The propagator components GT (p0, �p) and GL(p0, �p) are,
respectively, transverse and longitudinal with respect to the
three-momentum �p. The Dyson equation for the polarization

tensor is

�μν(p0, �p) = −e2
∫

dK Tr [S(q0,�q) Mμτ γτ S(k0,�k) �ν] .

(18)

To truncate the hierarchy of DS equations, we must choose
an ansatz for the vertex � in Eqs. (10) and (18). In Ref. [20],
we used a noncovariant extension of the Ball-Chiu vertex
[19], which satisfies the Ward identity −iQμ�μ(P,K) =
S−1(k0,�k) − S−1(p0, �p) and is multiplicatively renormalizable
in Landau gauge. This vertex is difficult to work with numer-
ically because the integrands contain terms that approach 0/0
→ constant as K → P . In Ref. [20], we found that using the
first term in the noncovariant Ball-Chiu vertex (1BC), which is
numerically much easier to work with, produces a result for the
critical coupling that agrees with the result from the full vertex
to within 0.2%. In this paper, we therefore use the truncated
expression

�μ = 1
2 (Hμν(p0, �p) + Hμν(k0,�k))γν. (19)

Within this approximation, the only component of the propaga-
tor Eq. (16) that contributes is the piece GL and, therefore, we
only need to calculate one component of the polarization ten-
sor, which we write as �00(p0,p) = p2

P 2 (α(p0,p) + γ (p0,p)).
Using Eq. (19), it is straightforward to obtain integral

expressions for the dressing functions Z(p0,p), A(p0,p),
D(p0,p), and �00(p0,p) by taking the appropriate projections
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of the corresponding DS equation. The resulting equations are

Zp = 1 − 2απvF

p0

∫
dK

k0q
2Zk(Zp + Zk)

Q2 GLSk

, (20)

Ap = 1 + 2απvF

p2

∫
dK

q2Ak(Zp + Zk)�k · �p + k0q0Zk(Zp + Zk + Ap + Ak) �p · �q
Q2 GLSk

, (21)

�p = 2απvF

∫
dK

q2�k(Zp + Zk)

Q2 GLSk

, (22)

�00(p0,p) = −16πvF α

∫
dK

SkSq

(Zk + Zq)(AkAqv
2
F (�k · �q) + �k�q − k0q0ZkZq) . (23)

We note that some of the factors of Z and A on the right sides
of Eqs. (20)–(23) come from the vertex functions. Using the
ansatz in Eq. (19), the dressed vertex has factors of fermion
self-energy dressing functions from the incoming and outgoing
fermion legs of the vertex. For the loop diagram in the first line
of Fig. 1(b), these legs have momenta K and P , and therefore
the vertex can contribute factors Zp, Ap, Zk , and Ak to the
right side of Eqs. (20)–(22). For the loop diagram in the second
line of Fig. 1(b), the fermion legs of the dressed vertex have
momenta K and Q, and therefore the vertex can contribute
factors Zk , Ak , Zq , and Aq on the right side of Eq. (23).

For comparison, we also perform the calculation with
retardation effects neglected, which we call the Coulomb
approximation. The physical basis of the approximation is
the fact that photons move faster than electrons by a factor
1/vF ∼ 300, which implies that we can take p0/p � 1 in the
photon propagator. This means that in Eqs. (16) and (17) we
take

P 3
μν

GL

→ δμ0δν0G00 , G00 = 1

f (2
√

fp2 + f �00)

∣∣∣∣
f =1

,(24)

resulting in three simplifications of Eqs. (20)–(22):
(1) The second term in the integrand of Eq. (21) is no longer

present.
(2) In each integrand, the overall factor q2/Q2 → 1.
(3) In the denominator, the factor GL = 2

√
Q2 + �L →

2q + �00(q0,�q).
In all calculations, we introduce the same ultraviolet cutoff

� in the k0 and k momentum integrals and use a logarithmic
scale to increase the sensitivity of the numerical integration
procedure to the infrared regime where the dressing functions

FIG. 2. The condensate as a function of the coupling.

change most rapidly. We define dimensionless variables k̂0 =
k0/�, p̂0 = p0/�, k̂ = k/�, p̂ = p/�, and �̂ = �/�. The
hatted frequency and momentum variables range from zero to
one. From this point on, we suppress all hats.

III. RESULTS

In Fig. 2, we show the value of the gap �(0,0) versus α.
For comparison, we have also shown the result obtained in
our previous paper using the Lindhard screening function,
with both the full Ball-Chiu vertex function, and the 1BC
approximation used mainly in this paper [see Eq. (19)]. As
explained in the text above Eq. (19), the truncation of the vertex
that we use has almost no effect on the value of the critical
coupling. We fit the data shown in Fig. 2 using Mathematica,
using three different methods: Spline, Hermite, and Automatic.
The resulting function is extrapolated to obtain the value of the
critical coupling for which the gap goes to zero. The numbers
obtained from the three different methods are the same to
three decimal places. Our results are collected in Table I (the
Lindhard result is taken from Ref. [20]). The main result of
this work is a substantial reduction of the critical coupling
once the Lindhard approximation is given up in favor of a
full self-consistent calculation. Self-consistency in frequencies
is also much more important than the relativistic setup: the
self-consistent Coulomb approximation deviates only mildly
from the full self-consistent result. This small reduction is
consistent with what was found in our previous work [20].

To understand the drastic changes induced by self-
consistency, we discuss our results for the dressing functions
for the fermions and the photon. In Fig. 3, we show the
momentum dependence of the dressing functions for (α =
1) < αc in the symmetric phase, and in Fig. 4 we show the
dressing functions for (α = 3) > αc in the gaped phase. Each
dressing function is plotted either versus p or p0. The variable,
which is not plotted, is held fixed and chosen to be either

TABLE I. Results for critical values of the coupling α. The first
two lines are the results of the present paper, and the result in the last
line was obtained in our previous paper [20].

Calculation αc

Self-consistent 2.06
Self-consistent Coulomb 1.99
Lindhard 3.19
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(a)

(c)

(b)

FIG. 3. Momentum dependence of the Z, A, and �00 dressing functions with α = 1.

the smallest or largest value available, which are 10−6 and
1. For α = 1, there are no plots of � since it is zero below
the critical coupling. The photon self-energy is renormalized
numerically by subtracting �00(p0,0) for each value of p0. In
Fig. 3(c), we show the self-consistent photon dressing function
and the Lindhard screening function �00 = παp2vF√

p2v2
F +p2

0

. We

see that the Lindhard screening function is larger than the

self-consistently calculated photon self-energy. This result
is expected since the photon self-energy is calculated from
a one-loop diagram with two fermion propagators, and the
Lindhard function uses two bare propagators while the self-
consistent fermion dressing functions are consistently greater
than one over the full momentum range (see Figs. 3 and 4).
The Lindhard approximation therefore includes an artificially

(a) (b)

(c)

FIG. 4. Momentum dependence of the Z, A, and � dressing functions with α = 3.
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FIG. 5. Renormalized fermion velocity.

large dynamical screening effect, and consequently produces
a larger critical coupling (as seen in Fig. 2 and Table I).

In Fig. 5, we show the renormalized fermion velocity, which
is defined as A(p0,p)/Z(p0,p). The experimentally observed
increase in the Fermi velocity below the critical coupling at
small frequencies is clearly seen, but suppressed relative to the
results of [20].

IV. CONCLUSION

We have reported results of a calculation of the dynami-
cally generated gap using the DS equations of a low-energy

effective-field theory, which describes some features of mono-
layer suspended graphene. In the calculations, we have taken
into account previously neglected frequency dependencies in
a self-consistent way. Our results show that the inclusion of a
self-consistently determined photon self-energy substantially
reduces the critical coupling, relative to that which is obtained
with the previously used Lindhard screening function. This
result agrees with naive expectations, based on the large size of
the fermion dressing functions at small momentum. Neglecting
retardation effects in the self-consistent calculation reduces the
critical coupling further, but only by a smaller amount.

We remind the reader that the main goal of our paper was
to study the effect of frequency dependencies on the critical
coupling using an effective low-energy theory. The precise
numerical values of the critical couplings that we obtain are not
meant to be realistic, since they will clearly be changed (in a
predictable manner) by short-distance screening effects, which
we have not included. Our results provide valuable information
about the validity of the frequency approximations that are
commonly used in calculations done on honeycomb lattices.
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