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Shot noise as a probe of spin-correlated transport through single atoms
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We address the shot noise in the tunneling current through a local spin, pertaining to recent experiments on
magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering
processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional
contribution to the Landauer-Büttiker shot noise expression, accounting for correlations between the tunneling
electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-
Poissonian shot noise can be described within our approach. Our theory provides transparent insights into noise
spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.
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I. INTRODUCTION

Noise spectroscopy is a versatile tool for studies of corre-
lated matter. The signatures of the noise are directly related
to internal fluctuations which thereby provide an immediate
link to the excitations of the system. Measurements of noise
reveal, for instance, fractional charge of two-dimensional
electron gas in the Hall regime [1,2] and the 2e charge
of the superconductor-metal interface [3–5]. Detailed noise
spectroscopy has furthermore revealed many sources of in-
stability of spin resonances used for qubit operations, and
hence the processes that dominate decoherence are amenable
to improvements [6–8].

Particularly, investigations of spin noise through, e.g.,
atomic force microscopy opened routes to use random fluc-
tuations in spin ensembles to create spin order [9]. Moreover,
optically probed noise spectroscopy has been utilized to record
spontaneous spin noise associated with spin dynamics and
magnetic resonance [10], electron and hole excitation spectra
[11], magnetoresonances due to electrons coupled to nuclear
spins [12–14], and nonequilibrium spin noise [15]. In magnetic
setups such as quantum dots or molecules with localized
spin moment [16–19], noise spectroscopy opens routes to
systematically investigate the underlying physics. Electrical
current depends on the relative orientation of the localized
spin and spin moment of the charge carrier. Hence, the charge
transport couples with the spin dynamics, and it will have
information about different energy scales of the spin system,
all encoded in the noise [20–24]. Using charge transport
for noise spectroscopy has theoretically been addressed for
electrons coupled to molecular vibrations [25–27] and local
spin [28–30], while major achievements have been made for
optical probing techniques [31–33].

Recent shot noise measurements using scanning tunneling
microscopy (STM) on single magnetic atoms, e.g., Fe and Co,
adsorbed onto a Au(111) surface showed a sub-Poissonian
statistics [23]. Using a simple, noninteracting Landauer-
Büttiker picture for the shot noise, this sub-Poissonian signa-
ture was interpreted as evidence for spin-polarized transport,
something which was further supported by density func-

tional theory and linear conductance calculations. However,
as both the STM tip as well as the substrate surface are
non-spin-polarized, it is questionable whether a single (super-)
paramagnetic spin moment would give rise to signatures of
spin polarization in the transport measurements. Previously
reported experimental results have, on the contrary, provided
strong evidences for non-spin-polarized transport properties
in similar setups (see, for instance, Refs. [34–40]), both with
and without spin-orbit coupling in the metallic surface states.
Actually, all these measurements suggest the presence of
correlations between the tunneling electrons and localized spin
S through a coupling of the type

∑
pq ψ

†
pσ · Sψq + H.c., where

ψ
†
q (ψp) denotes the creation (annihilation) spinor for electrons

in the tip (q) and substrate (q). Since the Landauer-Büttiker
picture does not sustain any explanation in terms of correlation
effects at all, there is a calling for theoretical consistency
between the conductance and noise measurements.

The lack of a transparent and consistent theoretical tool
which enables simple and adequate analyses of the mea-
surement data justifies our reassessment of the theoretical
description of shot noise in electron transport. While the non-
interacting Landauer-Büttiker formulation is not applicable
for the circumstances constituted by charge currents in the
presence of localized spin moments, it is one of few well-
established approaches available.

In this article we address the problem of transport shot
noise in the presence of localized spin moments and derive
a generalization of the Landauer-Büttiker theory. The goal
is to provide a simplified tool in the spirit of the Landauer-
Büttiker formula for shot noise which, nonetheless, also in-
cludes correlations between the tunneling electrons and the
localized spin. We propose a model based on an interplay
between direct and indirect tunneling (see Fig. 1), where the
direct tunneling electrons are unaffected by the localized spin
while the indirect tunneling electrons undergo local exchange
interactions with the spin. We show that this interplay precisely
determines the characteristics of the shot noise. For a signal-
to-noise ratio larger than 1, a negligible contribution from the
indirect tunneling leads to a Poissonian shot noise, in which
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FIG. 1. (a),(b) Schematic description of the scattering processes
involved in (a) the direct rate T0 and (b) the indirect rate T1. In
the former, the spins constitute independent conduction channels,
whereas these channels are correlated through the internal structure
in the latter. The internal structure is related to changes �mz in the
local spin angular momentum which is accompanied by conduction
electron spin conserving (c), �mz = 0, or spin-flip, (d) |�mz| = 1,
processes. The changes �mz arise from internal transitions between
different spin states in the scattering region. The corresponding
energies for these transitions may be activated either thermally,
�E < kBT , or by external forces, �E > kBT .

limit our theory reduces to the Landauer-Büttiker picture. A
stronger influence from the indirect tunneling, increasing the
ratio between the contributions from the indirect and direct
tunneling, leads to a sub-Poissonian shot noise. This is in
agreement with the data reported in [23]. Oppositely, for small
signal-to-noise ratios a large indirect tunneling contribution
leads to a super-Poissonian character.

In Sec. II we derive the general expression for the current
noise which comprises the spin fluctuations and we discuss the
role of these on the transport measurements. Then in Sec. III
we discuss the results in terms of single magnetic moments
and compare to recent measurements. The paper is discussed
and summarized in Sec. IV.

II. CURRENT NOISE

Here, we address the quantum nature of the shot
noise at low temperatures and consider nonequilibrium
conditions. Fluctuations in the current can be characterized by
calculating the Fourier transform of the current-current
correlation function S(t,t ′) = 〈{�I (t),�I (t ′)}〉/2 =
〈{I (t),I (t ′)}〉/2 − 〈I (t)〉〈I (t ′〉 where {A,B} = AB + BA,
whereas �I (t) = I (t) − 〈I (t)〉 denotes the deviation of the
current I (t) around its average value 〈I (t)〉. The power
spectrum of the noise is defined as the Fourier transform of
S(t,t ′), which for stationary conditions can be written

S(ω) = (S ′(ω,−ω) − 2〈I 〉2)/2, (1)

where S ′(ω,ω′) = ∫ 〈I (t)I (t ′)〉e−iωt−iω′t ′dtdt ′. The zero fre-
quency (ω → 0) noise is referred to as shot noise, which
reduces to S = 2eI (e is electronic charge) in absence of
electron correlations.

Our model comprises a localized spin moment S embedded
in the tunnel junction between two normal metallic leads,
referred to as the left (L) and right (R). The basic important
assumption is that electrons can tunnel between the leads,
either by undergoing exchange interactions with the spin, with
rate T1, or not, with rate T0 (see Fig. 1). The effective tunneling
model is therefore formulated asHT = ∑

pq ψ
†
p(T0σ0 + T1σ ·

S)ψq + H.c. Here, ψk = (ck↑ ck↓)t is the spinor for electrons
in the left (k = p) or right (k = q) lead, whereas σ0 and σ are
the identity matrix and vector of Pauli matrices, respectively.
We notice that this tunneling model has been successfully
employed previously in the description of, e.g., inelastic
electron tunneling spectroscopy [41–44] as well as electron
spin resonance on a single atomic spin using STM [45–47].

We remark here that the introduced model for the tunneling
is restricted to electron fluctuations around the electrochemical
potentials μL(R) of the left (right) lead, in that we assume
constant rates for all electron tunneling processes. This is,
however, justified, since it is mainly the electrons around these
chemical potentials that contribute to the transport properties
of a junction between metals.

The overall model for the setup is modeled by H = HL +
HR +HS +HT . Here,Hχ = ∑

k ψ
†
k(εk − μχ )ψk models the

electrons in the lead χ = L,R with the energy dispersion εk,
assuming spin-degenerate electrons, relative to the chemical
potential μχ . The voltage V across the junction is defined by
eV = μL − μR . The localized spin moment is modeled byHS ,
for which the details are specified from case to case.

The current operator for the right lead is defined by

IR(t) = − ie
∑
pq

ψ†
p(t)T̂(t)ψq(t) − H.c., (2)

where we have introduced the notation T̂ = T0σ0 + T1σ · S
and set h̄ = 1. Considering the current-current autocorrelation
function in Eq. (1), we use Wick’s theorem to calculate each of
the expectation values. In the stationary limit, it is justified to
assume that the noises in the left and right leads are the equiv-
alent. Hence, we calculate the contribution from the right lead,
S(t,t ′) = 〈IR(t)IR(t ′)〉 − 〈IR(t)〉〈IR(t ′)〉. As the disconnected
diagrams of the first term exactly cancel the second term, we
only need to consider the class of connected diagrams in the
following. We write the autocorrelation function for the right
lead, to the second order in the tunneling rates, as

S(t,t ′) = −e2
∑

pp′
σσ ′

∑
qq′
ss ′

(〈T̂σ s(t)T̂σ ′s ′ (t ′)〉F>
qsp′σ ′(t,t ′)F<

q′s ′pσ (t ′,t)

+〈T̂sσ (t)T̂s ′σ ′(t ′)〉F>
pσq′s ′ (t,t ′)F<

p′σ ′qs(t
′,t)

−〈T̂σ s(t)T̂s ′σ ′(t ′)〉G>
qsq′s ′ (t,t ′)G<

p′σ ′pσ (t ′,t)

−〈T̂sσ (t)T̂σ ′s ′ (t ′)〉G>
pσp′σ ′(t,t ′)G<

q′s ′qs(t
′,t)), (3)

where the notations F>
qspσ (t,t ′) = (−i)〈cqs(t)c

†
pσ (t ′)〉 and

F<
qspσ (t,t ′) = i〈c†pσ (t ′)cqs(t)〉 denote greater and lesser Green

functions (GFs) for electron operators belonging to dif-
ferent leads, while G>

kσkσ ′(t,t ′) = (−i)〈ckσ (t)c†k′σ ′(t ′)〉 and
G<

kσk′σ ′(t,t ′) = i〈c†k′σ ′(t ′)ckσ (t)〉 are used for electron opera-
tors within the same lead.
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Here, we have decoupled the two-electron propagators of
the type

〈(c†pσ cqs)(t)(c
†
p′σ ′cq′s ′ )(t ′)〉 = F>

qsp′σ ′(t,t ′)F<
q′s ′pσ (t ′,t), (4a)

〈(c†pσ cqs)(t)(c
†
q′s ′cp′σ ′)(t ′)〉 = G>

qsq′s ′ (t,t ′)G<
p′σ ′pσ (t ′,t)

−F>
pσqs(t,t)F

>
p′σ ′q′s ′ (t ′,t ′),

(4b)

where the disconnected diagram (second term) in Eq. (4b)
yields the contribution to the noise which cancels the product
〈IR(t)〉〈IR(t ′)〉, as mentioned above.

The GFs F</> are expanded in terms of G</>, using
Langreth’s rules; for instance,

F</>
pq (t,t ′) =

∫
(Gr

pp′(t,τ )T̂(τ )G</>

q′q (τ,t ′)

+ G</>

pp′ (t,τ )T̂(τ )Ga
q′q(τ,t ′))dτ, (5)

where the superscript r/a denotes the corresponding re-
tarded/advanced GFs, whereas the boldface notation denotes
matrices in spin-1/2 space.

Assuming that scattering between different states within the
same lead is negligible, setting G

</>

kσkσ ′ = δσσ ′δ(k − k′)G</>

kσ ,
we obtain a closed formula for S. For leads in local equi-
librium we can write G

</>

kσ (t,t ′) = (±i)fχ (±ω) exp{−iεk(t −
t ′)}, where fχ (ω) = f (ω − μχ ) is the Fermi function.

The role of spin fluctuations

The correlation function 〈T̂(t)T̂(t ′)〉 = T 2
0 σ0 + T 2

1 σ ·
χ (t,t ′) · σ contains the direct and indirect tunneling processes,
of which the latter depend on the spin fluctuations comprised
in the spin-spin correlation function χ (t,t ′) = 〈S(t)S(t ′)〉. As
we are interested in the effects of the spin transitions on the
properties of the shot noise, we neglect any lifetime effects
of the spin states and consider the local spin moment in the
atomic limit. Hence, expanding χ in terms of the eigenstates
and eigenenergies {|a〉,Ea} ofHS we obtain

σ · χ (t,t ′) · σ =
∑
ab

(
2χz

ab + χ−+
ab + χ+−

ab

)
eiEab(t−t ′), (6)

where χ
z/−+/+−
ab = 〈a|Sz/−/+|b〉〈b|Sz/+/−|a〉P (Ea)[1 −

P (Eb)], and P (Ea) is an occupation factor for the state |a〉,
whereas Eab = Ea − Eb is the energy associated with the
transition. In this way we incorporate the quantum nature of
the localized spin moment, which is necessary in order to
appropriately account for the role of the spin fluctuations on
the shot noise.

The partitioning of χ into longitudinal χz and transverse
χ±∓ components reflects the differences in the allowed spin
transitions with respect to changes in the spin angular mo-
mentum �mz. The former transitions (χz) do not involve
any changes in the local spin angular momentum (�mz = 0)
[Fig. 1(c)] and are accompanied by spin-conserving tunneling
electrons [Fig. 1(b), upper]. The latter (χ±∓) concern unit
changes in the local spin angular momentum (|�mz| = 1)
[Fig. 1(d)], requiring spin-flip processes by the tunneling
electrons [Fig. 1(b), lower].

The autocorrelation function given in Eq. (3) contains
terms involving different orders of T0 and T1, which are
systematically collected, such that we rewrite the noise as
S(V ) = 2e2nRnL

∑
nm Snm(V ), where Snm(V ) ∝ T n

0 T m
1 , and

nχ denotes the density of electron states in the lead χ . It is
then straightforward to see that the first two terms of Eq. (3)
give the highest order contributions in T0 and T1, that is, S40,
S22, and S04. By integrating out the time variables and assuming
wide band metals in the leads (see, for instance, Ref. [48]), the
contribution proportional to T 4

0 can be written

S40 = T 4
0

(
2kBT − eV coth

eV

2kBT

)
, (7)

which in the low temperature limit (kBT /eV 
 1) becomes
S40 � −T 4

0 |eV |. Similarly, the other contributions can written
as S22 = −kBT T 2

0 T 2
1

∑
ab χab and S04 = −kBT T 4

1

∑
ab χ2

ab,
where we have defined χab = 2χz

ab + χ−+
ab + χ+−

ab .
Next, we consider the last two terms of Eq. (3), which are

quadratic in the tunneling rates, given by S02 and S20. Again,
in the zero-frequency limit we obtain

S20 = T 2
0 eV coth

eV

2kBT
, (8)

which tends to S20 � T 2
0 |eV | for low temperatures, while

S02 = T 2
1

∑
ab

χab(eV + Eab) coth
eV + Eab

2kBT
. (9)

Collecting all the terms leads to the total shot noise

S = 2e2nRnL

{
kBT

[
2T 4

0 − T 2
1

∑
ab

(
T 2

0 + T 2
1 χab

)
χab

]

+ eV T 2
0

(
1 − T 2

0

)
coth

eV

2kBT

+ T 2
1

∑
ab

χab(eV + Eab) coth
eV + Eab

2kBT

}
. (10)

First, it should be noticed that this expression is propor-
tional to 2T 4

0 kBT + eV T 2
0 (1 − T0)2 coth eV/2kBT in absence

of the indirect tunneling processes (T1 = 0), which in the
low-temperature regime (kBT 
 eV ) reduces to

S = 2e2nRnLe|V |T 2
0

(
1 − T 2

0

)
. (11)

We thus retain the Landauer-Büttiker formula for the shot
noise [21] in the limit of noninteracting tunneling electrons.
We note that the above expression is easily generalized to
include also spin-polarized leads. For a perfectly transmitting
channel, the current fluctuations (noise) are expected to have
less significance, which is clear when the transmission T0

tends towards unity, completely suppressing S. For weak
transmission, on the other hand, we recover the full shot
noise formula S = 2eI . The shot noise and corresponding
differential noise calculated from Eq. (10) at T1 = 0 are shown
in Figs. 2(a) and 2(b) (blue), which indicate a linear voltage
dependence of the noise except near equilibrium, in agreement
with previous results. Signatures in the noise emerging from
the exchange interactions between the tunneling electrons and
localized spin require a finite rate T1, to which the remainder
of the article is devoted.
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FIG. 2. Shot noise (a) and corresponding differential shot noise
(dS/dV ) (b) for varying ratio T1/T0 = 0, 1/2, 1, and 3/2 as a
function of the voltage bias. Here, the spin S = 1 and temperature
T = 1 K, whereas uniaxial and transverse anisotropies D = 1 meV
and E/|D| = 1/5, respectively. The inset in panel (b) shows the
corresponding differential conductance (dI/dV ). (c) dS/dV for
varying E/|D| = 0, 2/5, 4/5, and 6/5 for spin S = 1, and (d) for
varying spin S = 1, 3/2, 2, and 5/2, for T1/T0 = 1 and E/|D| = 1/5.

III. RESULTS

We make connection to the experiment in, e.g., Ref. [23] by
using HS = −gμBB · S + DS2

z + E(S2
+ + S2

−)/2 to model the
local spin structure. Here, the parameters D and E account for
the uniaxial and transverse anisotropies, respectively, whereas
B is an external magnetic field, g is the gyromagnetic ratio,
and μB is the Bohr magneton.

Using the result derived in Eq. (10), we investigate the
influence of the local spin on the noise as a function of the
voltage, the excess noise. In Figs. 2(a) and 2(b) we plot the shot
noise S and corresponding differential shot noise dS/dV , re-
spectively, for increasing ratio T1/T0. The emergence of the dip
and peak symmetrically located on either side of equilibrium
signify the inelastic spin transition of the local spin, which is
assisted by the exchange of energy and spin angular momentum
with the tunneling electrons. The increasing intensity of these
features is consistent with the differential conductance of single
paramagnetic moments using STM [34–40], which can be
seen in the inset. For a finite but small transverse anisotropy
E < kBT , transitions that do not require the exchange of spin
angular momentum are thermally activated [see Fig. 1(c)],
which leads to an increased equilibrium shot noise [Fig. 2(a)].
Increasing E increases the energy split between the excited
states for integer spins, for which the dip/peak is expected to
shift towards higher voltages. This can be seen in Fig. 2(c),
where we plot dS/dV for increasing E. Higher spins with
more excitations are expected to reveal more features in the
differential excess noise, which is verified in Fig. 2(d), where
we display results for spin S = 1, 3/2, 2, and 5/2.
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FIG. 3. Shot noise (a),(c) and corresponding dS/dV (b),(d) for
varying external magnetic field B = B ẑ, with B = 0, 2, 5, and 8 T
(a),(b) and temperature kBT /|D| = 0.5, 1, 2, 3.5, and 5 (c),(d) as a
function of the voltage bias. Here, the spin S = 1, T1/T0 = 1/2, and
E/|D| = 0.2, and in panels (a),(b), T = 2 K. The curves in panels
(a) and (c) are offset by 0.05n, n non-negative integer, for clarity.

The impact of externally applied magnetic fields B = B ẑ
is plotted in Figs. 3(a) and 3(b), showing the shot noise
and corresponding differential shot noise as a function of
the voltage bias for increasing magnetic field strengths B =
0, 2, 5, and 8 T. As the Zeeman split of the local spin
increases with the magnetic field, the correlated noise which
is associated with the spin transitions (χ) is suppressed at low
voltages and is only accessed through the energy disposal at
higher voltages. In the shot noise this is illustrated in that the
low-voltage characteristics go from a rounded U shape to a
more chevronlike appearance with increasing magnetic field
strengths. The corresponding features in the differential shot
noise are the emerging steplike characteristics with the voltage
for increasing magnetic field strengths. These steps reflect the
increased energy spacing in the spin excitation spectrum.

Although external magnetic fields can be used to access
more details about the spin excitation spectrum, the resolution
is, as always, limited by the effective temperature of the
local environment. This can be seen in Figs. 3(c) and 3(d),
where we plot the voltage dependence of the shot noise and
differential shot noise, respectively, for increasing tempera-
tures kBT /|D| = 0.5, 1, 2, 3.5, and 5. The shot noise reveals
essentially the same behavior with decreasing temperatures
as with increasing magnetic field strengths, in the sense that
the low-voltage shot noise goes from the rounded U shape
towards a chevronlike shape. Also, at low temperatures, kinks
associated with spin correlations in the shot noise become
visible. These features are transferred into clear steps in the
differential shot noise for low temperatures, while these are
effectively smeared out by the thermal excitations at higher
temperatures.

The Fano factor F = limV →0 S(V )/2e〈I (V )〉 provides a
measure of the character of the noise as a noise-to-current
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FIG. 4. The Fano factor as a function of GT0 for T1/T0 = 0, 1/2,
1, 6/5, and 3/2. Other parameters are as in Fig. 2. Experimental Fano
factors of Fe (◦), Co (), and Au (�) adatoms on Au(111) are taken
from [23].

ratio. In absence of the indirect tunneling T1, the Fano factor
reduces to simply F|T1=0 = 1 − T 2

0 , at low temperatures, as
shown in Fig. 4 (T1/T0 = 0, blue line), where the Fano
factor is plotted as function of the equilibrium conductance
GT0 = limV →0 d〈I (V )〉/dV , and different ratios T1/T0. The
limit line 1 − T 2

0 is known as Poissonian noise and signifies
the characteristics of ideal independent tunneling processes,
observed in, e.g., atomic-size metallic tunnel junctions [49,50].

Correlated tunneling processes modify the tunneling prop-
erties such that the Fano factor deviates from the ideal Poisso-
nian limit. Thus, whenever the F < 1 − T 2

0 (F > 1 − T 2
0 ) it is

referred to as sub- (super-) Poissonian, and both sub- and super-
Poissonian noise have been observed in experiments [23,50].

Inclusion of the indirect tunneling processes (T1 > 0) shows
a dramatic change of the Fano factor from the Poissonian nature
to a nontrivial dependence on both the ratio T1/T0 and GT0 ,
Fig. 4. While super-Poissonian noise tends to be dominant
for small T1/T0 � 1/2 for a larger range of GT0 , the noise
becomes increasingly super-Poissonian for increasing ratio
T1/T0, but over a smaller range of GT0 . Although the Fano
factor decreases monotonically with the conductance, being
super- (sub-) Poissonian as GT0 → 0 (GT0 → 1), the transition
between the two phases depends on T1/T0. This feature
indicates that the local spin fluctuations play an important role
whenever the signal-to-noise ratio is small and that its influence
on the transport properties weakens as the conductance grows.
This is, however, expected from the point of view that the
number N of electrons involved in the tunneling is small at
low conductances and that the signal-to-noise ratio depends
on N roughly like 1/

√
N [46].

In order to make a direct comparison with recent experi-
ments, we have included the data of atomic Fe (◦), Co (),
and Au (�), taken from [23]. We find that the presence
of the localized spin and its exchange interactions with a
portion of the tunneling current provides a simple and natural
explanation for the observed sub-Poissonian noise. This picture
is also consistent with other types transport measurements,
e.g., differential conductance and inelastic electron tunneling
spectroscopy, performed on similar setups.

The agreement between the experimentally and theoreti-
cally obtained Fano factors is made for ratios T1/T0 varying
between 1/2 and 1. These values are reasonable both in
comparison with measurements of the differential conductance
and inelastic electron tunneling spectroscopy [34–40], as well
as from theoretical estimates concerning both single-electron
and Coulomb-assisted tunneling rates [51,52].

IV. DISCUSSION AND SUMMARY

Our derivation of the shot noise formula, intended to be
applicable to setups with a magnetic moment embedded in the
junction between metallic leads, is based on a few assumptions,
in addition to the ones already mentioned alongside the
derivation. Here we discuss whether these assumptions and
simplifications are justified. We have, for instance, omitted
possible contributions to the shot noise emerging from Kondo
correlations. There are at least two reasons why our approach
may be considered as a sufficiently good approximation, even
without the inclusion of such effects. First, previous studies of
Fe and Co on various metallic surfaces have concluded the local
moment of Fe to be larger than 1/2, while Co may also acquire
a spin moment of 1/2, see, e.g., [37,53–56]. However, the
experimental observations reported in [23] do not indicate any
significant qualitative difference in the properties of the shot
noise, which should be expected if the Kondo correlations were
of integral importance. Second, even if correlated processes
that are omitted here, like Kondo screening, do contribute in
an non-negligible way, these would lead to an enhancement
of the non-Poissonian characteristics of the shot noise, since it
is exactly the correlated tunneling processes that create devia-
tions of the shot noise from the Poissonian limit. Hence, despite
the possible presence of higher-order correlation processes,
we obtain a good agreement with experimental observations,
although we have only accounted for the simplest possible
correlation processes involved in the exchange interactions
between the tunneling electrons and local spin moment. Al-
though it is beyond the scope of the present article, it would,
nonetheless, be desirable to also consider the contribution of
Kondo screening to the shot noise.

The shot noise formalism is here based on the nonequilib-
rium Green functions technique, and it is certainly, relevant to
also ask to what extent we mean by nonequilibrium. In general,
there is no restriction introduced when applying the Keldysh
technique; however, there are yet several other simplifications
that have to be discussed. The spin is, for instance, considered
in the atomic limit, which is only valid whenever the spin
dynamics is hardly affected by the tunneling current. This is
motivated when the local exchange integral T1 between the
tunneling electrons and the spin is smaller than, for instance,
the energy required for the local spin to make a transition to an
excited state. This is, however, typically always the scenario in
tunneling measurements made using STM, since the tunneling
rate depends exponentially on the distance between the tip and
the sample. We notice, nonetheless, that renormalization of the
local spin due to the current flow generates a decreased lifetime
of the spin states, which may cause quantitative changes in
both the current and shot noise. While it is an issue beyond
the scope to the article, this remains an open question for the
characteristics of the shot noise.
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It should be noticed, finally, that the evidence presented here
suggesting that the shot noise reported in [23] is due to spin
correlations is quite circumstantial. Thus far, the comparison
is made only through the Fano factor and agreement with
merely one quantity may be obtained by means of various
approaches. While one, for instance, may use the uncorrelated
Landauer-Büttiker approach as was done in [23] or the ap-
proach presented in this article, there may be other mechanisms
in the transport properties that yield the same Fano factor. The
fact that we base our discussion on a model that successfully
has been used to reproduce differential conductance and
inelastic tunneling electron spectroscopy is in favor of our spin-
correlated picture, since it creates a consistent framework of the
different aspects of using tunneling transport in studies of local
spin moments. In order to find the arguments for discrimination
between different theories, however, more experiments that can
be used for the construction of a sound description of the shot
noise of local spin moments are necessary.

In summary, we have presented a theoretical account of spin
noise spectroscopy using charge transport measurements in
which the transport channels are partitioned into contributions
with and without spin correlations. The channel without spin

correlations constitutes the usual noninteraction Landauer-
Büttiker picture, whereas the spin-correlated channel emerges
from the exchange coupling between the tunneling electrons
and the localized spin moment. We have shown that our
approach provides a good agreement with recent shot noise
experiments using STM [23], while simultaneously being fully
consistent with previous theoretical approaches to inelastic
electron tunneling spectroscopy recorded on magnetic adatoms
[41–44], as well as electron paramagnetic resonance [45–47]
using STM. By means of our results we make the prediction
that details of the spin excitation spectrum should be conceiv-
able through finite voltage noise spectroscopy, which would
open new routes for analyses of spin moments and anisotropy
parameters.
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