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The properties of the low-lying eigenvalues of the entanglement Hamiltonian and their relation to the
localization length of a disordered interacting one-dimensional many-particle system are studied. The average
of the first entanglement Hamiltonian level spacing is proportional to the ground-state localization length and
shows the same dependence on the disorder and interaction strength as the localization length. This is the result
of the fact that entanglement is limited to distances of order of the localization length. The distribution of the
first entanglement level spacing shows a Gaussian-type behavior as expected for level spacings much larger
than the disorder broadening. For weakly disordered systems (localization length larger than sample length), the
distribution shows an additional peak at low-level spacings. This stems from rare regions in some samples which
exhibit metalliclike behavior of large entanglement and large particle-number fluctuations. These intermediate
microemulsion metallic regions embedded in the insulating phase are discussed.
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I. INTRODUCTION

Close to 60 years after the concept of localization has been
introduced by Anderson [1], the localization transition remains
at the center of many current topics, from applications of many
body in quantum information [2] to random lasing [3]. While
for most quantum phases the gap between the ground-state
energy and the first excited state defines the correlation length,
in the localized phase the correlation length corresponds to the
localization length, determined by the exponential dependence
of the conductance G on the linear dimension of the system
L. The localization length ξ is defined through the exponential
decrease in the conductance in the localized phase G(L) ∼
exp(−L/ξ ) [4].

It is important to note that when one discusses the localiza-
tion of disordered one-dimensional (1D) electrons, one must
differentiate between noninteracting and interacting electrons,
and between states close to the ground state and highly excited
states. For noninteracting electrons, all states are localized
whether they are in the vicinity of the ground state or highly
excited. On the other hand, for interacting electrons, states
close to the ground state are always localized, while highly
excited states are delocalized. This localization-delocalization
transition is known as the many-body localization (MBL)
transition and may occur at a given excitation energy for a
specific interaction strength [5,6].

Recently, it was realized that ξ should also determine the
entanglement properties of a system in the strongly localized
regime [7]. One does not expect regions beyond the distance ξ

to be entangled. Thus, by dividing a one-dimensional system
into two regions (see Fig. 1), and studying the entanglement
between them, one may hope to gain a measure of ξ through
the entanglement properties. Indeed, for the ground state, the
averaged entanglement entropy increases logarithmically as
long as the length of region A, LA, is smaller than than ξ

and saturates for LA > ξ [7,8]. For excited states, where the

entanglement entropy is expected to follow the volume law,
one expects the averaged entanglement entropy to increase as
LA for LA < ξ , and saturate for longer length [9]. Here, we
would like to use ground-state entanglement as a window into
the physics of the region within length ξ from the boundary.
As long as the system is in the localized regime (i.e., finite ξ )
similar methods should work also for excited states.

The information regarding the entanglement between the
regions A and B is encoded in the reduced density matrix
(RDM), ρA(B), of regions A (or B). For a system in a pure
state |�〉, ρA is defined as ρA = TrB |�〉〈�|, where the degrees
of freedom of region B are traced out. It is important to
note that diagonalizing ρA defines a basis that completely
spans the Hilbert space of region A and if there exists any
conserved quantum number (for the case discussed in this
paper the conserved quantum number is NA, the number of
particles in region A), that basis is also the eigenvector of
NA. The eigenvalues of the RDM, λ

NA

i , are used to extract
measures for the entanglement between the regions, such as the
entanglement entropy, defined as SA = −∑

i λ
NA

i ln λ
NAA
i , and

the Rényi entropy SnA = − 1
1−n

ln
∑

i(λ
NA

i )n, where the first
Rényi entropy (n → 1) is equal to the entanglement entropy.

Recently, Li and Haldane [10] have suggested a different
way to interpret the eigenvalues of the RDM. They noted that
the RDM of regionAmay be seen as a density matrix of a mixed
thermal state of an ersatz system described by a Hamiltonian
HA such that ρA = exp(−βHA), where HA is known as the
entanglement Hamiltonian and β = 1. Under these conditions,
the eigenvalues of HA are given by ε

NA

i = − ln(λNA

i ). Up until
now, these are just mathematical manipulations, but Li and
Haldane noted that for a fractional quantum Hall ν = 5

2 state
where the bulk is partitioned into two regions and a virtual
edge is created, the eigenvalues ε

NA

i resembled the true edge
excitation spectrum. This is actually quite intuitive since the
boundary between regions A and B is the edge and therefore
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FIG. 1. A schematic representation of the system and the entan-
glement Hamiltonian HA. A one-dimensional system of length L is
bisected into two regions A and B, with length LA and L − LA.
The reduced density matrix of region A, ρA, is calculated and its
eigenvalues λ

NA

i are used to construct the entanglement Hamiltonian
HA and its eigenvalues ε

NA

i . HA samples the behavior of the system
on a scale ξ from the A-B boundary.

one should expect HA to give a reasonable representation of the
physics of the edge. This suggests that the low-energy entangle-
ment Hamiltonian spectrum shows some correspondence to the
true many-body excitations close to partition (the edge region).
This correspondence has been demonstrated for different cases
of topological insulators [11,12].

The situation for the entanglement between regions A and
B for a 1D system depicted in Fig. 1 where the contact
between the two regions is a point. As pointed out by Alba
et al. [13], for different 1D gapped systems (i.e., systems with
finite correlation length) one expects that the entanglement
spectrum will be mainly influenced by a region of order of
the correlation length from the boundary. This is similar to the
situation in the Anderson localized phase, where there is no gap
but the localization length plays the role of a correlation length
[4]. This is highlighted by the saturation of the entanglement
entropy once LA > ξ discussed earlier, as well as by power-law
behavior which depends on the localization length of the
entanglement spectrum of a highly excited state [14] in the
many-body localized regime.

In this paper, we show that the entanglement spectrum
of the ground and low-lying excitation states of a localized
interacting 1D many-particle system shows a clear signature
of the many-particle localization length. Specifically, the first
level spacing of the entanglement energies for a given NA,
	

NA

1 = ε
NA

2 − ε
NA

1 , is proportional to 1/
√

ξ . As we shall
explain, this is the behavior expected from a many-particle
state trapped in a potential of width ξ from the boundary.
Moreover, the proportionality depends linearly on the strength
of particle-particle interactions U as expected from charge
particles trapped in a potential. It is also shown that deep in the
localized regime, where no difference in the localization length
between the many-particle ground state and the low-lying
states is expected, also 	

NA

1 is similar. On the other hand, for
weaker disorder, where the localization length for low-lying
excitations is significantly larger than for the ground state [9],
also 	

NA

1 becomes smaller. The distribution of 	
NA

1 becomes
Gaussian for ξ � LA, with a width proportional to disorder

and does not depend on U , as might be expected for the level
spacing of states in a weakly disordered quantum dot.

This is important not only as a new simple way if deter-
mining the localization length of an interacting many-particle
system, but mainly as a way to access the properties of disor-
dered many-particle systems on short length scales (of scale ξ )
and large energy scales U/

√
ξ . This is illustrated by using the

low-lying values of ε to detect and characterize rare regions in
the sample which appear for low-disorder strongly interacting
samples. These regions exhibit metalliclike behavior such as
large entanglement and high particle-number variance.

The paper is organized as follows: In Sec. II the model
for the interacting fermions in a disordered one-dimensional
system is defined. The next section (Sec. III) discusses the
average of the first entanglement level spacing and its relation
to the ground-state localization length. The following section
(Sec. IV) investigates the properties of the distribution of
the first entanglement level spacing. The appearance of some
rare regions in the sample which exhibit metalliclike features
is discussed in Sec. V. The significance of the results and
relevance to further work is discussed if Sec. VI.

II. MODEL

In this paper, we study spinless electrons confined to a
1D wire of length L with repulsive nearest-neighbor particle-
particle interactions and onsite disordered potential, depicted
by the Hamiltonian

H =
L∑

j=1

εj ĉ
†
j ĉj − t

L−1∑
j=1

(ĉ†j ĉj+1 + H.c.)

+U

L−1∑
j=1

(
ĉ
†
j ĉj − 1

2

)(
ĉ
†
j+1ĉj+1 − 1

2

)
, (1)

in which εj represents the onsite energy drawn from a uniform
distribution [−W/2,W/2], ĉ

†
j is the creation operator of a

spinless particle at site j , and t = 1 is the hopping matrix
element. The interaction strength is U , with a background
positive charge. For this model the localization length ξ0 ≈
105/W 2 [15] for U = 0. The Luttinger parameter is defined as
K(U ) = π/[2 cos−1(−U/2)] [16,17], where K(U = 0) = 1.
As U increases, K becomes smaller, and at the transition to a
charge density wave (U = 2) K = 1

2 . Renormalization group
scaling of the localization length suggests ξ = (ξ0)1/(3−2K)

[18,19], i.e., ξ decreases as the interaction increases and the
system becomes more localized.

III. AVERAGED FIRST ENTANGLEMENT
LEVEL SPACING

We use the numerical density matrix renormalization group
(DMRG) [20,21] method to calculate the RDM for the ground
state and low-lying excited states of the Hamiltonian depicted
in Eq. (1) [7,9] at half-filling. We calculate the eigenval-
ues of the RDM for a system of length L = 700, different
values of disorder W = 0.3,0.7,1.5,2.5,3.5,4,5 correspond-
ing to ξ ∼ 1100,200,50,20,9,6.5,4, different values of inter-
action strength U = 0,0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4 corre-
sponding to K = 1,0.91,0.84,0.77,0.71,0.65,0.58,0.49,0.48
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FIG. 2. The averaged entanglement Hamiltonian levels 〈εk〉
(lines) and averaged entanglement levels for a fixed number of
particles in region A〈εNA=LA/2

k 〉 (symbols) as function of the level
number k for a system of size L = 700 where W = 2.5 and U = 0,

2.4. For both noninteracting and interacting cases, 〈εk〉 increases
stronger than a power law, while 〈εNA=LA/2

k 〉 follows a power law
(indicated by a dashed line), for low values of k.

(the two last values are a continuation of the values K for U =
2) and different sizes of region A: usually, LA = 10,20, . . . ,

L − 10, for at least 100 realizations of onsite disorder.
Here, we concentrate on the first level spacing of the

entanglement levels, but prior to addressing this quantity
it is informative to consider the behavior of the low-lying
entanglement spectrum. Since the number of electrons in
region A remains a good quantum number of HA, for each
eigenstate of ρA one should calculate both λi and NA

i (the
number of particles in the region A). Calculating NA

i does
not add to the complexity of the DMRG code [22]. The
averaged entanglement Hamiltonian eigenvalue 〈εk〉 (where
〈. . .〉 depicts an average over different realization of disorder
and values of LA in the vicinity of L/2) and the averaged
entanglement Hamiltonian eigenvalue for a particular value
of NA, 〈εNA=LA/2

k 〉, are plotted in Fig. 2, for a relative strong
disorder W = 2.5 and two values of interaction U = 0,2.4. For
the entanglement spectrum of highly excited states of small
systems in the many-body localized regime, it has been shown
that 〈εk〉 as function of k behaves as a power law [14]. Here,
the entanglement spectrum of the ground state in the localized
regime 〈εk〉 rises faster than a power law, but when one takes
only the entanglement spectrum belonging to the same sector
NA one discovers that the low-lying spectrum indeed follows
a power law until it saturates.

Next, the average first level spacing 	
NA

1 (LA) =
〈εNA

2 (LA) − ε
NA

1 (LA)〉 is calculated. It is important to note that
as for the entire low-lying spectrum, if one ignores the subscript
NA and calculates ε2 − ε1 one gets a very different result.
Essentially, since eigenstates of ρA belonging to different
sectors of NA do not couple, one obtains a spacing of two
unrelated energies which does not contain much physical
information. On the other hand, 	NA

1 does not depend strongly
onNA and therefore we also average over values ofNA ∼ LA/2
to obtain 	1.
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FIG. 3. The averaged first level spacing 	1 as function of the size
of region A, LA, for a system of size L = 700 and different values of
disorder W or interaction strength U . Top: the noninteracting case for
different values of W . Bottom: for W = 1.5 (ξ0 = 50) and different
values of U . In both cases, it is clear that as ξ decreases whether
due to increasing disorder or interaction strength, 	1 saturates at
smaller values of LA, indicating a finite region in A influenced by
the entanglement.

In Fig. 3, 	1(LA) for different values of disorder W and
interaction strength U are presented. Since we expect that
there will be no entanglement beyond a region proportional
to ξ , the entanglement spectrum should be affected by the
shortest length scale of LA or ξ . Thus, 	1(LA > ξ ) = 	1(ξ )
should saturate, which is indeed seen for higher values of
W and U for which ξ becomes shorter. Another feature
of 	1(LA) which should be considered is its magnitude. A
simple consideration, treating the fact that the entanglement is
confined to the boundary between the regions as an effective
confining potential of width ξ in HA (see Fig 1), will result
in 	1(ξ ) ∝ 1/ξ . This argument neglects the fact that we are
calculating the level spacing within the same sector NA. Thus,
one must consider that the next state might not belong to the
same NA sector. Taking into account that the variance in the
number of particles in region A is proportional to

√
ξ , one

concludes that 	1(ξ ) ∝ 1/
√

ξ .
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FIG. 4. The averaged first level spacing 	1 as function of the
disorder W and interaction strength U averaged also over the central
region on the wire L/4 < LA < 3LA/4 (symbols). Top: 	1 as
function of the disorder strength. For the noninteracting case (U = 0),
as long as ξ < L (i.e., as long as W > 0.5) 	1 is linearly dependent
on W (black line), in line with the expectation from 	1 ∝ 1/

√
ξ0.

This relation does not hold for the interacting case U > 0. Bottom:
taking into account the influence of U on the localization length.
Here, we plot 	1 as function of 1/

√
ξ ∝ W 1/[3−2K(U )]. A linear

dependence on 1/
√

ξ with a slope depending on interaction 	0(U )
is clear (lines). As expected from interacting particles in a confining
potential 	0(U ) ∝ U , as can be seen in the inset.

This behavior is seen in Fig. 4 where 	1 for different
values of disorder and interaction are indicated by the symbols.
Since (except for W = 0.3) in all cases ξ � 200) we have
also averaged over the different values of LA in the range
L/4 < LA < 3LA/4, where the first level spacing saturates.
In the top figure, 	1 is plotted as function of 1/

√
ξ0 ∝ W .

As indicated by the black line, for the noninteracting case
(U = 0), as long as ξ < L (i.e., W > 0.4) the numerical data
follow 1/

√
ξ0 perfectly. For the interacting cases, deviations

are clearly seen. That is not surprising since ξ depends on
U . Taking the dependence of the localization length on the
interactions into account by 1/

√
ξ ∝ W 1/[3−2K(U )], a linear

relation of the form 	1 = 	0(U )/
√

ξ + const can be seen in
the lower panel of Fig. 4. Moreover, as can be seen in the
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Δ 1

U=0.6,W=0.7
U=1.8,W=2.5

FIG. 5. Comparison of the averaged first entanglement level
spacing between the ground state (black) and the first excited state
(red). For the strongly localized case U = 1.8, W = 2.5 there is no
difference between the two. On the other hand, for the weak disorder
case U = 0.6, W = 0.7, 	1 is consistently lower in the saturated
region for the excited state.

inset, 	0(U ) depends linearly on U as may be expected from
the level spacing of charged particles in a confined potential
(Coulomb blockade) [23]. This further strengthens the picture
of the entanglement spectrum corresponding to a many-particle
spectrum of an effective Hamiltonian with a confining potential
near the boundary.

Up to now we have considered the case for which the pure
state |�〉 of the entire system is the ground state. Of course,
in principle, one may calculate the entanglement spectrum of
the system for any pure state. Nevertheless, DMRG is suitable
only for the calculation of states for which the entanglement
does not grow too much. For long one-dimensional systems,
this demand could be fulfilled by the ground state that grows
only logarithmically with length, and by excited states in the
MBL localized regime, as long as the localization length is
short enough (since their entanglement grows linearly up to the
localization length) [14,24,25]. Here, we would like to see the
influence of ξ for long systems, where ξ spans the whole range
from ξ > L to L 
 ξ , and therefore we have calculated only
the entanglement spectrum for the ground state. In the strong
disorder regime, no physical difference is expected between the
ground state and the low-lying excitations. Indeed, comparing
	1 for the ground state and the first excited state for U = 1.8,

W = 2.5 (Fig. 5), no significant difference can be seen. On
the other hand, for weak disorder it has been shown that even
for low-lying excitations there may be a significant increase
in the localization length [9]. This can be seen for the weak
disorder case of U = 0.6, W = 0.7, as a decrease in 	1 for
the saturated area, as expected when ξ increases.

IV. FIRST ENTANGLEMENT LEVEL SPACING
DISTRIBUTION

One might naively expect that the distribution of the first
entanglement level spacing will be similar to the first excitation
of a localized many-particle system, which should follow
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FIG. 6. The numerical distribution of the normalized first entan-
glement level spacing s1 for different strength of disorder W and
interaction strength U . (a) The distribution for different strength of
disorder in the noninteracting (U = 0) case. (b) As in (a) where
s1 is rescaled according to s̃1 = (s1 − 1)(a + bW ) + 1 and P (s̃1) =
(a + bW )−1 where a and b are constants. (c) The distribution for
different strength of interaction strength at a given value of disorder
W = 1.5, the distribution is almost independent of U . (d) As in (c),
for weaker disorder W = 0.7. In this case, as U increases a second
peak in the distribution for small spacings appears.

the single-particle level spacing distribution, i.e., the Poisson
distribution [26]. It is also known that the distribution across
all the ES level spacings for highly excited states follows a
semi-Poisson distribution in the localized regime [27]. The
distribution of the normalized first excitation P (s1) [where
s1 = (εNA

2 − ε
NA

1 )/	NA

1 ] is drawn from different realizations of
disorder, different cuts of LA in the range L/4 < LA < 3L/4
and values of NA ∼ LA/2 and presented in Fig. 6(a) for
the noninteracting (U = 0) case. It is immediately clear that
this is not a Poisson distribution, but rather a Gaussian-type
broadening of the spacing as function of W . This nonuniversal
behavior of the distribution is due to the effective confining
potential of the entanglement Hamiltonian. Since only an area
of length ξ is sampled by the entanglement spectrum, the
system on this length scale is not localized. As is known for
disordered 1D systems, the distribution of single-particle level
spacing crosses over very rapidly from a universal Poisson
distribution when ξ is smaller than the length to a nonuniversal
broadening as ξ becomes larger than the systems length, with
no true Wigner behavior in the middle [28]. Thus, P (s1) shows
the typical behavior of a short disordered 1D system. The
broadening of the distribution is proportional to W , and the
distribution might be rescaled by s̃1 = (s1 − 1)(a + bW ) + 1
and P (s̃1) = (a + bW )−1 with the numerical factors a = 0.17,
b = 0.0375. As can be seen in Fig. 6(b) after rescaling
the curves with stronger disorder (W > 0.7) for which the
localization length is significantly shorter than the system size,
all curves fall on each other.

In the region where ξ � L there is no dependence on U as
is demonstrated in Fig. 6(c) for the case of W = 1.5. Thus, in
contrast with the average first level spacing which depends on

ξ , the distribution width depends only on the onsite disorder W

and not on U or ξ . Nevertheless, for weak disorder (W = 0.7,
ξ � L) a peculiar dependence on U appears. As is seen in
Fig. 6(d), a second peak in the distribution at low values of s1

appears. This peak has a nonmonotonous behavior as function
of U . It is absent for U = 0 and appears only for stronger
values of U . This feature is absent from stronger disordered
samples [see Fig. 6(c)].

V. INTERMEDIATE REGIONS IN WEAKLY DISORDERED
STRONGLY INTERACTING REALIZATIONS

From where does this second peak for weakly disordered
strongly interacting systems come from? Some insight may
be gained from scrutinizing specific realizations of disorder.
Four representative realizations with (W = 0.7, U = 2.4) are
shown in Fig. 7. For typical regions of each sample s1 fluctuates
around the average and is significantly higher than for a clean
case with the same interaction strength (W = 0, U = 2.4).
Nevertheless, there are rare regions (see, e.g., the lowest
panel of Fig. 7 in the region 370 < LA < 470) where s1 is
significantly lower then the average and much closer to the
clean case value. Moreover, the entanglement entropy SA is
strongly enhanced in that region even beyond the clean sample
value. Likewise, the particle-number variance δ2NA = 〈N2

A〉 −
〈NA〉2 (easily calculated using DMRG) is also enhanced in
this region, much beyond the values for a clean system (W =
0) with the same interaction strength. The correspondence
between SA and δ2NA seems to work well for these realizations
although, strictly speaking, there is no theoretical proof for
this relation in interacting systems [22,29,30]. This will be
further discussed elsewhere. Anyway, the behavior of both
SA and δ2NA are in line with a “metallic” inclusion within
the localized sample. Thus, although as we have seen for
	1, on the average stronger interactions (U ) correspond to
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FIG. 7. The first entanglement level spacing s1 (black curve),
the entanglement entropy SA (red curve), and the particle-number
variance δ2NA (green curve multiplied by 4 for clarity) for four dif-
ferent realizations of disorder, where W = 0.7 and U = 2.4 and LA =
2,4,6, . . . ,L − 2. The results for a clean system (W = 0, U = 2.4)
are presented by the corresponding dashed curves.

115408-5



RICHARD BERKOVITS PHYSICAL REVIEW B 97, 115408 (2018)

0 100 200 300 400 500 600 700

L
A

0

1

2

3

4

5

Δ 1,S
A

,4
δ2 Ν

,δ
1

Δ1
S

A

δ2Ν
δ1

FIG. 8. A closer look at the behavior of the last realization
depicted in Fig. 7. The first entanglement level spacing s1 (black
curve), the entanglement entropy SA (red curve), the particle-number
variance δ2NA (green curve multiplied by 4 for clarity), and the
spacing between two lowest entropy levels belonging to different
particle number δ1 (blue curve). For comparison, the same variables
calculated for a clean noninteracting sample (U = 0, W = 0) are
indicated by dashed curves.

stronger localization (smaller ξ ), there exist rare regions for
which the interplay between interaction and disorder may lead
to a more metalliclike behavior. A similar behavior, where
interactions lead to delocalization in rare realizations of 1D
disordered systems, was seen for the persistent current [31],
and is also reminiscent of the intermediate microemulsion
phases proposed for two-dimensional systems [32].

Some light on the nature of these rare regions can be
shed by the low-lying entropy energies ε

NA

i . Usually, for the
half-filled case discussed here, and an even partition (LA even),
ε

NA=LA/2
1 is much lower than any other energy since a state

with NA = LA/2 is the most probable. Thus, one expects
δ1 = min(ε{NA=LA/2±11} − ε

NA=LA/2
1 to be smaller than 	1, but

not orders of magnitude lower. Indeed, comparing δ1 to 	1 for
the last realization depicted in Fig. 7 (see Fig. 8) shows this
behavior for most of the sample, except for the region around
370 < LA < 470, and smaller regions around LA = 100 and
LA = 600 where δ1 reaches values close to zero. These are
exactly the regions where strongly enhanced values of SA

and δ2NA are seen, i.e., close to the values of a metallic
sample (U = 0, W = 0). For typical regions of the strongly
interacting weakly disordered system, the ground state is a
pinned charge density wave leading to small variance in the
number of particles and low entanglement entropy. In contrast,
the rare regions are neither described by a charge density
wave nor by a simple metallic behavior. This can be clearly
seen from the very different behavior of δ1 in these regions
compared to regular metals. As seen in Fig. 8, especially for
the region around 370 < LA < 470, δ1 is much lower for the
disordered rare region than for a clean system. This indicates
that these rare regions are governed by different physics than
the usual metallic 1D system. The fact that δ1 ∼ 1 indicates
large and almost equal contribution to the many-particle state
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FIG. 9. The probability of finding a rare metallic region of length
Lrare where such a region is defined as a consecutive region, of
length larger than 5, for which δ1 < 0.3 and SA > 1.3〈SA〉, for weak
(W = 0.7) and strong (W = 5) disorder and for both noninteracting
(U = 0) and strongly interacting (U = 2.4) cases. For weakly disor-
dered noninteracting systems (W = 0.7, U = 0), no rare regions were
observed in an ensemble of 100 realizations of length L = 700. For
strong disorder W = 5, only short regions Lrare < 20 are unfrequently
seen, with or without interaction. For weakly disordered strongly
interacting systems, one does rarely encounter long (Lrare 
 20)
metallic region.

from sectors with different number of particles in region A,
which is very different than for the clean metallic situation.

How rare are these rare regions and how does the answer
depend on the system’s parameters? First, one must take into
account that obtaining reliable statistics on rare regions would
require a huge number of samples, which is much beyond
our current number of realizations. Thus, all we can do with
the size of our ensemble is to get some qualitative results
regarding these rare regions. In Fig. 9 the probability of finding
a rare region of length Lrare is plotted for different strength
of disorder and interaction. The length Lrare is defined as
the number of consecutive sites for which δ1 is much lower
than its typical value (i.e., δ1 < 0.3) and the entanglement
entropy is larger than the average (SA > 1.3〈SA〉). As can
be seen in Fig. 9, where the probability of finding such a
metallic region for an ensemble of 100 realizations of disorder
is depicted, no such regions are seen for the weakly disordered
noninteracting systems (W = 0.7, U = 0). For strong disorder
(W = 5) there exist a small number of such regions, but they
are short, Lrare < 20, and do not seem to depend much on the
interaction strength. In a sense, the appearance of small regions
with “metallic” behavior for strong disorder is not surprising
since they can be ascribed to rare local configurations of
disorder. The real surprise comes from the detection of a
couple of long regions with “metallic” behavior for weakly
disordered, strongly interacting systems (W = 0.7, U = 2.4).
The length of these regions Lrare = 45 and 98 is surprising
since the they are significantly longer than the localization
length ξ (W = 0.7, U = 2.4) ∼ 14. Thus, it seems that these
rare regions are unique to the weakly disordered strongly
interacting regime. One must add a strong cautionary note:
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The number of realizations is too small to establish any firm
conclusion on the probability of these rare regions and one
should increase the ensemble of disorder realizations by at
least an order of magnitude.

It is interesting to note that somewhat similar rare regions
have been recently discussed in the context of the possibility of
Griffiths regions within the many-body localized regime close
to the delocalization transition [33,34]. In that context, rare
metalliclike (anomalously large localization length) regions
act as a thermalizing bath for their insulating surroundings.
These regions exist only for interacting systems. Of course,
the physics of thermalization is relevant only for highly excited
states which have a huge density of states, but as can be seen
from our study, metalliclike rare regions seem to appear also
for the ground state as long as the disorder is weak, and may
have the same origin.

VI. DISCUSSION

Thus, the average of the first entanglement level spacing
has been shown to have a clear relation to the ground-state lo-
calization length and shows the expected behavior as function
of the strength of the onsite disorder and with the repulsive
particle-particle interactions. This stems from the fact that
for a strongly localized system, the entanglement is confined
to a distance of order of the localization length from the
boundary between the regions, and that has a clear imprint on
the low-lying eigenvalues of the RDM and the corresponding
values of the entanglement Hamiltonian. The distribution of the
first entanglement level spacing once the localization length

is shorter than the sample length is Gaussian type and quite
universal. The distribution depends only on the strength of
disorder and not on the interactions. Such a behavior is actually
expected for the distribution of low-lying level spacings in a
disordered confining potential, as long as the level spacing is
larger than the influence of the disorder.

On the other hand, for weakly disordered systems and
strongly interacting systems, the distribution shows an interest-
ing peak, signifying an increased probability for almost degen-
erate level spacings. On closer examination of the behavior for
specific realization it becomes clear this feature is connected to
rare regions in the sample which exhibit metalliclike behavior.
These rare regions in the ground state are composed of more
or less equal significant contributions from two states with
different number of particles. This not only leaves a distinct
signature in the entanglement spectrum, but also leads to large
variance in the number of particles in the region and high
entanglement of the order of the values seen for free fermions.
These intermediate microemulsion metallic phases are embed-
ded in an insulating phase. Further study of their properties is
needed as well as their connection to the rare thermalizing
inclusions postulated to drive the Griffiths phases close to the
many-body localization transition [33,34], to phase separation
in two-dimensional systems [32], and to the enhancement of
the persistent current in rare disordered systems [31].
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