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We study the spontaneous emission of a two-level quantum emitter next to a plasmonic nanoparticle beyond
the Markovian approximation and the rotating-wave approximation (RWA) by combining quantum dynamics
and classical electromagnetic calculations. For emitters with decay times in the picosecond to nanosecond time
regime, as well as located at distances from the nanoparticle up to its radius, the dynamics with and without
the RWA and the transition from the non-Markovian to the Markovian regime are investigated. For emitters
with longer decay times, the Markov approximation proves to be adequate for distances larger than half the
nanoparticle radius. However, the RWA is correct for all distances of the emitter from the nanoparticle. For short
decay time emitters, the Markov approximation and RWA are both inadequate, with only the RWA becoming
valid again at a distance larger than half the nanoparticle radius. We also show that the entanglement dynamics of
two initially entangled qubits interacting independently with the nanoparticle may have a strong non-Markovian
character when counter-rotating effects are included. Interesting effects such as entanglement sudden death,
periodic entanglement revival, entanglement oscillations, and entanglement trapping are further observed when
different initial two-qubit states and different distances between the qubit and the nanoparticle are considered.
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I. INTRODUCTION

When a quantum emitter is placed very close to the surface
of a plasmonic nanostructure, the localized surface plasmons
of the nanostructure dramatically influence the local photonic
environment, promoting strong-coupling effects [1–4]. As a
result, the population of the excited state of a two-level quan-
tum emitter may exhibit strongly reversible, non-Markovian
dynamics [5–16]. For example, population trapping effects of
the excited state of the quantum emitter have been predicted
[12,14] and attributed to the creation of a bound state in the
electromagnetic continuum [14]. The non-Markovian response
of the quantum emitter has been studied in the proximity of
various plasmonic nanostructures, such as an infinite metallic
surface [5], a flat metal-dielectric interface [6,14], a metallic
nanosphere [7,10,12], a metallic nanorod [8], a metal nanoshell
[9], and metallic and metal-dielectric nanocavities [11,15,16],
as well as epsilon-and-mu-near-zero media [13]. Experimental
results of strong coupling between a quantum emitter and a
plasmonic nanostructure have recently been reported from sev-
eral novel experiments [17–19]. The modified optical response
of strongly coupled quantum emitters with plasmonic nanopar-
ticles may have important applications in quantum technology
[3,4,20] and may also have novel medical applications [21–23].

Additionally, a high degree of dissipation-driven entangle-
ment between two quantum emitters (qubits) may occur via
coupling of the qubits and the localized surface plasmons of
plasmonic nanostructures [8,9,16,24–44]. The vast majority
of the entanglement dynamics near plasmonic nanostructures
has been analyzed in the weak-coupling regime, where the
Markovian response of the system dynamics is applicable

[24–44]. Recent studies have included strong-coupling effects
and the non-Markovian response to the entanglement dynamics
of two qubits coupled to a plasmonic nanostructure [8,9,16].

All of the above theoretical studies were performed under
the assumption of the rotating-wave approximation (RWA) in
the light-matter interaction. This is an excellent approximation
in the weak-coupling regime, but in the strong and ultrastrong
coupling regimes counter-rotating effects may appear and
modify the quantum dynamics. In this work, we analyze the
spontaneous emission dynamics of a quantum emitter near
a spherical metallic nanoparticle (MNP) without making the
RWA. To succeed we perform a unitary transformation in
which the Hamiltonian that contains the counter-rotating terms
is reduced to a Hamiltonian similar to that obtained with RWA
[45–47]. By comparing the results of the population dynamics
of the upper state of the two-level system with and without
the RWA, we find that, under certain circumstances, for small
distances of the emitter from the nanosphere, the inclusion of
counter-rotating terms is crucial.

Moreover, we analyze the dynamics of two initially entan-
gled qubits (modeled as two-level systems), where each one
interacts locally, independent of each other, with a metallic
nanosphere. We use the results without the RWA to study
the dynamics of different initial states of the two-qubit sys-
tem with a focus on the transition from the non-Markovian
to the Markovian regime which occurs when varying the
position of the quantum emitter with respect to the MNP.
We find effects such as the sudden death of entanglement,
entanglement revival, and entanglement trapping for quantum
emitters positioned at different distances from the MNP. We
note that both the Markovian and non-Markovian dynamics
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FIG. 1. The configuration of the two-level quantum emitter (QE)
with resonance frequency ω1, placed at a distance D from the surface
of a spherical MNP.

of entanglement of two qubits interacting locally with either
structureless or modified electromagnetic environments have
been studied in several model photonic systems [48–56],
such as the free-space vacuum [48,54], a cavity characterized
by a Lorentzian coupling [50,53], and an isotropic photonic
crystal [51], where analytical results are possible. Here, these
effects are extended to a realistic plasmonic system, where we
combine numerical electromagnetic calculations with quantum
dynamics calculations without the RWA.

In the next section we present the theory for the spontaneous
emission dynamics of a two-level quantum emitter next to a
plasmonic nanostructure without applying the RWA. We per-
form a unitary transformation and write the equations of motion
for the probability amplitudes for the system under study in
terms of the electromagnetic Green’s tensor. The differences
of the derived equation and those under the application of the
RWA are highlighted. Then, we present numerical results for
the population dynamics of two specific quantum emitters near
a spherical MNP for different positions of the emitter from the
surface of the nanoparticle, with and without making the RWA.
In Sec. III we present the dynamics of two initially entangled
qubits, each one interacting locally, independent of each other,
with a metallic nanosphere. We quantify entanglement using
concurrence [57] and present the theory for the two-qubit
system as well as use the results of Sec. II without the RWA to
analyze the entanglement dynamics of the quantum emitters
placed at different distances from the surface of the MNPs.

II. DYNAMICS OF A QUANTUM EMITTER
WITHOUT THE RWA

A. Theory

We consider a two-level quantum emitter (QE) at distance
D from the surface of a spherical MNP, as shown in Fig. 1.
The origin of the coordinate system coincides with the center
of the sphere and the QE lies on the z axis of the coordinate
system.

The total Hamiltonian of the system is given by

Ĥ = ĤA + ĤF + ĤAF , (1)

where the first term gives the energy of the quantum emitter,
the second term gives the energy of the electromagnetic field,
and the third term gives the interaction between the emitter and
the electromagnetic field. Here, we use the multipolar coupling

scheme under the Power-Zienau-Woolley transformation [58]
and do not use the minimal-coupling scheme as, for example,
in Refs. [59,60]. As a result, we can write ĤAF = −μ · E(r),
with μ being the electric dipole moment of the quantum emitter
and

Ê(r) = Ê(+)(r) + Ê(−)(r), Ê(−)(r) = [Ê(+)(r)]†, (2)

Ê(+)(r) =
∫ ∞

0
dωÊ(r,ω), (3)

Ê(r,ω) = i

√
h̄

πε0

ω2

c2

∫
d3r′√εI (r′,ω)G(r,r′,ω) · f̂(r′,ω),

(4)

where f̂†(r′,ω) and f̂(r′,ω) are the creation and annihilation op-
erators of the electromagnetic field obeying the usual commu-
tation relations [59]. G(r,r′,ω) is the classical electromagnetic
Green’s tensor, which obeys the equation[

ω2

c2
ε(r,ω) − ∇ × ∇×

]
G(r,r′,ω) = −Iδ(r − r′), (5)

where ε(r,ω) is the space- and frequency-dependent dielectric
function of our system [εI (r,ω) is just the imaginary part of
it]. Also, I is the dyadic unit tensor.

Using the above equations we write the total Hamiltonian
of our system, without using the RWA, as

Ĥ = h̄ω1|1〉〈1| +
∫

d3r′
∫ ∞

0
dωh̄ωf̂†(r′,ω) · f̂(r′,ω)

+ h̄

∫ ∞

−∞
dω

∫
d3r′g(r′,ω)(|0〉〈1| + |1〉〈0|)

× [f̂†(r′,ω) + f̂(r′,ω)], (6)

where ĤA, ĤF , and ĤAF are, respectively, the first (assuming
that the energy of state |0〉 is zero), second, and third terms.
Additionally, we have set

g(r′,ω) = −i

√
h̄

πε0

ω2

c2

√
εI (r′,ω)G(r,r′,ω) · μ

h̄
, (7)

which is the quantum-emitter–field coupling constant.
We make the unitary transformation Û = eiS [45–47], with

S = −i

∫
d3r′

∫ ∞

−∞
dω

g(r′,ω)

ω1 + ω
[f†(r′,ω) − f(r′,ω)]

× (|0〉〈1| + |1〉〈0|) . (8)

With this transformation the new Hamiltonian Ĥ ′ resembles
the form of the Hamiltonian obtained if we had used the RWA.
Then, after some algebra and removing the self-energy of the
electron, −h̄

∫
d3r′ ∫ ∞

−∞ dω
g2(r′,ω)

ω
(|0〉〈0| + |1〉〈1|), we obtain

Ĥ ′ = h̄
(
ω1 + �ω

(1)
ndy

)|1〉〈1| + h̄�ω
(0)
ndy |0〉〈0|

+
∫

d3r′
∫ ∞

0
dωh̄ωf̂†(r′,ω) · f̂(r′,ω)

+ h̄

∫
d3r′

∫ ∞

−∞
dωV (r′,ω)

× [f̂†(r′,ω)|0〉〈1| + f̂(r′,ω)|1〉〈0|], (9)
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where we have set

V (r′,ω) = 2ω1g(r′,ω)

ω1 + ω
, (10)

which plays the same role as g(r′,ω) in the nontransformed
Hamiltonian of Eq. (6), and

�ω
(0)
ndy =

∫
d3r′

∫ ∞

−∞
dω

g2(r′,ω)

ω

ω1(ω1 + ω)

(ω1 + ω)2
, (11)

�ω
(1)
ndy =

∫
d3r′

∫ ∞

−∞
dω

g2(r′,ω)

ω

ω1(ω1 − ω)

(ω1 + ω)2
(12)

are the nondynamical energy shifts. Also, in the above calcula-
tions we ignored the terms (wherever they appeared) f†(r′,ω) ·
f†(r′,ω) and f(r′,ω) · f(r′,ω); terms of the form f†(r′,ω) ·
f(r′,ω) are also ignored since f†(r′,ω) · f(r′,ω)|{0}〉 = 0, with
|{0}〉 being the vacuum state of the electromagnetic field.

Now we take a general state of our composite system
(quantum emitter plus electromagnetic field). Such a general
state has the form

|ψ(t)〉 = c1(t)e−i

(
ω1+�ω

(1)
ndy

)
t |1,{0}〉 +

∫
d3r′

×
∫ ∞

−∞
dωc0(r′,ω,t)e−i

(
ω+�ω

(0)
ndy

)
t |0,{1r′,ω}〉, (13)

with |{1r′,ω}〉 = f†(r′,ω)|{0}〉. We substitute this general state
and the transformed Hamiltonian of Eq. (9) into the time-
dependent Schrödinger equation; we find the differential equa-
tions for the probability amplitudes as

ċ1(t) = −i

∫
d3r′

∫ ∞

−∞
dωV (r′,ω)e−i(ω−ω′

1)t c0(r′,ω,t),

(14)

ċ0(r′,ω,t) = −iV (r′,ω)ei(ω−ω′
1)t c1(t), (15)

with ω′
1 = ω1 + �ω

(1)
ndy − �ω

(0)
ndy .

Integrating Eq. (15) formally and replacing c0(r′,ω,t) in
Eq. (14), we obtain the integro-differential equation for the
probability amplitude c1(t) as

ċ1(t) = i

∫ t

0
dt ′K(t − t ′)c1(t ′), (16)

where the Kernel function is given by

K(τ ) = ieiω′
1τ

∫
d3r′

∫ ∞

−∞
dωV 2(r′,ω)e−iωτ , (17)

with τ = t − t ′.
Using the Green’s tensor properties, we can rewrite the

Kernel function as

K(τ ) = ieiω′
1τ

∫ ∞

0
dωJ (ω)e−iωτ , (18)

with the spectral density

J (ω) =
(

2ω1

ω1 + ω

)2 ∫
d3r′ ω4

h̄πε0c4
εI (r′,ω)μ ·

× G(r,r′,ω)G�(r,r′,ω) · μ . (19)

Assuming that we have linear polarization and the magni-
tude of the electric dipole moment is μ, then we can rewrite
the spectral density as

J (ω) =
(

2ω1

ω1 + ω

)2
ω2μ2

h̄πε0c2

∫
d3r′εI (r′,ω)

ω2

c2

× Gk(r,r′,ω)G�
k(r,r′,ω)

=
(

2ω1

ω1 + ω

)2
ω2μ2

h̄πε0c2
Im[Gk(r,r,ω)], (20)

using again the Green’s function properties. Here, k determines
the direction of the electric dipole. Moreover, the decay rate
of the atom 	k(ω) in the presence of the MNP is expressed by
the relation [12]

	k(ω) = 2μ2ω2

ε0h̄c2
Im[Gk(r,r,ω)]. (21)

As a result, the spectral density takes the form

J (ω) =
(

2ω1

ω1 + ω

)2 1

2π
	k(ω)

=
(

2ω1

ω1 + ω

)2 1

2π
λk(ω,D)	0(ω)

=
(

2ω1

ω1 + ω

)2
	0(ω1)

2π
λk(ω,D)

(
ω

ω1

)3

, (22)

where 	0(ω) is the spontaneous emission rate in free space
given by

	0(ω) = ω3
1μ

2

3πh̄ε0c3

(
ω

ω1

)3

≡ 	0(ω1)

(
ω

ω1

)3

(23)

and λk(ω,D) is the directional enhancement factor of the
spontaneous emission rate in free space due to the placement
of the quantum emitter at distance D from a MNP [12].

Also,

ω′
1 = ω1 − (

�ω
(0)
ndy − �ω

(1)
ndy

) ≡ ω1 − �Endy

h̄
, (24)

with

�Endy = h̄

∫ ∞

0
dω

2ω1

(ω1 + ω)2

	0(ω1)

2π
λk(ω,D)

(
ω

ω1

)3

.

(25)

We note that when using the RWA, the nondynamical energy
shift �Endy is zero, and as a result the characteristic frequency
of the atom ω1 remains the same. We also note that the spectral

density J (ω) has the extra term ( 2ω1
ω+ω1

)
2

when we do not use
the RWA.

B. Numerical results for a single quantum emitter

Here, we consider a 5-nm silver sphere. Its electromagnetic
response is described by a Drude dielectric function, εm(ω) =
εm,∞ − ω2

p/(ω2 + iωγ ), characterized by its plasma frequency
ωp = 9.176 eV, high-frequency component εm,∞ = 3.718 eV,
and Ohmic losses γ = 0.021 eV [12,61]. The enhancement
factor for the free-space decay rate of the QE due to the
presence of such a MNP as a function of frequencyω at distance
D has been calculated using an electromagnetic Green’s tensor
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FIG. 2. Plot of the population evolution of state |1〉 with (blue solid line) and without (red dashed line) applying the RWA for a QD with
h̄ω1 = 4.16 eV at distance (a) D = 1 nm, (b) D = 2 nm, (c) D = 3 nm, and (d) D = 5 from the MNP. The inset in each panel shows a certain
part of the evolution where the differences between the RWA and non-RWA cases are more visible. We note that the two curves are practically
indistinguishable in all panels.

technique [62]; the results for the enhancement factor are given
in Fig. 2 of Ref. [12].

In this work, we use state-of-the-art quantum emitters with
transition frequencies in the optical regime, like quantum dots
(QDs) and J aggregates (J-AGRs), with the corresponding
decay times τ0 = 1/	0(ω1) ≈ 4 ns [63] and 70 ps [64]. In
the figures below, we study the population dynamics |c1(t)|2
of a QD or a J-AGR for different distances from the MNP and
for the initial state |1〉, with and without applying the RWA.
In all figures we assume that the quantum-emitter electric
dipole is in the radial direction. The calculations are performed
by numerical solution of Eq. (16) using the effective mode
differential equation method [12,65].

Figure 2 shows how the population of the upper state |1〉
evolves with time for a QD. In Fig. 2(a), the QD is located at
distance D = 1 nm from the MNP. Strong non-Markovian dy-
namics featuring population oscillations is observed. The non-
Markovian characteristics of the dynamics become weaker
as the distance between the quantum emitter and the MNP
increases; they essentially disappear at D = 5 nm, where the
dynamics is obviously Markovian. Moreover, the counter-
rotating terms affect the population evolution, when compared
with the population evolution within the RWA, as shown in
all the figures. This can be explained by the fact that the
nondynamical energy shift �Endy is really small at all dis-
tances. More specifically, for D = 1 nm, �Endy = 0.0014 eV;
for D = 2 nm, �Endy = 0.0002 eV; for D = 3 nm, �Endy =
0.00006 eV; and for D = 5 nm, �Endy = 0.00001 eV.

In Fig. 3 we show the dynamics of a J-AGR which has the
same energy as the QD. Due to its shorter τ0, the interaction

of the J-AGR with the MNP and, as a result, the population
dynamics will display many more oscillations in comparison
to the QD case [12]. In Fig. 3(a) we see that the population
|c1(t)|2 has really intense oscillations with very large amplitude
for both the RWA and no-RWA cases. Strong non-Markovian
effects are also present at larger distances, as shown in
Figs. 3(b) and 3(c). The oscillations in the case of a J-AGR
are also preserved even at D = 5 nm [Fig. 3(d)] from the
MNP, whereas for a QD the dynamics is Markovian. We also
observe that the differences between the RWA and no-RWA
cases are notable, especially at small distances D. This is due
to the fact that the nondynamical energy shift �Endy takes
larger values at smaller distances. Specifically, at D = 1 nm
we have �Endy = 0.0818 eV, while for D = 5 nm it is only
�Endy = 0.0006 eV. In order to identify the origin of this
transition more clearly, we have calculated the corresponding
values of �Endy for the distances D = 2 nm and D = 3 nm,
which are 0.0134 and 0.0037 eV, respectively.

Another interesting issue here is the fact that the oscillations
of the population are preserved for much longer times (see
Fig. 4). More specifically, as shown in Figs. 4(a) and 4(b), the
population evolution has an oscillatory character, indicating
that there is a permanent population exchange between the
quantum emitter and the modified electromagnetic continuum,
leading to the effect of oscillatory population trapping [12].
Such oscillations are present with or without implementing
the RWA. The main modification which takes place when
taking into account the counter-rotating terms is a phase
difference which becomes more important at later times.
Otherwise, the period and amplitude of the oscillation remain
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FIG. 3. The same as in Fig. 2, but for a J-AGR with h̄ω1 = 4.16 eV.

almost unaffected by the counter-rotating terms. However,
at distance D = 1.85 nm, the phenomenon of steady-state
population trapping is observed [12,14]. The interaction of the
two-level system with its environment is not as strong as for
D = 1 nm and D = 1.5 nm, where the oscillatory character
of the population evolution is dominant; at the same time,
the interaction is not as weak as at D = 2 nm, in which case
the excited-level population vanishes in the long-time limit.
Essentially, at D = 1.85 nm, we observe an intermediate
case where the population of the excited level is “trapped”
in a steady state. We note that although the time evolution of
|c1(t)|2 is approximately the same at early stages whether we
apply the RWA or not, the trapping is affected only when we
take into account the counter-rotating terms since |c1(t)|2 takes
smaller values compared to the values it assumes when RWA
is employed [the inset in Fig. 4(c) highlights this difference].

III. ENTANGLEMENT DYNAMICS

A. Theory

In the preceding section we described the dynamics of a
single two-level system interacting with the modified electro-
magnetic field modes near a MNP, with and without applying
the RWA, where we demonstrated how the counter-rotating
terms may affect the time evolution of the population. Now, we
consider the case of two identical two-level quantum emitters,
A and B, forming two qubits. We position each qubit near a
MNP, and we place the two systems far apart, such that they
do not interact with each other. Since the two qubits interact
with different, noninteracting environments, we can factorize
the total time evolution into two parts. Thus, if we assume
that for each qubit we have ρA

ii ′(t) = ∑
nn′ A

nn′
ii ′ (t)ρA

nn′(0) and
ρB

jj ′ (t) = ∑
mm′ B

mm′
jj ′ (t)ρB

mm′(0), then for the two-qubit system

we take [50,51,56]

ρii ′,jj ′ (t) =
∑

nn′,mm′
Ann′

ii ′ (t)Bmm′
jj ′ (t)ρnn′,mm′ (0), (26)

with i,j,n,m = 0,1. Assuming now that the environment
has zero temperature and the qubit at t = 0 is in a general
superposition state, the reduced density matrix ρ(1)(t) for the
single qubit is [50,51,56]

ρ(1)(t) =
[
ρ

(1)
11 (0)|c1(t)|2 ρ

(1)
10 (0)c1(t)

ρ
(1)
01 (0)c1

∗(t) ρ
(1)
00 (0) + ρ

(1)
11 (0)(1 − |c1(t)|2)

]
.

(27)

Equation (27) shows that, besides initial conditions, the single-
qubit dynamics depends only on c1(t) obtained with Eq. (16).
This function essentially contains information about the inter-
action of the qubit with its environment and, more specifically,
how this interaction evolves with time.

Next, we calculate the density matrix of the composite
two-qubit system. Since the qubits are identical, the density
matrix of our composite system is calculated by the tensor
product ρ(2)(t) = ρ

(1)
A (t) ⊗ ρ

(1)
B (t). Additionally, we need a

new basis for the composite system which is given by B =
{|K〉 ≡ |11〉,|L〉 ≡ |10〉,|M〉 ≡ |01〉,|N 〉 ≡ |00〉}. The ana-
lytical expressions for the elements of the density matrix of
the composite system ρ(2)(t) can be found elsewhere [51]. As
for the case of the single-qubit dynamics, the elements of ρ(2)(t)
depend only on the function c1(t).

We then proceed to the description of the measure of
entanglement used in our work. We will use concurrence as
a measure of entanglement [57]. The computation of concur-
rence is based on the density matrix of the composite system.
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FIG. 4. Population dynamics of the upper state |1〉 of a J-AGR
with h̄ω1 = 4.16 eV with the RWA (blue solid line) and without the
RWA (red dashed line) at distances (a) D = 1 nm, (b) D = 1.5 nm,
and (c) D = 1.85 nm from the MNP. The inset in Fig. 4(c) highlights
the phenomenon of population trapping.

Thus, we have to compute first the matrix R = ρ(2)(t)(σA
y ⊗

σB
y )ρ(2)∗(t)(σA

y ⊗ σB
y ), where σ i

y , with i = A,B, are the Pauli
matrices of the two two-level systems, respectively. Then, we
diagonalize the matrix R, compute its eigenvalues λn, with
n = 1,2,3,4, and, finally, calculate the concurrence provided
by C ≡ max[0,

√
λ1 − √

λ2 − √
λ3 − √

λ4], where λ1 > λ2 >

λ3 > λ4. Concurrence takes values from 0 (no entanglement
for the system) to 1 (maximum entanglement).

We assume that our composite system is prepared in the
Bell-like states

|�〉 = a|01〉 + eiχ
√

1 − a2|10〉, (28)

|�〉 = a|00〉 + eiχ
√

1 − a2|11〉, (29)

with 0 � a � 1. For simplicity, in this study, we consider
χ = 0. Following Ref. [56], Bell-like states are a certain kind
of X state which are commonly used in quantum information
and quantum computation. For a = 0 or 1, Eqs. (28) and
(29) become separate states, while for a = 1/

√
2 they become

maximally entangled states (Bell states). As a result, using a
Bell-like state as the initial state of our system allows us to
control the degree of entanglement by changing the parameter
a. The density matrix of the composite system for the initial
states of Eqs. (28) and (29) is given after some algebra by

ρ(2)(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ
(2)
KK 0 0 ρ

(2)
NK

0 ρ
(2)
LL ρ

(2)
LM 0

0 ρ
(2)
ML ρ

(2)
MM 0

ρ
(2)
KN 0 0 ρ

(2)
NN

⎤
⎥⎥⎥⎥⎥⎥⎦

. (30)

Based on the above formalism, concurrence is calculated by

C = max {0,C1,C2}, (31)

where C1 = 2(|ρ(2)
KN | −

√
ρ

(2)
LLρ

(2)
MM) and C2 = 2(|ρ(2)

LM| −√
ρ

(2)
KKρ

(2)
NN ) since each eigenvalue of ρ(2)(t) given by Eq. (30)

is twofold degenerate. If our initial state is |�〉 [see Eq. (28)],
the element ρ

(2)
KN is initially zero and remains zero for every

t [51]. As a result, from Eq. (31), C1 remains negative at all
times, in which case the concurrence for the initial state |�〉 is
given by C� = C2. For 0 � a � 1, one can easily prove that
C� is written as

C�(t) = 2 max[0,a
√

1 − a2|c1(t)|2]. (32)

Following the same procedure for initial state |�〉, we find that
the density-matrix element ρ(2)

LM is zero for all times t , in which
case C2 is always negative, giving C� = C1. Thus, repeating
the procedure for the calculation of the concurrence, we take

C�(t) = 2 max[0,
√

1 − a2|c1(t)|2

×{a −
√

1 − a2[1 − |c1(t)|2]}]. (33)

B. Numerical results for entanglement dynamics

In this section we present results for the dynamics of
concurrence for the initial states of Eqs. (28) and (29). We
begin, in Figs. 5 and 6, with the case of QDs with h̄ω1 =
4.16 eV as qubits and initial state |�〉 (Fig. 5) or |�〉 (Fig. 6).
In this and the figures that follow, we have used the results
of c1(t) without implementing the RWA. In both cases we
observe that for t = 0 and a = 1/

√
2 (dashed yellow curve)

we have the maximum entanglement, which is expected since
for that value of the parameter a the initial states |�〉 and
|�〉 become Bell states. Although this behavior is conserved
for all times for the initial state |�〉, this is not true for the
other initial state, |�〉; after some time, concurrence becomes
more robust for a = 0.9 when compared with the case of
a = 1/

√
2. In addition, concurrence for initial state |�〉 seems

to decay at approximately the same time for a certain distance,
independent of the value of the parameter a. However, for
the initial state |�〉, the disentanglement time varies with the
parameter a. More specifically, there is a finite disentanglement
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FIG. 5. (a) Time evolution of concurrence in the presence of the MNP for the initial state |�〉 [Eq. (28)]. The qubits are QDs with
h̄ω1 = 4.16 eV and free-space decay time τ0 = 4 ns. The distance D of each qubit from the MNP is (a) D = 1 nm, (b) D = 2 nm, (c)
D = 3 nm, and (d) D = 4 nm. The four different curves correspond to four different values of the parameter a: solid blue curve for a = 0.1,
dotted red curve for a = 0.3, dashed yellow curve for a = 1/

√
2, and dot-dashed green curve for a = 0.9.

time for a = 0.1 and a = 0.3, but there is no such time for
a = 1/

√
2 and a = 0.9 for all distances of the qubits from

the MNPs. This phenomenon is called entanglement sudden
death (ESD), and it has been reported in many cases (see, for
example, Refs. [48,54]).

We now turn our attention to the case in which our qubits
are J-AGRs, again with h̄ω1 = 4.16 eV. We calculate the time
evolution of concurrence for the same initial states as above;
Fig. 7 shows the concurrence for the initial state |�〉, and
Fig. 8 shows that for the initial state |�〉. For small distances
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FIG. 6. The same as Fig. 5, but for the initial state |�〉 of Eq. (29).
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FIG. 7. The same as in Fig. 5, but for J-AGRs as qubits with h̄ω1 = 4.16 eV and free-space decay time τ0 = 70 ps.

(D = 1 nm) the concurrence has distinct zeros during its
evolution for the initial state |�〉 [see Fig. 7(a)]; however, it
has certain periods of time that it is zero if the initial state is
|�〉 [see Fig. 8(a)]. We must stress here that the periods when
concurrence becomes zero appear only for the values a = 0.1
and a = 0.3; otherwise, we have again distinct times when
entanglement vanishes. Essentially, in Fig. 8(a) we observe

again the phenomenon of ESD as in the case of QDs, but in
addition, we see the revival of entanglement (or entanglement
sudden birth) in a periodic way [49,66,67]. However, this does
not occur if we move each qubit away from the corresponding
MNP (e.g., at distances D = 2 nm, D = 3 nm, and D = 5 nm).
ESD and revival of entanglement are not observed for the initial
state |�〉. For the initial state |�〉, Figs. 8(b), 8(c) and 8(d)
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FIG. 8. The same as Fig. 7, but for the initial state |�〉 of Eq. (29).
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FIG. 9. (a) The same as in Fig. 7(a), but for the time interval
0.85 � t � 0.87 ps. (b) The same as (a) but for distance D = 1.5 nm.
(c) The same as 7(a) but for distance D = 1.85 nm.

display the phenomenon of ESD, which emerges only for
a = 0.1 and a = 0.3 without the occurrence of a revival of
entanglement for these distances. Besides ESD and revival of
entanglement, another interesting effect here is the existence
of entanglement oscillations [49,66,67] shown in Fig. 7(a). At
larger distances, the non-Markovian character of the dynamics
is still evident but somewhat weaker.

In Figs. 9 and 10 we further explore the concurrence
dynamics for distances smaller than 2 nm. For the initial
state |�〉 entanglement oscillations are observed for all values
of a for larger time periods. However, for the initial state
|�〉 and for D = 1 nm, ESD is accompanied by a periodic
entanglement revival [52] when a = 0.1 and a = 0.3. For
the initial state |�〉 for a = 1/

√
2 and a = 0.9, entanglement

oscillations are observed. For D = 1.5 nm, a similar behavior
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FIG. 10. The same as in Fig. 9, but for the initial state |�〉.

with D = 1 nm is observed; however, the maximum values of
concurrence are smaller. For D = 1.85 nm, the phenomenon
of entanglement trapping is observed [51,53,55] since the
oscillatory character of entanglement is lost in the long-time
limit and the concurrence reaches a steady state.

As we observed above, four different phenomena occur
here: ESD, periodic revival of entanglement, entanglement
oscillations, and entanglement trapping, depending on the
distance of the QE from the MNP and the initial state of
the two-qubit system. It is interesting to examine whether
there are any particular conditions for the emergence of these
phenomena. When ESD is present, this means that concurrence
takes a zero value at a specific time instant. From Eq. (32)
we see that for any value of the parameter a, apart from the
boundary values a = 0 and 1, the concurrence follows the time
evolution of the population of the excited state, |1〉, multiplied
by a constant which depends on a. As a result, whenever we
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have population oscillations (or population trapping) in the
long-time limit, we also have corresponding oscillations (or
trapping) for the concurrence.

If the initial state is |�〉 [see Eq. (29)], then entanglement
is given by Eq. (33). Then, the necessary condition for zero
entanglement at time τ is

|c1(τ )|2 � 1 − a√
1 − a2

. (34)

Now we are interested in examining for which values of the
parameter a entanglement oscillations are preserved. We take,
for example, the distance of each qubit from the MNP to be
D = 1.5 nm. From Fig. 4(b) we see that the maximum value
of the population |c1(t)|2, without implementing the RWA, is
around 0.87. This means that, in order to have entanglement
oscillations in the long-time limit, it should be C�(t) > 0.
Thus, substituting the above value of the population, we
find that, for this particular example, a � 0.13 in order to
have nonzero concurrence. So we will observe three different
regions in the time evolution of concurrence in this case.
A characteristic small time interval of the time evolution
is given in Fig. 10(b): for a � 0.13 we have no periodic
entanglement revival in this longer time period, and as a result,
only ESD takes place. For 0.13 � a � 1/

√
2, both ESD and

periodic entanglement revival occur, while for a > 1/
√

2 only
entanglement oscillations are present. The boundary between
the second and third regions was found by inserting the value
a = 1/

√
2 in Eq. (34). For this value of the parameter a, the

right-hand side of the inequality becomes zero, and |c1(t)|2 <

0, which cannot be true. Thus, for a � 1/
√

2 we have only
entanglement oscillations. Of course, using a similar analysis,
we can also find the corresponding regions when the quantum
emitters are at distance D = 1 nm from the MNPs [Fig. 10(a)]
and for any other value of the distance as well.

A similar analysis can be applied when we have entangle-
ment trapping for the initial state |�〉. Since trapping means
that the concurrence has a steady state value at long times, using
Eq. (33), we find that the condition for trapping at long times T

requires that c1(T ) assumes a constant value; more specifically,

|c1(T )|2 > 1 − a√
1 − a2

. (35)

By inspecting Fig. 4(c) we observe that, without using the
RWA approximation (red dashed curve), the population
trapping is around |c1(T )|2 ≈ 0.2532 at longer times. Thus,

inserting this value in the above relation, we find that, for this
particular example, the phenomenon of trapping takes place
for a � 0.598. Therefore, entanglement trapping is obtained
only for a = 1/

√
2 and a = 0.9, while for a = 0.1 only ESD

occurs since Eq. (34) is satisfied. For a = 0.3, we observe the
emergence of ESD at early times, as well as weak entanglement
revivals at the oscillatory region of population dynamics;
however, as time elapses, both phenomena disappear.

IV. SUMMARY

We have studied the dynamics of a two-level quantum
emitter next to a plasmonic nanoparticle. Namely, we have
calculated the dynamics of the emitter without applying the
Markovian and rotating-wave approximations by combining
quantum dynamics calculations and classical electromagnetic
calculations. We have shown that a transition from the non-
Markovian regime to the Markovian regime takes place when
varying the distance between the quantum emitter and the
MNP. At the same time, we have studied the role of the
RWA for two different types of quantum emitters, QDs and J-
AGRs. For QDs, non-Markovian effects are observed for small
interparticle distances, in which case the RWA is adequate,
while for J-AGRs much stronger non-Markovian dynamics
is observed; at the same time, the RWA fails for very small
distances between the quantum emitter and the MNP, while
for larger distances (typically, above 3 nm) it is still a valid
approximation.

We have also studied the entanglement dynamics of two
initially entangled qubits interacting independently with a
MNP. Using the two-level quantum dynamics results without
the RWA, we have shown that the entanglement dynamics may
have a strong non-Markovian response. Several phenomena
are identified for different initial two-qubit states and different
distances between the qubits and the MNP, such as ESD,
periodic entanglement revival, entanglement oscillations, and
entanglement trapping. We believe that the present work will
be useful in the area of quantum technology.
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