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Simulations in the warm dense matter regime using finite temperature Kohn-Sham density functional theory
(FT-KS-DFT), while frequently used, are computationally expensive due to the partial occupation of a very large
number of high-energy KS eigenstates which are obtained from subspace diagonalization. We have developed
a stochastic method for applying FT-KS-DFT, that overcomes the bottleneck of calculating the occupied KS
orbitals by directly obtaining the density from the KS Hamiltonian. The proposed algorithm scales as O(NT −1)
and is compared with the high-temperature limit scaling O(N3T 3) of the deterministic approach, where N is the
system size (number of electrons, volume, etc.) and T is the temperature. The method has been implemented
in a plane-waves code within the local density approximation (LDA); we demonstrate its efficiency, statistical
errors, and bias in the estimation of the free energy per electron for a diamond structure silicon. The bias is small
compared to the fluctuations and is independent of system size. In addition to calculating the free energy itself,
one can also use the method to calculate its derivatives and obtain the equations of state.
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I. INTRODUCTION

Electronic structure calculations coupled with molecular
dynamics trajectory sampling form a reliable and important
source of information concerning the properties of materials
at the warm dense matter (WDM) regime. The main challenges
lie in the determination of the equation of state (EOS) of
such systems [1–6], addressing their various phase transi-
tion boundaries [7,8], and predicting shock-wave propagation
characteristics [9–11], as well as their transport and optical
properties [12–17].

Reliable and predictive computational approaches should
be based on ab initio calculations, and these usually fall
within the Green’s function methods (GF) [18–21], Monte-
Carlo (MC) techniques [9,22,23], and density functional the-
ory (DFT) [24–26]. The fact that GF and MC methods are
expensive is exacerbated by the need to repeat the electronic
calculation for the many nuclear configurations along a molec-
ular dynamics trajectory.

Among the ab initio approaches, DFT methods emerge as an
ideal framework, combining useful accuracy and applicability.
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We differentiate between orbital-free DFT [27–32] and finite-
temperature Kohn-Sham (FT-KS) approaches [33,34]. The
former involves very moderate computational effort but is of
limited accuracy due to the use of approximate kinetic energy
and entropy functionals. The latter class of DFT approaches
on the other hand yields reliable and accurate results and is
emerging as the method of choice in the field, with applications
ranging from short pulse laser simulations [35,36] and x-
ray scattering [37,38] to properties of astrophysical bodies
[8,39–41].

The benefits of using the FT-KS method stems from the
mapping of the interacting system onto the noninteracting
one governed by the single-particle KS Hamiltonian. This,
however, comes with a price, since in finite temperature the
eigenstates of the KS Hamiltonian are all formally occupied ac-
cording to the Fermi-Dirac distribution, thus requiring the cal-
culation of all the non-negligibly occupied eigenstates (Nocc).
This numerical task scales typically as O(N2

occN ), where N

indicates the system size (volume, number of electrons, etc.).
From the entropy of the noninteracting homogeneous electron
gas we find that the proportionality of the number of occupied
states with temperature is Nocc ∝ NT 3/2, where T is the
temperature (in this model the entropy is also proportional to a
term that is independent of T , so that in T = 0 the number of
occupied states goes to a constant. However, one should note
that the model only holds in the limit of high temperatures).
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Consequently, the CPU time of a FT-KS-DFT calculation
is expected to scale as O(T 3N3), which rises rapidly with
temperatures and densities of the system. Moreover, it grows
significantly when the system is near a phase transition, where
physical length scales are large. The purpose of this paper is
to propose an alternative implementation of the FT-KS-DFT,
based on a stochastic approach [42], in which the CPU time
increases linearly with system size and inverse temperature.
The scaling of the proposed method is therefore O(NT −1) to
be compared with the O(T 3N3) scaling of conventional FT-
KS-DFT. Stochastic methods for electronic structure have been
developed recently and have shown to be highly efficacious in
lowering the algorithmic complexity of a variety of electronic
structure calculations [20,43–50]. This paper shows that such
an approach can also be useful for research done in WDM
and related fields. We focus on the electronic structure aspect
of the free energy, neglecting the contribution of the nuclear
kinetic energy and entropy, both of which requires an additional
effort (such as a molecular dynamics sampling technique). In
anticipation of the disorder created by the molecular dynamics
sampling, we do not exploit the symmetry of the ordered lattice
(as often done by k-point sampling techniques) which we use
to demonstrate the method.

We present the method in Sec. II and study its validity by
examining the convergence to the known (deterministic) free
energy and the stochastic noise accompanying the calculations
in Sec. III. In Sec. IV we show how equations of state can be
computed in the presence of stochastic noise.

II. METHOD

A. FT-KS-DFT formalism

Consider an ensemble of interacting electrons in inverse
temperature β = 1

kBT
and chemical potential μ. The grand

canonical potential operator describing the system would then
be

�̂ = Ĥ − T Ŝ − μN̂, (1)

where N̂ is the number of electrons, Ŝ is the entropy, and Ĥ is
the interacting Hamiltonian, defined as

Ĥ = T̂kin + v̂ee + v̂ext ;

here T̂kin is the total kinetic energy operator, v̂ee represents the
interaction between the electrons, and v̂ext is the potential of
interaction between the electrons and the nuclei as well as other
external fields.

The FT-KS-DFT method maps the interacting system onto
an ensemble of noninteracting electrons, the KS system, with
the same one-electron density n(r) and, commonly though
not compulsory, the same inverse temperature β and chemical
potential μ [51]. These noninteracting electrons are described
by the KS Hamiltonian

ĥ = − h̄2

2me

∇2 + vKS(r) (2)

where me is the electron’s mass and h̄ is Planck’s constant. The
potential vKS(r) is given by

vKS[n](r) = vext (r) + vH [n](r) + vxc[n](r), (3)

where

vH [n](r) =
∫

n(r ′)|r − r ′|−1d3r ′ (4)

is the Hartree potential and vxc[n](r) = δ�xc[n]
δn(r) is the exchange-

correlation potential, which is a functional derivative of the
exchange-correlation grand canonical potential �xc. This ex-
change correlation functional includes the differences between
the interacting and noninteracting system’s kinetic energy and
entropy, as well as the difference between the full Coulomb
repulsion energy and the Hartree energy, defined as

EH = 1

2

∫∫
n(r)n(r ′)
|r − r ′| d3r ′d3r. (5)

The method can be useful if an efficacious approximation to
�xc[n] is available. The local density approximation provides
such an approximate functional [33]:

�LDA
xc [n; β] =

∫
ωxc(n(r),β)n(r)d3r (6)

vLDA
xc [n; β](r) = ωxc(n(r); β) + ω′

xc(n(r); β)n(r), (7)

where ωxc(n; β) is the exchange-correlation free energy per
electron for a homogeneous electron gas at density n and
inverse temperature β, parameterized based on Monte Carlo
free energy calculations [30].

The system’s electronic density is given as

n(r) =
∑

i

fβ,μ(εi)|φi(r)|2 (8)

= tr[fβ,μ(ĥ)n̂(r)], (9)

where n̂(r) = δ(r̂ − r) is the electron density operator (r̂ is the
position of the electron),

fβ,μ(ε) = 1

1 + eβ(ε−μ)
(10)

is the Fermi-Dirac distribution, and φi(r) (εi) is the eigenfunc-
tion (eigenvalue) of the self-consistent KS Hamiltonian:

ĥφi(r) = εiφi(r). (11)

We then construct vKS according to Eq. (3) in order to solve
Eq. (11) again. The procedure is repeated until convergence is
achieved.

Once the density is obtained, the grand canonical free
energy of the interacting system, when the nuclear kinetic
energy is neglected [52], is given as:

� = �KS − EH [n] −
∫

n(r)vxc(r)d3r + �xc[n] + EN,

(12)

where EN is the (classical) nuclear-nuclear repulsion energy
and

�KS = EKS − μN − T SKS (13)

is the grand canonical potential of the noninteracting system.
Here,

EKS = tr[fβ,μ(ĥ)ĥ]. (14)
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Furthermore,

SKS = kB tr[fβ,μ(ĥ) ln fβ,μ(ĥ) + f̄β,μ(ĥ) ln f̄β,μ(ĥ)] (15)

is the entropy of the noninteracting electrons where we use the
notation f̄ ≡ 1 − f , and

Ne =
∫

n(r)d3r = tr[fβ,μ(ĥ)]. (16)

As can be seen in Eqs. (9) and (14)–(16) all the quantities
above can be expressed as traces. The series of iterations
involved in the FT-KS-DFT method can then be described in
the following manner: A previous guess density nprev(r) is used
to construct a KS potential vKS[nprev](r), from which a new
guess density nnew(r) is obtained:

nprev −→
Eq. (3)

vKS[nprev] → ĥ −→
Eq. (9)

nnew(r). (17)

These iterations are repeated until the previous and new
densities are equal to one another, in which case a self-
consistent-field (SCF) density n(r) is obtained, so that:

nprev = nnew ≡ n. (18)

B. Stochastic approach to FT-KS-DFT

The stochastic approach to FT-KS-DFT (sFT-KS-DFT)
exploits the fact that all terms in the free energy of Eq. (13)
are expressed using traces over appropriate operators. These
traces are then estimated by the stochastic trace formula [53]:

tr[Â] = E{〈χ |Â|χ〉}, (19)

where Â is an arbitrary operator, χ is a random ket, and E{· · · }
is the statistical average value of the random variable appearing
inside the curly brackets. If we use a Cartesian grid of Ng grid
points r to represent wave functions and operators in real space
then the ket χ is a random orbital and at each grid point χ (r)
is a random variable with zero mean, E[{χ (r)}] = 0, and a
covariance given by

E{χ (r)χ (r ′)∗} = 	−3δr r ′ , (20)

where 	 is the grid spacing. This requirement on the random
orbital can be achieved by choosing χ (r) = 	−3/2eiθ(r) for
each grid point r , where θ (r) is an independent random number
in the [0,2π ] interval.

Assuming the Hamiltonian ĥ is known, the FT density can
be computed from the trace formula, using I stochastic orbitals
χi , i = 1, . . . ,I as follows

nI (r) = 1

I

I∑
i=1

|ξi(r)|2, (21)

where ξi(r) is a thermally filtered random orbital, given by:

ξi(r) = 〈r|
β,μ(ĥ)|χi〉, (22)

where 
β,μ(ε) = √
fβ,μ(ε).

The SCF procedure in the stochastic approach involves a
previous stochastic guess density n

prev
I (r) and the following

process to update it, analogous to Eq. (17):

n
prev
I −→

Eq. (3)
vKS

[
n

prev
I

] → ĥ −→
Eq. (21)

nnew
I (r). (23)

These iterations are repeated until the previous and new
densities are equal, in which case a self-consistent-field (SCF)
density nI (r) is obtained:

n
prev
I = nnew

I ≡ nI . (24)

The random density nI is distributed with a mean E{nI } and a
certain standard deviation proportional to I−1/2 representing
the statistical error. A second part of the statistical error is the
bias, defined as

bias = E{nI } − n. (25)

The origin of the bias is the nonlinear nature of the SCF cycle in
Eq. (17) and this error can be shown to diminish asymptotically
linearly with I−1 (for further reading see Ref. [54]); we will see
that is indeed the case in actual calculations presented below.
The general conclusion is that as I increases the bias diminishes
faster than the standard deviation.

C. The Chebyshev expansion

For each χ (r), the calculation of ξ (r) employs a Chebyshev
polynomial expansion, i.e.,

ξ (r) =
NC−1∑
n=0

Cn[
β,μ]φn(r), (26)

where φ0(r) = χ (r), φ1(r) = ĥNχ (r), and for n > 1, φn(r) =
2ĥNφn−1(r) − φn−2(r), with the normalized Hamiltonian

ĥN = ĥ − 1
2 (Emax + Emin)

1
2 (Emax − Emin)

= ĥ − Ē

	E
, (27)

where Emax (Emin) is an upper bound on the maximal (lower
bound on the minimal) eigenvalue of ĥ. The coefficients Cn[F ]
are the Chebyshev coefficients corresponding to a function
F (ε) (which is equal to 
β,μ in this case). They are given
by [55]:

Cn = 2 − δn0

2NC

e
i nπ

2NC F̃n, n = 0,1, . . . ,NC − 1, (28)

where F̃n are the first NC terms of the fast Fourier transform
of the series

Fk = F (xk	E + Ē), k = 0,1, . . . ,2NC − 1, (29)

where xk = cos
π(k+ 1

2 )
NC

. In the case of Eq. (26) we take this
function as F (ε) = 
βμ(ε). The expansion length NC is
selected such that |Cn| < 10−9 for n > NC . It can typically
be shown that [56]:

NC ∝ β	E. (30)

Since 	E is half the difference between Emax and Emin, where
Emax is usually determined by the kinetic energy cutoff and
Emin is determined by the ground state screened potential (in-
cluding the nonlocal part of the pseudopotential), the number
of terms in Chebyshev expansion is largely independent of
system size.

D. Chebyshev moments

Besides the density, other quantities of interest [see
Eqs. (14), (15), and (16)] are all traces of certain functions F (ĥ)
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of the KS Hamiltonian ĥ. The calculation of these quantities
can all be expressed as sums of the form:

tr[F (ĥ)] =
NC∑
n=0

Cn[F ]Mn, (31)

where Cn[F ] are the Chebyshev expansion coefficients defined
in Eq. (28) and

Mn = E{〈χ |φn〉} (32)

are the Chebyshev moments [57].
All the results shown in this paper are within the canonical

ensemble, having the Helmholtz free energy

A(β,V,Ne) = �(β,μ,V ) + Neμ. (33)

To obtain a constant number of electrons Ne at each iteration,
we include a step of search for the value of μ for which the
number of electrons, defined in Eq. (16) and calculated using
the moments, is equal to the desired number of electrons. The
free energy is then

A(β,V,Ne) = EKS(β,V,μ(Ne)) − T SKS(β,μ(Ne)) + EN.

(34)

The main advantage of the sFT-KS-DFT method is its
lower scaling. In the FT-KS-DFT calculation the density is
represented as a sum of the square absolute value Kohn-Sham
eigenfunctions (each multiplied by its electronic occupation).
To calculate these on a grid, one needs to invest O(N2

occNg)
operations and O(NoccNg) memory capacity for storage. Since
Nocc increases quickly with β−1 (see discussion in the intro-
duction), the FT-KS-DFT method is a very expensive way to
study warm dense matter. In contrast, sFT-KS-DFT requires
NC applications of the KS Hamiltonian ĥ, to a set of I χ ’s,
a step of order NC × I × Ng ln Ng floating-point operations
(the ln Ng is due to the fast Fourier transform required for the
kinetic energy operation).

In Sec. III we demonstrate how the error per electron,
determined by I , does not increase with system size. This is
compatible with findings shown in previous work for finite
systems described in Ref. [42]. In addition, the prior work
demonstrates that as explained in Sec. II C, NC at a given β is
independent of system size as well. Therefore, since I and NC

do not increase with system size the computational effort scales
linearly. In addition, since the Chebyshev expansion length
NC is proportional to β [see Eq. (30)], the CPU time actually
drops as β decreases (temperature rises) as can be seen in
Fig. 1. Moreover, since the procedure is based on averaging
over random values of the density, the process of attaining the
different values of ni(r) can be done most naturally in parallel.

III. RESULTS: CONVERGENCE AND STATISTICAL
ERRORS

The stochastic method described in the previous subsection
has been implemented within our Inbar [59] plane-waves DFT
code and the resulting implementation is dubbed sInbar. For
demonstrating the code, we use silicon in a FCC diamond
structure with periodic boundary conditions described by the
ground state local density approximation (LDA). We consider

FIG. 1. CPU wall time for self-consistent KS-DFT calculations
using the stochastic (sDFT, I = 80 stochastic orbitals) and determin-
istic (single thread dDFT, Quantum Espresso [58]) calculations on
Si64 having a lattice constant of 21a0. The dashed line is the expected
O(T 3) extrapolation for the dDFT timings.

Si8, Si64, Si216, and Si512 having respectively 32, 256, 864,
and 2048 valence electrons, each using a cubic supercell size
of length a, 2a, 3a, and 4a, and the Fourier grid includes
Ng, 23Ng, 33Ng , and 43Ng grid points, respectively, where
Ng = 303. The kinetic energy cutoff is 20 Ry and Troullier-
Martins norm-conserving pseudopotentials [60] within the
Kleinman-Bylander representation [61] are deployed for de-
scribing the electron-nucleus interactions. In the temperature
regime used here, based on the results of Ref. [30], it is
justified to use ground-state LDA, for which we adopt here
the parameterization of Ref. [62].

We now study the nature of the statistical errors in the
Helmholtz free energy estimation and their behavior as a
function of sampling and system size. In the left panel of Fig. 2
we show the statistics of the Helmholtz free energy per electron
〈A〉/Ne estimates as a function of the number of electrons
Ne in the unit cell using the four systems presented above at
β = 20E−1

h , keeping the number of stochastic orbitals fixed
I = 80 (we chose this value for I because results based on it
are a good balance between accuracy and computational effort
for this system). For each system we use six calculations to
estimate the average and standard deviation σ/Ne presented in
the figure. As shown in the bottom left hand panel, as system
size grows σ/Ne drops in proportion to N

−1/2
e in accordance

with the self averaging effect [42].
The effect of sample size is studied in the middle panel of

Fig. 2, using the Si64 system at β = 20E−1
h for demonstration.

The standard deviation σ/Ne decreases as the sample size
grows, roughly in proportion to I−1/2 (as in the left panel, we
used six independent runs to estimate the mean and the error
bars). In addition to the statistical fluctuations the free energy
estimate 〈A〉/Ne is seen to be biased towards values larger than
the deterministic value (dashed line). For I > 20 the bias error
is found to be smaller than the size of the fluctuation σ/Ne and
as shown in the right panel of Fig. 2 the bias decreases linearly
with I−1 and thus diminishes faster than the fluctuation as I

increases, as was also discussed in Sec. II B. It is seen in the
right panel of the figure that the bias error in the free energy
estimate 〈A〉/Ne is largely independent of system size.

115207-4



STOCHASTIC DENSITY FUNCTIONAL THEORY AT … PHYSICAL REVIEW B 97, 115207 (2018)

FIG. 2. Left panels: We show in the top left panel the estimated expected value of the Helmholtz free energy per electron (dots) and its
square-root-variance σ (half length of error bars ±σ which is also shown in the log plot of the bottom panel) as a function of the number of
electrons Ne in four Si supercell sizes (see text) using I = 80 stochastic orbitals. The dashed green line is a guide to the eye designating the free
energy per electron of the largest system. Middle panels: In the top middle panel we show the estimated expected value of the Helmholtz free
energy per electron (dots) and its square-root-variance σ (which is also shown in the log plot of the bottom panel) as a function of the number
of stochastic orbitals I for Si64. The dashed green line designates the deterministic value of the free energy per electron for this system. Right
panel: The 70% confidence intervals of the estimated Helmholtz free-energy per electron, for several system sizes, as a function of the inverse
number of stochastic orbitals I−1 the solid lines are best-fit linear curves for the data (their equations are given in the legend).

The free energy as a function of temperature is shown in
Fig. 3 where one can see that the statistical fluctuation is not
significantly affected by the temperature. Deterministic results
are also depicted and once again, the expected values based on
statistical estimates are consistently above the deterministic
results, showing a temperature-independent statistical bias
which is smaller than the fluctuation for I = 80.

IV. EQUATION OF STATE CALCULATIONS

In order to calculate thermodynamic properties of the
system one needs to take derivatives of the free energy with
respect to thermodynamic variables, such as volume and
pressure. In the present paper, as was mentioned in Ref. [52],

FIG. 3. The estimated expected value of the Helmholtz free
energy per electron 〈A〉/Ne (dots) and its square-root-variance σ (half
length of error bars ±σ ) for Si64 as a function of inverse temperature β,
representing a single run of I = 80 stochastic orbitals. The expected
value and standard deviation were estimated from six independent
such runs. The square symbols are the corresponding deterministic
values of the free energy.

we do not consider the free energy resulting from the nuclear
kinetic energy or entropy. As a result, the equations of state we
compute are mostly electronic, and the nuclear position simply
comes in as the external potential alongside the nuclear-nuclear
repulsion term. Subsequently, we need to define, perhaps
arbitrarily, what change needs to be made when we change
the system volume. The most natural assumption is to preserve
the FCC diamond structure and impose cubic volume changes.
The type of free energy obtained from this calculation can be
that of a system after exposure to a short and powerful laser
pulse, where due to a separation of timescales the nuclei have
not yet responded to the external field [7,12].

To address the practical problem of computing derivatives
in the presence of stochastic noise we calculate the free
energy as a function of a chosen parameter in a statistically
correlated way. For example, we calculate the free Helmholtz
energy A(β,Ne,ρ) for a given electron number Ne and in-
verse temperature β for several discrete values of the density
ρ = Ne/V , where V = a3 is the cubic simulation cell volume
and a is its length. This is done using the same number of
Fourier grid points and the same set of random phases for each
stochastic orbital on the grid. We demonstrate the results for
the Si216 system in Fig. 4 corresponding to six independent
sets of I = 80 stochastic orbitals with which the sFT-KS-DFT
calculations were performed. For each set of free energies a
third degree polynomial is constructed to best fit the data.
It is seen in the top panel of the figure that the free energy
data points are well described by the polynomial. A higher
order fit does not significantly change the result shown here,
indicative of the low level of noise in each separate calculation.
The statistical fluctuations are evident in the slightly different
shape and shift of the polynomials. The derivatives of each
of the free energy polynomials can be used to calculate the
corresponding pressure P = −( ∂A

∂V
)
β,Ne

and bulk modulus
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FIG. 4. Top panel: The calculated values of the Helmholtz free
energy A for the Si216 system (with Ne = 864 electrons) at β =
20E−1

h , at several discrete values of the density ρ = Ne/V (shown as
points on plot) calculated for six independent seeds, i.e., each using
six sets of I = 80 stochastic orbitals. The smooth lines express the
free energy A(β,Ne,ρ) as a function of ρ using cubic polynomials
which best fit the points. Middle and bottom panels: the pressure and
bulk modulus isotherms derived from the six free energy curves of
the top panel.

B = −V ( ∂P
∂V

)
β,N

, both quantities are plotted, for each set of
stochastic calculations, in the middle and lower panels of
Fig. 4. The plot gives a sense of the behavior of the statistics
of the derivatives which seems well under control, showing
that the equations of state of the electrons are accessible using
the stochastic approach.

To get a more detailed description of the equation of state
and its statistical variance the above procedure is repeated
using the same sets of stochastic orbitals, for several values
of T . In the top panel of Fig. 5, we show the isobar density ρ

as a function of temperature for the Si216 system, for several
values of the pressure P . The density decreases with increasing
temperature and pressure. The results of stochastic calculations
for Si64 are shown as well (in darker colors) and a size effect,
where the density is too high in the small system, is noticeable
at high temperatures. We found that this high-temperature-low-
density size dependence is due mainly to the entropy term in
the free energy.

FIG. 5. Top two panels: Isobars of the density (top panel) and
bulk modulus (middle panel) in the Si216 system, as a function of
temperature under different pressures. The stochastic calculations
were done using I = 80 stochastic orbitals and the data was discerned
from the free energy calculations discussed in the text. The darker
squares are the results of a stochastic calculation for the Si64 system.
Bottom panel: The heat capacity for several values of the density as
a function of temperature. The error bars are the errors per one seed
and are the size of the markers. The lines are the polynomial fits for
a specific seed.

From the results shown in the figure, it is apparent that
the standard deviation in the calculations does not change as
a function of temperature, enabling good resolution with a
clearly visible trend. We see that regardless of the pressure, the
density decreases with temperature, i.e., the system expands.

The bulk modulus shown in the bottom panel of Fig. 5 seems
to decrease as we go to higher temperatures, up until the point
where it is roughly estimated to vanish at T ≈ 26 000 K, at
this point the density will be very low. The implication of
these results for fast electron heating by powerful lasers is
that at short time scales after the pulse, when nuclei are still
cold, the material can retain its elasticity even in temperatures
of up to 20 000 K. This concept has been investigated both
theoretically and experimentally in relation to nonthermal
melting [63–65], where the potential energy surface changes as
a result of excitation of a large fraction of the valence electrons
to the conductance band. Previous work showed that neglecting
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electron-phonon interactions leads to overestimation of the
phase transition threshold in silicon [64], a matter that could
explain our results. In this paper, however, our calculations
are restricted to examination of the breathing mode. To further
explore the subject, molecular dynamics has to be employed.

The heat capacity CV = −T ( d2A
dT 2 ) is shown in Fig. 5 exhibit-

ing low statistical noise that is hardly noticeable in the tested
scales. We see that the heat capacity grows almost linearly with
temperature and goes to zero as T → 0, in accordance with the
third law of thermodynamics applying for perfect crystals. To
validate the calculation, we changed the polynomial degree of
the fit from third to fifth order and saw almost no difference
in the heat capacity’s behavior as a function of the displayed
temperatures. At higher temperatures, however, the fit becomes
more sensitive to the polynomial order, an effect amplified
when looking at its second derivative. This is a result of the
steep decrease of the free energy as temperature increases, as
seen in Fig. 3. To avoid the inconsistency, at higher temperature
range the free energy has to be sampled more frequently.

V. SUMMARY

In this paper we introduced the stochastic approach for
FT-KS-DFT calculations to the warm dense matter regime.
We analyzed the statistical errors associated with the stochastic
calculations and their dependence on the number of iterations
I , the system size and various parameters such as the tem-
perature and the density. We found that the fluctuations in
the estimates of the intensive properties decrease as I−1/2

and as system size grows. The bias errors, resulting from

the nonlinear nature of the self consistent-field procedure, do
not grow with system size and decay as I−1. In general, the
bias errors turned out to be small for the systems studied
here. Furthermore, while both errors do not depend on the
temperature, calculation time is inversely proportional to it,
making the method highly efficient in the high temperature
regime. It has also been shown that the Helmholtz free energy
A(β,ρ,Ne) can be computed as a smooth and well-behaved
function of its variables provided the same set of stochastic
orbitals are used. By exploiting this feature, we demonstrated
that the equations of state and the associated properties, such
as the pressure, heat capacity, and bulk modulus become
accessible as derivatives. Our calculations did not use the
symmetry properties that allow efficient k-point sampling to
be utilized, in anticipation of the realistic cases where high
temperature is associated with disorder and nonsymmetry.

Future work in the field will include an implementation to
molecular dynamics sampling of the nuclear properties. Such
an approach has recently been shown viable at low temper-
atures using embedded fragments which lower the statistical
errors [48]. An additional future direction will examine the use
of potential functional theory [28,66] for WDM calculations,
where we will study the possibility of lowering the variance
by using a coupling constant integration instead of a trace over
the kinetic energy operator.
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