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Chain of Dirac spectrum loops of nodes in crossed magnetic and electric fields
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New semimetal systems along with Dirac and Weyl semimetals contain compounds, in which the energy of
electron excitations vanishes not at nodes but on lines. A higher dimension of the degeneracy space changes
many physical properties. We consider a chain of loops consisting of Dirac spectrum nodes in nonsymmorphic
crystalline compounds placed in external mutually perpendicular magnetic and electric fields. An exact solution
for the spectrum is obtained under the assumption of particle-hole symmetry. An analysis of this spectrum shows
the existence of a line of critical values of the magnetic and electric fields, at which a quantum phase transition to
a gapless state occurs. The use of the obtained spectrum allows also predicting a number of new oscillation and
resonance effects in the field of magneto-optical phenomena.
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I. INTRODUCTION

The degeneracy spaces of the electron energy spectrum in
crystals, in which the valence band touches the conduction
band, can be points [1,2] or lines and, in some high-dimensional
cases, surfaces [3]. Since discovery of Dirac electron spectrum
in graphene, and then in topological insulators, where the
degeneracy space consists the nodes, the study of new electron
phase states focuses on the three-dimensional case in Dirac
and Weyl semimetals. Normally, these semimetals have two or
more Dirac nodes, i.e., zeros of energy of bulk electron states
[4]. In some cases, the spaces of occupied and unoccupied bulk
states are crossed along the line, close to which the spectrum
has the Dirac form. The stability of the spectrum of nontrivial
phase states with respect to moderate perturbations in many
of these examples is provided by the existence of topological
invariants, which are defined by taking into account both the
crystal symmetry and the Coulomb interaction of electrons
[2]. In contrast to the first type of Dirac and Weyl semimetals,
in which the spectrum is determined by linear dispersion, the
dispersion law of the type-II Weyl fermions [5,6] is combined
with the spectrum fragments that consist of nonrelativistic parts
with quadratic electron and hole dispersions. This case is due
to significantly tilted Dirac cones [6]. The electron states in
the band degenerate along the lines in the three-dimensional
Brillouin zone are reviewed in Ref. [7]. Exact nomenclature
for the fermion spectrum with linear dispersion in systems
with arbitrary dimensions and different degrees of degeneracy
is discussed in the appendices of Ref. [8].

The degeneracy space structure associated with the Dirac
spectrum is more complicated when the Dirac node lines
are linked or form a knot. These nontrivial one-dimensional
distributions of Dirac nodes are the subject of recent pa-
pers [9–15]. The systems with such esoteric properties

of the degeneracy manifold need a more wide search of
realizations.

The degree and type of degeneracy essentially depend on the
crystalline symmetry when occupied and unoccupied bands are
in contact. A detailed analysis of this dependence on symmetry
of all 230 space groups was carried out in papers [16–18]. It
has been shown that in crystals characterized by certain spatial
symmetry and point groups, there are new fermion states with
threefold, sixfold, and eightfold degrees of degeneracy at the
points of contact of the band spectrum.

Crystal compounds with nodal lines of the Dirac spectrum
are the subject of numerous studies [8,19–26]. Requirements
of the existence of such one-dimensional manifolds from the
point of view of crystalline symmetries [8,19,20,24,25] and
homotopy groups [22] with or without spin-orbit interaction
[19,20,22,23] were considered. New compounds with nodal
lines of the Dirac spectrum were also studied [8,19,21,24,25].
Besides, experimental progress [26] was recently achieved
in studying the Kerr and Faraday effect to check the
Berry phase contribution to quantized Kerr and Faraday
rotation.

For several space groups, in the case of nonsymmorphic
symmetry [20–22,24,25,27–30], the lines of nodes occur in
different mutually perpendicular highly symmetric planes.
These lines touch each other at points of highly symmetric
axes and form a chain of double-degenerate states spreading
across the entire Brillouin zone (see Fig. 1).

In some cases, a lattice of Dirac nodes in the form of
network [27] can also occur in reciprocal space. The class of
XY4 materials with such spectral features includes compounds
with X = Ir, Ta, Re; Y = F, Cl, Br, I. Specific crystalline sym-
metries in the list of compounds [24] with nodal lines were
considered in Refs. [8,19,20,24,25].
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FIG. 1. A chain of Dirac nodes and its location in the Brillouin
zone. The lines on the planes show different orientations of the nodal
lines. Joining the points A(A) and B(B) by the nodal lines in a chiral-
symmetric model forms a nodal net.

In this paper, we consider the spectrum of electron states in
crystals with nonsymmorphic symmetry [30] where external
constant magnetic and electric fields are imposed on the
system. They will play the role of parameters that control
the spectrum of Dirac states. The use of external electric and
magnetic fields as handles allows tuning the band structure of
nonsymmorphic topological insulators and topological phase
transitions. We will examine the case of mutually perpendicu-
lar magnetic and electric fields.

II. THE HAMILTONIAN

In the absence of external fields, the low-energy Hamilto-
nian in the k · p approximation of the time-reversal invariant
model containing a chain of nodes [27] is as follows

H = HD(k) + Hpert = h̄vF [kxγ1 + kyγ2 + kzγ3] + wγ34.

(1)

This Hamiltonian has the form of the four state Hamiltonian
[31,32] used for a system near a band inversion transition.
In the Eq. (1), vF is the characteristic velocity, Hpert = wγ34,
γ34 = − i

2 [γ3,γ4]. The Dirac matrices

γ1 = −τ zσ y, γ2 = τ zσ x, γ3 = τ yσ 0,

γ4 = τ xσ 0, γ5 = τ zσ z (2)

satisfy the commutation relations {�,γa} = 0, [�,γ34] = 0,
where � = iσ yK is the time-reversal operator and K is the
complex conjugation; σ 0 is the unit matrix. The Dirac matrices
are chosen so that the Pauli τ matrices form (2 × 2) blocks,
while σ matrices are elements within these blocks. Thereby
the four-dimensional Dirac space is presented by a set of Pauli
matrices σ for the spin degrees of freedom and by a set of Pauli
matrices τ for the sublattice degrees of freedom.

Among the approaches used to study compounds with
nonsymmorphic symmetry, we have chosen Hamiltonian (1)
[27] for w = 0 which, in contrast to Refs. [9–15] contains
fourfold degenerate states and does not contain irrelevant terms

[23] in the product σp. We focused on the specific form
of the Hamiltonian with nonzero term wγ34 in Eq. (1) as
opposed to the general form [33] of perturbations since this
particular case turns out to be sufficient for describing the low-
energy dynamics in systems with nodal lines. The structure
of Hamiltonian (1) differs from that used in the description of
Hopf-link semimetals, e.g., where the term proportional topy is
absent. In those cases, it was convenient to consider a reduced
two-component space of states instead of a four-component
space, in which Hamiltonian (1) projected onto a nodal line is
determined.

The nodal chain state described by Hamiltonian (1) occurs
in iridium tetrafluoride (IrF4). The orthorhombic crystal struc-
ture of this compound belongs to the space group #43(Fdd2).
Corner-sharing octahedra of F atoms enclose Ir atoms: Each Ir
site of the compound IrF4 is surrounded by an octahedron of
six F atoms, four of which are shared between the neighboring
octahedra. The octahedra form a bipartite lattice as mentioned
above. These two sublattices are related by an approximate
chiral symmetry [27]. While filling of electron states for space
group #43 in the IrF4 compound for nonsymmorphic symmetry
satisfies the special condition [27], the condition of filling of
states in compounds with other space groups are different [24].

The term Hpert with γ34 in Eq. (1) (as well as with γ14,γ24)
describes zero-order perturbation in k, which is compatible
with time-reversal symmetry and mirror symmetry σz = I ◦
C2z. Here the operator C2z is the symmetry operator of the
nonsymmorphic line of Dirac nodes along the second-order
rotation axis, while the operator I is the inversion operator.
C2z symmetry breaking and σz symmetry conservation in the
symmetry list that also includes the time-reversal � and spatial
inversionI operators, provide the existence of nonsymmorphic
lines of Dirac nodes in the mirror-invariant plane [34]. Since the
bands forming nonsymmorphic nodal lines are characterized
by different eigenvalues of the mirror-symmetry operator σz

(see Ref. [19]), the nodal loop is stable with respect to higher
order perturbation in k of Hamiltonian (1). The considered
symmetry of nonsymmorphic lines of nodes is implemented
in the β phase of BiO2 [35] and in the pressurized compound
BaXSiO4 [36].

The meaning of the parameter w in Eq. (1) needs a special
discussion. The spectrum of electron states can be easily found
and is as follows:

ε(k) = ±
√

(h̄vF kz)2 + (
w ± h̄vF

√
k2
x + k2

y

)2
. (3)

It is seen from Eq. (3) that for kx = ky = 0, the last term in
Eq. (1) determines the mass of excitations as they move along
the axis z. This example shows how to define a model that con-
tains massive excitations with time-reversal symmetry conser-
vation in the absence of particle interaction. On the other hand,
dispersion equation (3) indicates that quantization of the energy
in the external magnetic field directed along the z axis reduces
the massive term (w ± h̄vF

√
k2
x + k2

y) and even makes it zero.

III. EXTERNAL FIELDS

Assume that the magnetic field H is directed along the
axis z, while the electric field E is directed along the axis y.
We take into account the contribution of the magnetic field to
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the dispersion relation replacing the quasimomentum compo-
nents h̄ki by the gauge-invariant expression �i = h̄ki + eAi

containing the vector potential components Ai = (−Hy,0,0).
This specific choice of the Landau gauge does not contradict
the symmetries of Hamiltonian (1), since an imposed magnetic
field does not break the system symmetry: Mirror symmetry
is not broken in the plane normal to the direction of the
magnetic field. Symmetry with respect to a fixed-angle rotation
around the magnetic field direction is also unchanged because
a point group in the magnetic field contains an infinite-order
rotational axis. More accurately, the point group of a crystal
in a magnetic field has actually the symmetry of intersection

of the crystal underlying symmetry with infinite-rotational
and magnetic mirror symmetries of the magnetic field. The
crystal lattice translation leads to the phase of the wave
function which depends on the gauge in the magnetic field.
The contribution of the electric field is determined by the term
H = −eEyÎ that supplements Eq. (1), where e is the electron
charge (e > 0) and Î is the unity matrix. Taking into account
the contribution of external fields, the Hamiltonian of the
model is

H = vF

⎛
⎜⎜⎝

−eEy − w̃ i�x + �y −ih̄kz 0
−i�x + �y −eEy − w̃ 0 −ih̄kz

ih̄kz 0 −eEy + w̃ −i�x + �y

0 ih̄kz i�x + �y −eEy + w̃

⎞
⎟⎟⎠, (4)

where E = E/vF , w̃ = w/vF , �x = h̄kx − eHy, �y = −ih̄∂/∂y. Further, we introduce the dimensionless variable ȳ = y/lH ,
where lH = (h̄/eH )1/2 is the magnetic length. The creation operators a† = 1√

2
(ȳ − ∂/∂ȳ) and annihilation one a = 1√

2
(ȳ + ∂/∂ȳ)

satisfy the commutation relation [a,a†] = 1. We also introduce the parameters εH = eElH /
√

2, εF = √
2vF h̄/ lH that determine

the dependence of the energy of states on the strength of external fields. Using this notation, the Hamiltonian H is written as

H = −eEl2
H kxÎ −

⎛
⎜⎜⎜⎝

εH (a + a†) + w iεF a ih̄vF kz 0
−iεF a† εH (a + a†) + w 0 ih̄vF kz

−ih̄vF kz 0 εH (a + a†) − w −iεF a

0 −ih̄vF kz iεF a† εH (a + a†) − w

⎞
⎟⎟⎟⎠. (5)

This matrix has a block matrix 2 × 2 structure whose elements
consist of 2 × 2 matrices h(w) and ĥ(kz) and can be given as

H =
(

h(w) 0
0 h(−w)

)
⊕

(
0 ĥ(kz)

ĥ(−kz) 0

)
. (6)

The particle-hole symmetry structure of Eq. (6) greatly sim-
plifies the calculation of the spectrum. In calculations using
the first term of Eq. (6), we refer to the algebraic approach
applied in Ref. [37] in the two-dimensional problem of the

electron spectrum in graphene in crossed fields [37,38]. It
allows reducing matrix (5) to the diagonal form in two-
dimensional Fock and four-dimensional Dirac spaces. The
second term in direct sum (6) after squaring leads to the
relativistic dependence of the energy on kz. This means that
we can use Lorentz transformations [38] of the momentum kz

and energy ε in the frame with zero electric field E to pass to
the frame with E �= 0.

After these calculations, in the latter frame with the
magnetic field H ′ =

√
1 − β2H and with β = E/(HvF ), we

obtain the following equation for the excitation spectrum

εn,±,kx
(kz; E) = −eEl2

H kx ±
√(

h̄vF kz

(
1 − E2

/(
H 2v2

F

))2 + (
w ± sgn(n) εF

(
1 − E2

/(
H 2v2

F

))3/4√|n|)2
. (7)

The form of the wave function can be obtained by generalizing
the two-dimensional problem of quantum states in crossed
fields to the considered three-dimensional case. The wave
function takes the form of a bispinor [27], nonzero components
of which are determined by the function

�n,±,kx ,kz
(x,y,z) = 1

N eikxx+ikzze− θ
2 ·σx

(
φ|n|−1(ξ )

±iφ|n|(ξ )

)
. (8)

Here ξ = (1 − β2)1/4/lH · (y + l2
Hkx + sgn(n) · √

2|n|lHβ/

(1 − β2)1/4), where β = E/(HvF ) = tanh θ , N is the normal-
ization factor. In Eq. (8), φ|n|(ξ ) is the eigenfunction of the
harmonic oscillator.

IV. DISCUSSION

The term wγ34 in Eq. (1) is used as perturbation. The general
forms of the contributions with the terms γαβ where α,β �=
3,4 are discussed in Ref. [33]. The use of the perturbation
term in the form of Hpert = bγ12 or in the same form with
the matrix γ23 or γ31 leads to the following conclusions.
For the first matrix, γ12, we obtain the spectrum ε(k) =
±

√
h̄2v2

F (k2
x + k2

y) + (h̄vF kz ± b)2 of Weyl semimetals. For
the second (third) matrix, the indices of the axes z and x (z
and y) interchange. These spectra take place in systems where
spatial inversion symmetry is conserved and time-reversal
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symmetry is broken. If Hpert = bγ45, then ε(k) = ±h̄vF k ± b.
In this case, spatial inversion symmetry is broken and time-
reversal symmetry is conserved. The specific symmetry of the
nonsymmorphic line system based on the wγ34 breaking term
in the Hamiltonian can be implemented under strain due to
applied pressure as we mentioned in Sec. II.

It is useful to compare the asymptotic cases that result from
Eq. (7) with known answers. In the absence of an electric field
for w = 0, we have a well-known expression for the relativistic
particle spectrum in the external magnetic field [39,40]. If the
massive term w �= 0 and the electric field E = 0, we obtain the
result of Ref. [27]. In the absence of a massive term w = 0 and
an electric field E �= 0 in the plane kz = 0, we come back to
the results of Refs. [37,38]. As in Refs. [37,38], in the three-
dimensional case, we deal with the collapse of Landau levels
due to the factor α = 1 − E2/(H 2v2

F ) and the corresponding
modification of the wave function. The argument ξ of the
function φ in Eq. (8) also describes the shift of the Gaussian
function center of a harmonic oscillator due to the electric field.

Stability of the nontrivial phase is guaranteed by the Z2-
valued topological invariant [27] z2 = 1

π

∮
dkA(k) mod 2,

where A(k) = i
∑

n < un(k)|∇kun(k > is the Berry connec-
tion. The constraint of the Chern integer by mod 2 is, on the one
hand, a specific feature of the considered three-dimensional
system in comparison with the standard Dirac semimetal state.
On the other hand, the topological invariant z2 is similar to
the Z2-valued topological invariant [41–43] which was used
to classify the boundary states in 3D topological insulators.
Transition of the quantum phase to the trivial phase state with
z2 = 0 is usually associated with a vanishing gap in the energy
spectrum. The value z2 = 1 of the invariant z2 corresponds to
the topologically nontrivial state [27].

In the considered two-parameter (E,H ) case, the equation
for the effective gap is

�eff = w ∓ sgn(n) εF

(
1 − E2/(

H 2v2
F

))3/4√|n|. (9)

This function is zero in the plane (E,H ) along the line
described by the equation

E(H ) = vF H

(
1 −

(
Hn

H

)2/3
)1/2

. (10)

Here Hn = w2/(2h̄ev2
F |n|) (see Ref. [27]). For different num-

bers of the Landau level n, the arising set of critical lines of
the quantum phase transition is limited by E = vF H , as the
magnetic field increases for H > H1.

The external electric field not only modifies the wave
function and spectrum. It can also disturb the ground state
by creation of particle-hole pairs. This kind of local dielectric
breakdown in graphene [38] has a specific length and a Landau
index dependence. The considered 3D system does not differ
from the 2D case in this respect.

Exact solution (7) of the problem can be used in various
applications, e.g., for calculating the conductivity σ (ω,q).
Analysis of the resonance denominator εn,pz

+ h̄ω = εn′,pz+h̄q

of susceptibility and the numerator that determines the infea-
sibility and feasibility conditions of a quantum transition from
the state with quantum numbers (n,pz) to the state with the
numbers (n′,pz + h̄q) enables one to solve several problems.

FIG. 2. Landau damping regions for left-hand polarized waves
in the case of four occupied Landau levels and � 	 2EF = 4.2,q 	
2kF = 4.2,w/E0 = 0.2.

This approach allows constructing Landau damping regions at
arbitrary frequencies ω and for the wave vectors q. In these
regions, the real part of conductivity determines the Landau
damping of collective modes. Besides, additional transparency
windows can exist within the Landau damping regions, in
which new collective modes can propagate. This approach
for the parabolic spectrum was used in Ref. [44] to find the
dispersion law of right-hand polarized (n′ = n − 1) collective
electromagnetic excitations. In the considered model, we found
the Landau damping regions for left-hand polarized waves
(n′ = n + 1). They are plotted in Fig. 1. When constructing the
Landau damping regions, we used the following dimensionless
variables

� = h̄ω/E0,q = h̄vF qz/E0,EF = EF /E0,

kF = pF vF /E0,E0 = εF

(
1 − E2

/(
H 2v2

F

))3/4
. (11)

The difference of the considered case from the nonrela-
tivistic electron spectrum in a quantizing magnetic field used in
Ref. [44] is in taking into account the final gap w, the relativistic
nature of the problem, and the use of the cyclotron frequency
ω̃c = √

2(vF /lH )(1 − β2)3/4 modified by the electric field. It
is clear from Fig. 2 that the factor (1 − β2)3/4 in this equation
will also modify the universal collisionless width ω̃c of the
cyclotron resonance peak and the spectrum of the left-hand
circularly polarized collective modes in the region 0 � � �
1,0 � q � 1. This means that a variation of the electric field
strength E enables one to control the resonance phenomena
in the medium. These magnetospectroscopic effects and the
regions of Landau collisionless damping of longitudinal and
transverse polarized collective excitations will be analyzed
separately in Ref. [45].

Magneto-optical effects have been studied theoretically and
experimentally in a variety of papers. It should be emphasized
that the information provided by Faraday spectroscopy of
semiconductor structures is detailed. The main advantage of
this method is its higher sensitivity compared to that of direct
detection of spectrum splitting. The frequency dependences
of Kerr and Faraday angles can be effectively used in ex-
perimental studies of complex structures of spectra in the
magnetic field. Note that the magneto-optical angles obtained
in Ref. [26] are comparable to those for interband transitions

115204-4



CHAIN OF DIRAC SPECTRUM LOOPS OF NODES IN … PHYSICAL REVIEW B 97, 115204 (2018)

in ferromagnetics or metal-alloyed semiconductors [46–48]
and strained nonmagnetic semiconductors based on gallium
arsenide [49]; the magneto-optical angles are also comparable
to the Kerr angle in some layered metal structures [50] or
organic molecular semiconductors [51]. Anisotropy of the
energy spectrum should essentially affect the Kerr rotation
character in the studied materials. The properties of surface
states of carriers are important for Kerr rotation. Therefore, the
Kerr effect can differently manifest itself at normal incidence
of an electromagnetic wave on various nonsymmorphic crystal
faces. Study of Faraday rotation in film structures is also of
current interest [26].

In the discussion of the Landau damping and the
spectrum of collective modes, we assume that tempera-
ture dependence of the distribution function is absent and
the lifetime of electron excitations is the largest of all
time scales [44]. When taking into account the final temper-
ature T and the final lifetime τ of the charge carriers, these
collective phenomena can occur if kBT 
 E0(E0/EF ) and
h̄/τ 
 E0(E0/EF ) because the right-hand side of these condi-
tions is the difference En+1(kFn) − En(kFn) =

√
E2

F + E2
0 −

EF ≈ E0(E0/2EF ) between the Landau levels for kFn =√
E2

F − E2
0 |n|/h̄vF . Here kB is the Boltzmann constant and

EF is the Fermi energy. These conditions can be provided at

helium temperatures and in magnetic fields of the order of
40 T.

In summary, we obtained the analytic solution for the
spectrum of electron excitations in the materials containing a
chain of loops that consists of Dirac spectrum nodes. The case
where these nonsymmorphic crystalline compounds are placed
in crossed external magnetic and electric fields is considered.
The spectrum analysis indicates the existence of lines of critical
values of electric and magnetic fields, for which a quantum
phase transition to a gapless state is possible.

After submission of the present paper, we became aware of
the results of Ref. [52], where Eq. (7) for w = 0 was obtained
by a different method. Electron excitation spectrum can also be
controlled by crystal lattice deformation. An example of such
deformation by pseudogauge fields is given in this paper.
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