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Charge transport in organic molecular semiconductors from first principles:
The bandlike hole mobility in a naphthalene crystal
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Predicting charge transport in organic molecular crystals is notoriously challenging. Carrier mobility
calculations in organic semiconductors are dominated by quantum chemistry methods based on charge hopping,
which are laborious and only moderately accurate. We compute from first principles the electron-phonon
scattering and the phonon-limited hole mobility of naphthalene crystal in the framework of ab initio band
theory. Our calculations combine GW electronic bandstructures, ab initio electron-phonon scattering, and the
Boltzmann transport equation. The calculated hole mobility is in very good agreement with experiment between
100–300 K, and we can predict its temperature dependence with high accuracy. We show that scattering between
intermolecular phonons and holes regulates the mobility, though intramolecular phonons possess the strongest
coupling with holes. We revisit the common belief that only rigid molecular motions affect carrier dynamics
in organic molecular crystals. Our paper provides a quantitative and rigorous framework to compute charge
transport in organic crystals and is a first step toward reconciling band theory and carrier hopping computational
methods.
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I. INTRODUCTION

Organic molecular crystals are broadly relevant to solid
state physics. Their electronic properties range from conduct-
ing to insulating, and they can exhibit anisotropic electrical
and optical properties, ferroelectricity, magnetism, and su-
perconductivity. Organic semiconductors are lead candidates
for novel optoelectronics and spintronics applications [1,2].
Crystals like pentacene and rubrene are already widely used
in organic field-effect transistors and light-emitting devices
[3–5].

Yet, in most organic crystals the nature and transport
mechanisms of charge carriers remain unclear. Possible
charge transport regimes include polaron charge hopping,
band transport, and intermediate regimes, each leading to a
peculiar temperature dependence of the mobility. Even in
the same organic crystal, electrons and holes can behave
differently. An example is naphthalene, where hole carriers
display bandlike transport with a power-law temperature de-
pendence of the mobility [6], though electron transport in
the out-of-plane direction is polaronic and nearly temperature
independent [7].

Several approaches have been proposed to compute charge
transport in organic crystals [8]. Recent calculations favor
either quantum chemistry methods based on hopping of lo-
calized charge carriers [8–15] or somewhat less extensively
polaron theories [16–21]. Charge hopping calculations have
provided remarkable insight into charge transport in molecular
crystals [8–15]. However, they are laborious and are not
based on rigorous condensed matter theory. They require
large molecular dynamics or Monte Carlo simulations, rely
on semiempirical charge transfer models based on Marcus

theory, and include the temperature dependence of charge
transport only approximately, typically using the Einstein
diffusion formula. A common assumption is also that only
rigid molecular motions affect the rate of carrier hopping
and therefore charge transport. The accuracy of the charge
hopping approaches is limited—the best calculations yield
mobility values 3–4 times greater than experiment [9,10],
though order-of-magnitude discrepancies between computed
and measured mobilities are more common [8].

To date, only a few works have employed band theory to
compute charge transport in organic crystals [22–25], despite
experimental [26–29] and theoretical [30] evidence of ban-
dlike transport in tetracene, rubrene, naphthalene, and other
organic semiconductors. Methods combining band theory and
many-body perturbation theory have been recently employed
to accurately compute electron-phonon (e-ph) scattering and
charge transport, for now in simple inorganic materials with
a handful of atoms in the unit cell [31–34]. Due to com-
putational cost, these calculations have not yet been applied
to organic crystals with tens of atoms in the unit cell.
Ab initio studies of e-ph coupling in organic crystals exist
[35–37], but charge transport, which requires more elaborate
workflows [32], has not yet been investigated within this
framework.

Here we compute from first principles the bandlike hole
mobility of naphthalene crystal, a material with 36 atoms in
the unit cell (see Fig. 1). The computed mobility is within a
factor of 3–4 of experiment, and we can accurately predict
its temperature dependence between 100–300 K. For organic
semiconductors, these results are a rare case of very good
quantitative agreement with experiment—the accuracy on the
mobility is on par with the best charge hopping calculations,
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FIG. 1. The monoclinic crystal structure of naphthalene, with
two molecules in the unit cell. The molecules are arranged in a
herringbone pattern in the ab planes (left), which are stacked in the c

crystallographic direction (right). The c∗ direction normal to the ab

plane is also shown.

and we make an order of magnitude improvement over pre-
vious ab initio mobility calculations in organic crystals using
band theory [22,23]. We show that intermolecular phonons
(i.e., rigid molecular motions) regulate the mobility due to a
large phase space for scattering holes with energy close to the
band edge. Yet, contrary to common notions, intramolecular
phonons exhibit the strongest coupling with holes. Our work
reconciles the tenet of charge hopping methods that intermolec-
ular phonons control the mobility with the many-body theory
perspective, which treats carrier scattering in terms of phonon
absorption and emission events.

II. METHODS

We carry out density functional theory (DFT) calculations
using the QUANTUM ESPRESSO code [38] with a plane-wave
basis set. We employ the Perdew-Burke-Ernzerhof generalized
gradient approximation [39] and norm-conserving pseudopo-
tentials [40] from Pseudo Dojo [41]. A kinetic energy cutoff
of 90 Ry and 4 × 4 × 4 k-point grids are used in all DFT
calculations. Thermal expansion is taken into account by
employing, in separate calculations, lattice constants [42]
and atomic positions [43,44] taken from experiment at four
different temperatures of 100, 160, 220, and 300 K. All
calculations listed below are repeated separately at these four
temperatures. The Grimme van der Waals (vdW) correction
[45,46] is included during structural relaxation. To obtain
accurate electronic band structures [47], we carry out GW
calculations using the YAMBO code [48], and obtain the G0W0

self-energy using 500 bands in the polarization function and
a cutoff of 10 Ry in the dielectric screening. Wannier90 [49]
is employed to interpolate the band structure, using ab initio
molecular orbitals [50] as initial guesses.

Phonon dispersions are computed with density functional
perturbation theory (DFPT) [51] on a 2 × 4 × 2 q-point grid
[52]. The e-ph coupling matrix elements gnmν(k,q) on coarse
k- and q-point grids [34] are computed using a routine from
the EPW code [53] and interpolated using Wannier functions
[54] generated with the Wannier90 code [49]. Here and in
the following, n and m are band indices, ν labels phonon
modes, and k and q are crystal momenta for electrons and
phonons, respectively. Our in-house developed code PERTURBO

[55] is employed to interpolate the e-ph matrix elements on
fine grids with up to 60 × 60 × 60 k points and 105 random

q points, and to compute e-ph scattering rates and the hole
mobility. The band- and momentum-resolved e-ph scattering
rates �

e-ph
nk are obtained in the lowest order of perturbation

theory [34],

�
e-ph
nk = 2π

h̄

∑
mνq

|gnmν(k,q)|2

× [(Nνq + 1 − fmk+q)δ(εnk − εmk+q − h̄ωνq)

+ (Nνq + fmk+q)δ(εnk − εmk+q + h̄ωνq)], (1)

where εnk and h̄ωνq are the hole and phonon energies, re-
spectively, and fnk and Nνq the corresponding occupations.
The scheme developed in our recent work [32] is applied to
converge �

e-ph
nk . The relaxation times τnk used in the mobility

calculations are the inverse of the scattering rates, τnk =
1/�

e-ph
nk . Our calculations focus on holes and include only

the HOMO and HOMO − 1 bands because the energy gaps to
the HOMO − 2 and LUMO bands are larger than the highest
phonon frequency.

We employ the Boltzmann transport equation [32,56] within
the relaxation time approximation to calculate the electrical
conductivity

σαβ(T ) = e2
∫ ∞

−∞
dE

(
−∂f (E,T )

∂E

)

αβ(E,T ), (2)

where the transport distribution function 
αβ(E,T ) at energy
E and temperature T is defined as


αβ(E,T ) = 2

Vuc

∑
nk

τnk(T )vnk,αvnk,β δ(E − εnk) (3)

and is calculated via tetrahedron integration [57]. The band
velocities vnk are obtained from Wannier interpolation; α and
β are cartesian directions, and Vuc is the unit cell volume. The
hole mobility along the direction α is computed using μα =
σαα/npe, where np is the hole concentration. These e-ph and
mobility calculations on unit cells with tens of atoms are made
possible by efficient algorithms combining MPI plus OpenMP
parallelizations we recently developed.

The computed band structures and phonon dispersions are
given in the Appendix (see Fig. 5). The GW correction is
important as it stretches the valence band, thus lowering the
hole effective mass and changing the relative alignment of the
valence band valleys. The quality of our phonon dispersions is
comparable with that of recent accurate phonon calculations in
naphthalene [52]. To further validate our phonon calculations,
we also compute the phonon dispersions of perdeuterated
naphthalene, for which experimental data are available (see
Fig. 7 in the Appendix).

III. RESULTS

Figure 2 shows our calculated hole mobilities in the in-plane
a and b and the plane-normal c∗ directions (see Fig. 1). The
experimental data given for comparison is taken from Ref. [6].
The computed mobilities are lower by a factor of 3–5 than
the experimental values; the smallest discrepancy (a factor of
3) is found for the a direction, and the highest (a factor of
5) in the c* direction. Note that the c∗ axis corresponds to a
direction along which the molecules are stacked, so that the
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FIG. 2. The hole mobility in naphthalene, given, from left to right in separate panels, in the two in-plane directions a, b and in the
plane-normal direction c∗. Circle markers are the computed mobilities and black markers the experimental data from Ref. [6]. Straight lines
are best fits to the power law function T −n of the data points in the 100–300 K temperature range, and the exponent n for each data set is also
given. The error bars are obtained by assuming a 10% error on both the phonon frequencies and the GW band stretching factor. These error
sources are assumed to be independent and combined together.

slightly lower accuracy in this direction is expected due to our
neglect of van der Waals interactions in the e-ph coupling.
Fitting the data with a power law function T −n over the
100–300 K temperature range yields calculated exponents n

in the 2.34–2.88 range for the three directions, in agreement
within 3% (in the ab plane) and 10% in the c∗ direction
with the exponents n obtained by fitting the experimental
data (see Fig. 2). The charge transport anisotropy is estimated
by evaluating mobility ratios between different directions at
300 K. The computed ratios, μb/μa = 1.16 and μc*/μa =
0.18 are consistent with the experimental values of 1.57 and
0.34, respectively.

Since the accuracy of the phonon dispersions and GW band
structures depends on the chosen crystal structure, exchange-
correlation functional, and pseudopotential, it is important to
quantify how these sources of uncertainty affect the computed
mobility. To this end, we estimate how the combination of
a small error in the GW correction (arbitrarily chosen to be
∼10% in the stretching factor of the valence band) and an as-
sumed ∼10% error on the phonon frequencies (a conservative
value for organic crystals) affect our calculations. The resulting
error bars on the mobilities are given in Fig. 2.

Within these uncertainties, which are typical of
ab initio methods—especially for organic crystals with
complex structures—the range of computed mobilities
(inclusive of the error bars) reaches values roughly 2–3 times
smaller than the experimental result in the in-plane a and b

directions. Overall, the temperature trends and absolute values
of the mobility are remarkably accurate, particularly when
compared to the very scarce literature on charge transport in
organic crystals using ab initio band theory. Our accuracy
is comparable to the best calculations [9,10] using quantum
chemistry methods based on hopping, which dominate the
literature.

We have verified that employing the Tkatchenko-Scheffler
(TS) vdW correction [58,59], which is more accurate than
the Grimme-vdW correction used here, does not change
appreciably the structure and mobility. In particular, the root-
mean-square (RMS) deviation between the atomic positions
obtained with the Grimme-vdW and the TS-vdW corrections

is only 0.05 Å, and the RMS deviation of the bond lengths is
∼0.05%. The mobility at 300 K obtained by computing the
band structure, phonons, and e-ph matrix elements with the
structure obtained using the TS-vdW correction is very close
(within 5–10% and thus within the error bars in Fig. 2) to
the mobility computed here using the Grimme-vdW method
(see Fig. 6 in the Appendix). Future work will investigate
further the role of the vdW correction on the e-ph coupling
and mobility in organic crystals.

Next, we investigate the role of different phonon modes
in scattering the hole carriers. In the charge hopping picture,
the conventional wisdom is that low-frequency intermolecular
phonon modes, which correspond to rigid motions of entire
molecules [12,13], determine the mobility since they strongly
affect the rate of charge hopping between molecules. Intra-
molecular vibrations, on the other hand, are typically neglected
due to their hypothesized weaker coupling to the carriers. There
are 108 phonon modes in naphthalene, the 12 lowest-frequency
modes are intermolecular, and the others are intramolecular.
We express the total e-ph scattering rate in Eq. (1) as the
sum of the scattering rates due to each individual mode
ν, i.e., �

e-ph
nk = ∑

ν �
(ν)
nk , and investigate the mode-resolved

scattering rates �
(ν)
nk . Here and in the following, the phonon

modes are numbered in order of increasing energy at the
Brillouin zone center, and the hole energy increases moving
away from the valence band maximum (VBM) into the valence
band.

Figure 3(a) shows the mode-resolved e-ph scattering rates
as a function of hole energy for the 12 intermolecular phonon
modes, and Fig. 3(b) for selected intramolecular phonons. Note
that the intermolecular phonons have either zero or very small
minimum frequency since they correspond to transverse acous-
tic (TA) and longitudinal acoustic (LA) vibrations (modes
1–3) or other rigid vibrations or librations of the molecules
(modes 4–12). By contrast, the intramolecular modes 20–90
in Fig. 3(b) possess much higher frequencies. The integrand
in Eq. (2) is also plotted in Figs. 3(a) and 3(b) to highlight
the energy window contributing to the mobility, which spans
hole states within 50–100 meV of the VBM. In this energy
window, the 12 intermolecular phonon modes exhibit much
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FIG. 3. Mode resolved e-ph scattering rates, �
(ν)
nk , for (a) the

12 intermolecular phonon modes and (b) selected intramolecular
phonon modes (note the y-axis log scale). Also sketched in (b) are
the dominant e-ph scattering processes below and above the phonon
emission threshold energy h̄ω0, which is shown as a vertical dashed
line for mode 90. The black dashed curve represents the integrand
in Eq. (2) and shows that only hole states within a 50–100 meV
energy window of the valence band maximum (VBM) contribute to
the mobility. (c) Mode-resolved scattering rates averaged over the
energy window contributing to the mobility. In all plots, the zero of
the energy axis is the VBM, and the hole energy increases moving
away from the VBM into the valence band.

greater scattering rates than the intramolecular modes, due
to reasons related to the e-ph scattering phase space that are
examined next.

In the hole scattering rates of Eq. (1), the first term in square
brackets corresponds to phonon emission and is proportional
to the phonon population Nνq + 1 since fmk+q ≈0 for holes in
our chosen temperature range. The term in the second square
brackets is the phonon absorption rate, which is proportional to
Nνq. Since the intermolecular phonon modes 1–12 have a zero
or small minimum energy, intermolecular phonon absorption
and emission processes are both active at all hole energies.
Their scattering rate decreases monotonically with phonon
energy (and thus with mode number, since the modes are num-
bered in order of increasing energy). Similar to simple metals
and nonpolar inorganic semiconductors, the main source of
scattering is acoustic modes, with smaller contributions from

other molecular rigid vibrations and librations (modes 4–12).
This result is further illustrated in Fig. 3(c), where the average
�

(ν)
nk over the 100 meV energy window of relevance for the

mobility is given for each phonon mode. The dominant role
of intermolecular modes is consistent with the charge hopping
intuition that rigid molecular vibrations mainly affect charge
transport in organic materials. However, in our band picture
based on phonon emission and absorption events, the origin of
this behavior can be attributed to the phase space rather than
the strength of the e-ph coupling per se, as further discussed
below.

The effect of intramolecular phonons on the mobility
is more subtle. Figure 3(b) shows that the e-ph scattering
rates for these modes exhibit a trend with two plateaus as
a function of hole energy. As explained next, the plateau at
low hole energy corresponds to phonon absorption, and the
one at higher hole energy to phonon emission. Consider an
intramolecular phonon with minimum energy h̄ω0. Due to
energy conservation, a hole in the valence band can emit such
a phonon only at hole energy higher than h̄ω0. At hole energies
below this threshold, only phonon absorption is possible,
with a rate proportional to the phonon occupation Nνq ∝
e−h̄ω0/kBT , which is much smaller than 1 at room temperature in
naphthalene since most intramolecular modes have minimum
energies h̄ω0 ≈ 50–200 meV. Therefore, the plateau at hole
energies below h̄ω0 is associated with a small intramolecular
phonon absorption rate, and it spans the entire energy window
contributing to the mobility.

At hole energies above h̄ω0, the phase space for e-ph scatter-
ing increases dramatically since holes can emit intramolecular
phonons, with a rate proportional to Nνq + 1 and thus much
greater than the absorption rate. Opening this phonon emission
channel leads to an increase of the e-ph scattering rates by
several orders of magnitude, but this increase occurs outside
the energy window of relevance for charge transport due to
the high energy of intramolecular phonons in naphthalene.
These trends are expected to be general in organic crystals,
since the dominant presence of hydrogen, carbon and other
light elements makes their intramolecular phonon energies
much greater than kBT . Interestingly, in organic molecules
containing heavy atoms, which introduce low-frequency in-
tramolecular vibrations, a contribution to transport from in-
tramolecular phonons is expected.

In short, the two-plateau structure for intramolecular mode
e-ph scattering is such that only the small rate for thermally
activated phonon absorption falls in the energy range of
interest for transport. Therefore the mobility is controlled
by low-frequency intermolecular vibrations. However, note
that intramolecular phonons are expected to dominate carrier
dynamics at higher hole energy above the phonon emission
threshold, where their combined scattering rate overwhelms
that from the (much fewer) intermolecular modes. This analy-
sis shows that intramolecular phonons play an essential role
in the dynamics of excited carriers [32–34,60] in organic
semiconductors.

IV. DISCUSSION

While the phase space limits their scattering near the band
edge, intramolecular phonons can couple strongly with holes

115203-4



CHARGE TRANSPORT IN ORGANIC MOLECULAR … PHYSICAL REVIEW B 97, 115203 (2018)

(a) (b)
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FIG. 4. (a) The absolute value of the local coupling constant
[see Eq. (4)] between each of the phonon modes and the HOMO
Wannier function. (b) The square of the HOMO Wannier function.
The potential perturbation �νqV

KS at q = 0 is shown for (c) mode
ν = 88 and (d) mode ν = 89. These modes correspond to the peak
(mode 88) and sudden drop (mode 89) in e-ph coupling in (a). In
panels (b)–(d), yellow is used for positive, and blue for negative
isosurfaces.

at all energies and in fact more strongly than intermolecular
modes. To study this point, we compute the local e-ph coupling
constants g(loc)

νq between each phonon mode at the Brillouin
zone center (q = 0) and the HOMO Wannier function (WF)
wR(r):

g(loc)
νq =

√
h̄

2ωνq
〈wR|�νqV

KS|wR〉, (4)

where R is the WF center, and the change in Kohn-Sham
potential �νqV

KS arises from the atomic displacements eκα,ν

of each atom κ (with mass Mκ ) along all cartesian directions
α due to the phonon mode ν,

�νqV
KS = eiq·r ∑

κα

1√
Mκ

eκα,ν∂κα,qV
KS. (5)

The absolute value of these local e-ph coupling constants are
shown in Fig. 4(a) for all 108 phonon modes [61]. Contrary to
intuition, the strongest e-ph coupling to the HOMO hole state
is not with the intermolecular modes that control transport.
Rather, specific high-frequency intramolecular phonons (in
particular, modes 79–88) exhibit the strongest coupling to
holes. To understand this result, we plot quantities entering
the local e-ph coupling in Eq. (4), namely the square of
the HOMO WF, |wR(r)|2, and the perturbation potential
�νqV

KS due to the atomic motions associated with the given
mode.

Figure 4(b) shows the square of the HOMO WF orbital,
|wR(r)|2; the perturbation potential �νqV

KS(r) at q = 0 is

shown in Fig. 4(c) for mode 88 and Fig. 4(d) for mode 89, which
are, respectively, cases of maximally strong and weak e-ph
coupling. We find that e-ph coupling is maximal for mode 88
due to the strong overlap between the square of the HOMO WF
and the perturbation potential, and the fact that both quantities
possess the same sign over most of the molecule, so that no
cancellations occur in the real-space integral in Eq. (4). By
contrast, the symmetry of mode 89 is such that its perturbation
potential �νqV

KS(r) alternates positive and negative lobes at
bonds where the square of the HOMO WF is large. As a result,
the integrand |wR(r)|2 · �νqV

KS(r) in Eq. (4) is positive for
two bonds and negative (and roughly equal in absolute value)
for the other two bonds, thus leading to a small integral over
the entire molecule in Eq. (4). This cancellation results in a
small e-ph coupling for mode 89. Other intramolecular phonon
modes with weak e-ph coupling are either associated with
perturbation potentials with small overlap with the square of
the HOMO WF, as is the case for modes in which only the
hydrogen atoms vibrate, or with perturbations that are out of
phase with the square of the HOMO WF, similar to the case of
mode 89. This analysis shows that the atomic displacements
and mode symmetry critically determine the e-ph coupling
of intramolecular modes, which can be much stronger than
that of intermolecular modes due to the large spatial overlap
between the hole charge density and the intramolecular mode
perturbation.

Lastly, we comment on the fact that our computed phonon-
limited mobility is smaller than the experimental result. Due
to the presence of impurities and defects in real samples,
our calculation is expected to provide an upper bound to the
mobility, and thus to slightly overestimate its experimental
value, consistent with our recent results for inorganic crystals
[32]. The reason why our result is lower than experiment is
unclear, but a possible cause is the neglect of nonadiabatic
effects.

Our method employs only the lowest Born-Oppenheimer
potential energy surface (PES), since the e-ph perturbation
potential is computed using DFPT. However, an insight from
nonadiabatic surface hopping calculations [8,62] is that sev-
eral PESs can lie close in energy in organic crystals, and
including their contributions to charge transport may increase
the mobility. The impact of such nonadiabatic effects on the
mobility within the band theory framework used here deserves
further investigation. Nonetheless, the fact that our results
underestimate the measured mobility is important as it further
supports the conclusion in Ref. [37] that hole charge carriers
in naphthalene crystals are weakly coupled to phonons, so that
transport occurs in the bandlike regime studied here. In fact,
polaronic effects resulting from strong e-ph coupling (beyond
the lowest order employed here) would further suppress carrier
transport by increasing the scattering rates and effective masses
[63], thus reducing the mobility.

V. CONCLUSION

In summary, we computed with quantitative accuracy the
hole mobility and its temperature dependence in naphthalene.
Our calculations dramatically improve the agreement with
experiment compared to previous efforts using band theory to
study charge transport in organic crystals. Our results show that
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FIG. 5. Band structures and phonon dispersions of naphthalene
crystal, for the structure used at 300 K. (a) The HOMO and HOMO −
1 electronic bands, where black is used for the DFT bands and
red for the bands with the GW correction. (b) Dispersion of the
12 intermolecular phonon modes. (c) Sketch of the first Brillouin
zone.

ab initio approaches based on band theory and many-body per-
turbation theory are well equipped to compute charge transport
in organic semiconductors. They can provide an accuracy at
least as satisfactory as widespread quantum chemistry methods
based on charge hopping, as well as insight into the role of
different phonon modes. Our work sets the stage for attempting
higher-order corrections or diagram resummations in the e-ph
perturbation to access the strong e-ph coupling regime typical
of polaron transport in organic materials.
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APPENDIX

See Figs. 5–7.
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FIG. 6. The mobility at 300 K, obtained using a structure relaxed with the TS-vdW correction, is shown with black crosses. The values fall
within the error bars.
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